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Abstract: State-of-the-art IoT technologies request novel design solutions in edge computing, result-
ing in even more portable and energy-efficient hardware for in-the-field processing tasks. Vision
sensors, processors, and hardware accelerators are among the most demanding IoT applications.
Resistance switching (RS) two-terminal devices are suitable for resistive RAMs (RRAM), a promising
technology to realize storage class memories. Furthermore, due to their memristive nature, RRAMs
are appropriate candidates for in-memory computing architectures. Recently, we demonstrated a
CMOS compatible silicon nitride (SiNx) MIS RS device with memristive properties. In this paper, a
report on a new photodiode-based vision sensor architecture with in-memory computing capability,
relying on memristive device, is disclosed. In this context, the resistance switching dynamics of our
memristive device were measured and a data-fitted behavioral model was extracted. SPICE simula-
tions were made highlighting the in-memory computing capabilities of the proposed photodiode-one
memristor pixel vision sensor. Finally, an integration and manufacturing perspective was discussed.

Keywords: resistive random-access memory (RRAM); resistance switching; silicon nitride; memristor;
vision sensor; photodiode; crossbar; in-memory computing; edge computing; dot product engine;
IoT; SPICE

1. Introduction

During the last decade, it became apparent that created data are increasing rapidly,
requesting revolutionary solutions when memory and storage is concerned. These needs
are more demanding in case of Internet of Things (IoT) applications and the corresponding
IoT sensors that produce zettabytes of data nowadays. The most straightforward approach
to tackle the uprising urgent issue is the local pre-processing of the unstructured data
generated by the IoT sensors in an edge-based sense [1–4]. Such a promising solution will
eventually minimize the requesting power consumption of the corresponding IoT appli-
cations and at the same time advance the overall computing in terms of energy efficiency.
However, following conventional digital design approaches involving either specialized
signal processors or more generic microcontrollers does not prove as promising as expected
and especially when power consumption is highly demanded [5]. The next obvious step of
utilizing a more specific-oriented CMOS-based design can be significantly enhanced with
the addition of novel nanoelectronic devices with memory abilities, namely memristors, to
be combined with the IoT sensors. To further investigate the promising aspects of such a
hardware approach enabling also in-memory computation at IoT sensors, special interest
is on vision sensors as a fine candidate for edge computing. The vision sensors, when
integrated with such processing hardware, are enabled to provide low-power computing
abilities for a number of various applications instead of only capturing the picture [6].
Nevertheless, from this perspective, we propose a photodiode-memristor (1D1M) vision
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sensor that integrates, in series, the photodiode with a memristor in a crossbar (Xbar) array.
This rather simple architecture gives the potential of analog non-volatile image storage and
massive parallel read operations with simultaneous dot product computations, reducing
the need for an expensive processor unit for basic image-processing tasks. The proposed
1D1M sensor array could be considered as a light-to-resistance converter, image storage,
as well as dot product accelerator. This method is more attractive for implementation
compared to a phototransistor because when implementing the memristive element with
a photodiode, the fabrication complexity is reduced. Additionally, the parasitic currents
through base-emitter junction disappear during memristance measurement operations.

The integration of memristors in photodiode circuits was demonstrated in [7], where
the memristor was used as a photocurrent integrator in the readout integrated circuit. Fur-
thermore, in [8] a vision sensor with adaptive background subtraction as the basic engine
for object tracking was implemented. There, memristors were used to store the dynamic
boundaries, outside which the behaviour of the photo-generated signal is recognized to
be anomalous. Moreover, hybrid RRAM-CMOS vision sensors have also been proposed
in literature integrating commercial photodiode pixel architectures combinations with
memristors [9], while in these architectures, each pixel requires three MOSFETs [10].

In this disclosure, a CMOS-compatible SiN memristor [11,12] is used because of the
SiN-based insulators immunity against environmental oxygen-related reliability effects,
metal ion diffusion, and humidity. In addition, silicon nitride nonvolatile memories (NVM)
have been well-established and various charge-trapping memory devices are commercial
nowadays (e.g., BiCS, SONOS). Their acceptance by the community is mainly attributed to
the intrinsic bulk defects that act as trapping levels for both electrons and holes [13–15].
The resistive switching and conduction mechanism in SiN memristors is directly related
to these intrinsic defects, as has been shown by several research groups [16–18]. Recently,
we demonstrated the role of the SiN-traps to form the various resistance levels [19] and
to use them in practical applications like true random number generators [20]. Moreover,
the scalability [21] and the neuromorphic aspects [22] of these memristors have also been
demonstrated and are very attractive compared to other RRAM technologies, which are
considered as one of the most promising candidates for emerging nonvolatile memories.
More specifically, RRAMs, thanks to their premium characteristics in terms of scalability,
simplicity, and low energy storage, are implemented successfully in Xbar architectures
aiming at the smallest memory cell, 4F2, where F is considered as the minimum feature
size that is obtained by lithography [23], and furthermore, due to their multiply and
accumulation current characteristics, various RRAM Xbar arrays implementations of in-
memory computing [24,25] and neuromorphic computing [26] have been already proposed
in literature. In terms of unconventional computing, Resistive Switching (RS) devices have
been demonstrated as adequate memristors able to store qubits in quantum simulators [27].
As a result, the proposed Xbar design and integrations of memristors with photodiodes
for image sensing and in-memory processing, alike edge computing, sounds promising,
and the presented SPICE-based simulation results reveal its successful implementation.
More specifically, 28 × 28 1D1M Xbar circuit array SPICE simulation results exploit the
in-memory processing abilities of the proposed vision sensor.

2. Silicon Nitride Memristor Devices as Analog Switches
2.1. Device Fabrication

On n++-Si wafer, where $ < 0.003 Ωcm, a 2 nm SiO2 layer was thermally grown.
Subsequently, a 6 nm SiNx layer was deposited by LPCVD at 810 ◦C, using ammonia
(NH3) and dichlorosilane (SiCl2H2) gas precursors. The SiO2 layer was selected to be
placed in between SiNx and Si for two main reasons. In the first place, to provide us
with the ability to further control carriers’ injection from n++ -Si bottom electrode (BE)
to SiNx. The second obvious reason is to enable us to succeed the retention increment
of the resistance levels with the addition of a higher energy barrier; subsequently, the
trapped carriers’ leakage from SiNx to Si-BE was accordingly mitigated. Moreover, the
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interface of the SiNx/Si presents significantly lower quality concerning the interfacial
defects when compared with the interface between the SiO2 (thermal dry oxide) and the
Si-BE. As a result, it is expected that owing to the subsequent thermally activated exchange,
in other words trapping/de-trapping of the carriers between Si-BE and SiNx, as well as
the aforementioned interfacial traps lower concentration, the intermediate SiO2 layer will
be able to efficiently suppress the electronic noise. Si doping is high enough to minimize
the substrate depletion/ inversion capacitance, which is attributed to transient parasitic
effects under pulse operation conditions. Nevertheless, the reduction of Si doping leads
to self-rectification [28,29] in the I-V characteristics, which is very attractive for memory
operation. Furthermore, with the help of photolithography and metal lift-off, we were
able to define the Top-electrode (TE) as well. In more details, the TE metallization process
corresponds to a sputtered 30 nm Cu layer also covered by 30 nm Pt in order to avoid
oxidation of Cu [12]. A schematic representation of our device is presented together with
an XTEM micro-image, which is shown in Figure 1. The later allows for the measurement of
the SiNx and oxide layer thickness, which are (6.2± 0.3) nm and (2.1± 0.3) nm, respectively.
Clearly, the nitride layer is amorphous, homogeneous, and without meaningful surface
and interface roughness.
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2.2. Analog Resistive Switching Characteristics

The origin of the resistance switching (RS), as shown in Figure 2a, is not still well
established. Except [30] where the most probable mechanism is attributed to the movement
of protons due to the large concentration of hydrogen atoms, all research results converge
to the conclusion that RS originates from a trap-assisted mechanism [16,18]. This is mainly
due to the different deposition techniques that affect the thermodynamic parameters of
the defect formation. In our case, as clearly shown in Figure 2b, the space charge limited
conduction (SCLC) mechanism was best fitted to our I–V measurements, and this is the most
common mechanism found in literature for SiNx memristors [18]. Initially, the tunneling of
electrons to short-range defects in the nitride layer (Ohm’s law, I~V) is apparent, and as
the voltage increases to more than the threshold value VTH, traps deeper in the layer are
filled, causing the transition from linear to parabolic I–V dependence [12]. When all traps
are filled (trap-filled region, TFL), at VTFL, the current suddenly increases (I~Vn, n > 2).
The calculated slopes in the double logarithmic I–V plots correspond to the values of the
voltage exponent, which for the linear and parabolic regions, range from 0.99–1.06 and
2.01–2.57, respectively. This observed variability can be attributed to the presence of the
randomly distributed traps inside the SiNx material and the interfaces, and fully agrees
with previous published results in SiN MIM [18]. According to the SCLC theory [12], the
concentration of traps can be estimated from

Nt =
2εVTFL

qd2 (1)

where ε is insulator’s vacuum dielectric constant, q is the fundamental electronic charge,
while d and VTFL denote the insulator’s thickness and the trap-filled limit voltage, respec-
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tively. According to (1), the trap concentration in SiNx layers was estimated 1.2 × 1020 cm−2,
which is a typical value for such LPCVD silicon nitride material. According to our recent
work [19], the energy levels of the predominant traps in a typical 200 kΩ resistance level
were found at ca. 0.6 eV to ca. 0.7 eV below the conduction band of silicon nitride, which
is in accordance with [13,15]. These trapping levels correspond to adjacent nitrogen traps
in the nitride bandgap. These traps originated either due to the breakage of = N – H
and ≡ Si – N = bonds [13] or due to hydrogen incorporation in silicon-silicon dangling
bonds [15]. In Figure 2a, the I–V characteristics obtained by DC sweep for the investigated
SiNx memristors are presented. Obviously, different resistance levels could be achieved
under different current compliance values, in which it is evident that SiNx memristor is
not a bistable memory element but has analog switching characteristics.
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Figure 2. (a) Typical bipolar switching behavior for SiNx Memristor. Different resistance levels
achieved under different current compliance values. (b) Analysis of typical I-V sweep characteristic
for SiNx memristor during SET following the SCL conduction mechanism.

In order to achieve accurate investigation of memristor’s dynamics, we assembled
a DAQ-card, namely a NI-PCIO-MIO-16E card that was attached to an I/V converter,
namelySR570 through a low-noise junction box, i.e., NI BNC 2110, all presented in the
block diagram of Figure 3a. In addition, a wafer probe station was utilized to set the
aforementioned memristor device with the help of triaxial cables for the application of
required voltage pulses and measurement of the corresponding output currents. A LabView
environment was finally applied to control the presented measurement experimental setup,
enabling any tuning pulsing sequence of arbitrary waveform as well the switching between
I/V and ground, or in other words Read and SET/RESET, respectively. The later operation
was realized by using a reed relay, namely the HE3321X050 reed relay. It should be noticed
that all the following measurements were conducted without the appliance of any current
compliance mechanism.

For our experiments, we examined memristors with area 100 µm × 100 µm. ISPP,
incremental step pulse programming technique, was utilized to achieve proper switching
from High Resistance State (HRS) to 200 KΩ [31]. This was achieved with pulses of 1 µs
duration and amplitude located in the range of +5 V to +9.7 V, grading with 0.1 V steps for
every 20 pulses. The repetition rate/frequency of the applied pulses was 33 Hz, while the
resistance was measured after each ISSP produce pulse by pulsed current (0.1 V/200 µs).
The forming procedure is shown in Figure 3b (region A). Obviously, four significant resis-
tive states (0.2 MΩ, 0.5 MΩ, 0.8 M, and 1 MΩ) were revealed in the examined devices and
are marked in Figure 3b with colored squares symbols. According to the literature [19,32],
the observed resistance modification results from the redistribution of the silicon nitride
traps inside the material, performed in a progressive manner, forming a conductive fil-
amentary region, enabling the ejection (or injection) of charge carriers into these traps,
and modulating the resistance of filament [19]. Voltage pulses with different heights are
attributed to exchange carriers with traps of different activation energy; the larger the pulse
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height, the larger the trap energy probed. In this framework, the four stable resistance
states mentioned previously can be interpreted. Recently, Yonai et al. [33], using similar
devices, proved that pulsing frequency and duty cycle during potentiation drastically affect
the forming and endurance characteristics.

Following the ISPP forming procedure, consecutive pulse trains (1 pulse train = 20
pulses) of width 1 µs and amplitude ±6 V, result in fine modulation of resistance from
0.2 MΩ to 0.5 MΩ (depression) and back (potentiation). Experimental results of potentiation
and depression cycles are presented in Figure 3b (please check region B), indicating that the
traps redistribution in the filamentary area of the nitride layer can be accurately controlled.
Furthermore, it is demonstrated that the examined memristors can mimic the operation of
neuronal synapses.
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Figure 3. (a) Block diagram of the switching measurement experimental setup, (b) ISSP forming
procedure is illustrated in region A, and three potentiation/depression cycles under pulses of 1 µs
width and ±6 V amplitude are illustrated in region B.

2.3. Analog Resistive Switching Behavioral Modeling

In order to simulate any circuit employing the aforementioned fabricated SiN-based
memristor, an accurate model for the resistance switching dynamics is required. For this
purpose, single memristor resistance measurements were performed by utilizing sets
of 20 pulses, pulse trains, with alternating polarities. The results of this procedure are
depicted in Figure 4. It should be noted that the aforementioned pulse trains have different
amplitudes and modulate the resistance of the tested devices 0.2–0.5 MΩ, accordingly.
Clearly, the exponential relation (2) can sufficiently fit on the depression/potentiation
measured data.

Rm(t) = R0 + Ae−bt (2)

Experimental data fitting on (2) are presented with solid lines in Figure 4. The applied
pulse has the same polarity with parameter A, while the pulse amplitude (±5.6 V to
±5.9 V) is related in a linear manner with parameter b, as shown in Figure 5. Evidently,
Rm(t) evolution with respect to applied potential pulse V can be modeled accurately, in
these ranges, by Equation (2). Average rate of Rm change per different voltage pulse is
also presented in Figure 5 (dashed lines slopes of Figure 6) and gives a better intuitive
picture of the potentiation/depression phenomenon. It was observed that for every volt
change (absolute value) on potentiation/depression pulse amplitude, the rate of Rm change
increases by about 1 kΩ resistance per pulse.

It is clear that in the case of ±6 V, the fitting Rm(t) turns to be less accurate and close
to the extremum region of our data. To tackle this issue, a voltage window is selected to be
applied to the aforementioned exponential relation that describes Rm evolution.

dR
dt

= s(v)× f (R, r(v)) (3)
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s(v) =


Ap

(
−1 + e

|v|
tp

)
, v > 0

An

(
−1 + e

|v|
tn

)
, v ≤ 0

(4)

f (R, v) =

{ (
rp(v)− R

)2, v > 0
(R− rn(v))

2, v ≤ 0
(5)

The proposed method with the window applications was successfully utilized before
in a related work [34]. More specifically, the model Equation (3) includes a state function
s(v) (4) for the evolution of the state of the memristor multiplied by a mathematical window
f (R, v) (5) to limit the state within a certain resistance range. In addition, the window
function f (R, v) uses the internal Equation (6) to calculate the target resistance r(v), which
varies depending on the width of the applied voltage:

r(v) =
{

rp(v) = a0,p + a1,p · v, v > 0
rn(v) = a0,n + a1,n · v, v ≤ 0

(6)

where, v and R are the applied voltage and the (resistance) state of the memristor, respec-
tively, while all other variables are fitting parameters [34].
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Table 1 shows the values of the fitting parameters of the exponential windowed model
as they emerged though fitting in our data with MATLAB’s global optimization toolbox. A
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comparative view of the two fitting models is shown in Figure 6, where the yellow line
presents the single exponential fitting model, and the cyan line, the windowed exponential
model, respectively. For nearly any applied voltage, the fitting accuracy performed for the
windowed exponential model is significantly improved.

Table 1. Fitting values for the exponential windowed model.

Potentiation–Positive Pulses Depression–Negative Pulses

Ap
(
Ω s−1) −8.852× 10−8 An

(
Ω s−1) 0.9085

tp(V) 0.4277 tn(V) 214.06
a0,p (Ω) 748.5× 103 a0,n (Ω) −4.088× 106

a1,p
(
Ω V−1) −115.4× 103 a1,n

(
Ω V−1) −833.6× 103
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3. One Photodiode One Resistor (1D1M) Vision Sensor
3.1. Architectural Overview

Herein, a 1D1M architecture is disclosed, comprising the implementation in series of
a photodiode with the proposed SiN memristor integrated in a Xbar array with common
TE per row and common BE, namely the photodiode’s anode per column, respectively. In
Figure 7, a detailed symbolic representation of the disclosed architecture is presented.

In the following, the 1D1M vision sensor operation is presented. As already presented
in the corresponding region A of Figure 3b after a forming procedure (see Figure 3b—
Region A), which will take place either to initialize the sensor or if the formed filament
breaks, the first operation of the vision system is to erase (or reset, ERS) the memristors’
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resistance to the initial state of 0.5 MΩ, which can be succeeded with negative pulses on
TEs nodes while BEs are grounded. In correspondence, the second step is programming
(SET or PGM), with the PD array light exposure. As a result, when various light intensities
are going to be applied on PDs, this will result in various voltage drops at the memristors’
electrodes for the same VTE, thus causing correspondingly various resistance changes. In
other words, memristance in the range of 0.2–0.5 MΩ is considered by the light intensity
conversion and, in such a manner, an image can be easily stored in the Xbar array. It is clear
enough that the light sensitivity of the vision sensor can be controlled with the application
of various VTE voltages. Finally, the read image (READ) operation can be succeeded by
applying row-by-row VREAD = −(Vbi + 0.1)V on TEs and measuring the corresponding
currents on BEs. The produced sensory image will be in the range of [VREAD/Rm,MAX,
VREAD/Rm,MIN]. The READ operation can be completed in N steps equal to the number of
rows.
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In-memory computing capabilities can also be utilized through this architecture.
In the previous final step of the READ operation, VREAD voltages can be applied on
multiple rows at the same time, which will lead to accumulating currents flow on BEs.
Figure 7 presents this functionality. Multiple VREAD voltages are applied as a moving
mask [V1 V2 V3] on the TEs, while BEs currents export the accumulated dot products
Ij = ∑column VREAD(i, j) ∗ [1/Rm(i, j)] of the activated rows (green arrows). With external
summation of these currents in groups of mask-size (in this example by 3), a filtered image
can be produced. This implementation gives a fundamental pre-process functionality to the
vision sensor and increases its portability, excluding the need for a more complex processor
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for in-the-field applications. The drawback of the method is when the filter mask is not
uniform and each different mask column should be reapplied to the sensor. In this case,
the processing time will be increased linearly by a factor of n equal to number of mask
columns needed to be applied to the sensor. Finally, masks with ambipolar values are not
allowed because only one current direction is allowed through the photo-diode during the
READ operation.

3.2. Integration Perspectives

As we mentioned previously, the SiN memristor is a fully compatible CMOS process
device and for this reason the SiN-PD array (see Figure 8) integration in a manufacturing
environment is feasible. To avoid pixel crosstalk as well as the formation of parasitic
bipolar transistor between adjacent pixel, silicon-on-insulator (SOI) substrates are more
preferable. Figure 8a illustrates the cross section of two adjacent pixels in the same row,
while Figure 8b presents the schematic layout of a 2 × 2-unit cell of 1D1M presented vision
sensor. The required processing steps for this integration are described as follows. The
fabrication starts with the formation of n++-Si region by ion implantation, followed by
the deposition of the dielectric stack (SiO2 and SiNx) on p-type SOI wafer. Next, pixel
dielectric isolation takes place through silicon dry etching till the buried oxide (BOX) and
the uncovered area is filled by TEOS deposition. Following, BE contact metallization (Al)
through lithography and metal lift-off take place. Then, the Al electrodes are covered by
low-temperature oxide (LTO). After pixel active area definition by lithography, LTO is
stripped from the PD n++ region. Finally, the TE formation (Cu/Pt) is performed through
lithography and metal lift-off.
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Speed and responsivity optimization will be obtained through specialized PD design
in the future. The PD’s p-n junction capacitance will be adjusted, which also regulates
the bandwidth. The most important parameter affecting the sensor’s efficient operation is
the dark current of the PD, and specific optimization steps are required. Another critical
parameter is the coupling capacitance between BE and TE metal lines, which requires
a precise calculation of the geometrical characteristics and precise routing. All these
optimizations will be achieved through comprehensive TCAD modeling as part of our
ongoing research work in these topics.

3.3. SPICE Simulated in-Memory-Computing Operations

SPICE simulations are made to evaluate the functionality of the proposed sensor’s
circuitry. Firstly, the single 1D1M element is simulated. The inset of Figure 9a shows the
equivalent PD circuit used for this purpose while the related quantities are described by
the following set of equations:

RS =
(WS −Wd)ρ

A
+ RC (7)

CJ =
εsiε0 A

Wd
,

Wd =
√

2εsiε0µρ(VTE + Vbi)
(8)

IPh = Wopt × Resp × A (9)

More specifically, series resistance of the photodiode is modeled by (7), where WS
(=300 um) is the thickness of the substrate, Wd (= 0.5 µm) is the width of the depleted
region, A

(
= 100 µm2) is the diffused area of the junction, ρ (=3 mΩcm) is the resistivity of

the silicon substrate, and RC is the contact resistance. Junction capacitance CJ is modeled
by (8), where ε0

(
= 8.854× 10−14 F/cm

)
is the permittivity of free space, εsi (= 11.9) is

the silicon dielectric constant, µ
(
= 1400 cm2/V·s

)
is the mobility of the electrons at 300 K,

Vbi (= 0.65 V) is the built-in voltage of silicon, and VTE is the applied bias. Photocurrent is
given by (9), where Wopt is the incident light power and Resp (= 0.5) is the responsivity of
the PD. Shunt resistance Rsh (= 100 MΩ) is the slope of the current-voltage curve of the
photodiode at low voltages, and it is used to determine the noise current in the photodiode
with no bias. Finally, for the internal diode of the PD subcircuit, a IN4148 SPICE model is
used [35].

Simulation results of a PGM operation on a 1D1M unit are presented in Figure 9a
where memresistance changes under 30/1 µs consecutive light pulses on PD’s cathode.
A clear separation of eight memristance levels can be achieved by a set of eight different
light intensity pulses with power in the range of Wopt = [0.1 µW/um2, 0.24 µW/um2].
Additional memristance variability of 5.8 kΩ (the maximum resistance fluctuation in the
targeted range of 200–500 kΩ as measured in [19]) was added to the simulation to validate
that the states are clearly separated. It is worth to mention that, an important tweak for
better resistive state separability, as it is revealed through the simulation process, was
the increase of the VTE bias after each light pulse, due to significant voltage drop on the
memristor device. More specifically, as shown in Figure 9b, VTE was increased by 0.4 V after
every three light pulses and now the three last memristance levels popped out while the
overall separation was obviously better. With this method, the memristor bias is kept above
its switching voltage threshold for a larger period and its memristance change keeps on.
The required increase of VTE can be easily implemented with a DAC converter. Figure 9c
shows the transient responses of eight different READ operations on a 1D1M element after
the previous PGM operations with the eight different light power conditions.
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Figure 9. Memristance change as calculated on SPICE simulation for eight PGM operations with
eight different light intensities on a single 1D1M element with (a) constant VTE bias and (b) VTE

increment by 0.4 V/three light pulses. (c) Memristor currents for eight READ operations of 500 µs
after the previous eight PGM operations. The inset in (a) displays the equivalent PD subcircuit was
used in SPICE simulation.

Proposed sensor’s in-memory computing properties were demonstrated through
SPICE simulation on a 28 × 28 1D1M crossbar circuit array. In Figure 10a,b, in-memory-
computing SPICE simulation results for an image capture and READ operation and a
READ operation simultaneously with mean filtering are presented, respectively. In all
experiments, the memristors of the 28 × 28 array were initialized at the high resistive
state (500 kΩ) and then light pulses were emitted on PDs with eight discrete power levels
as shown previously. For the first READ operation of the captured abstract image, a
VREAD = –(0.1 V + Vd) was applied row-by-row and the currents measured on BEs. We did
not simply add Vbi to VREAD because voltage drop Vd in IN4148 diode model is not equal
to Vbi under forward bias in-series with resistance. Thus, Vd (=0.215 V) was calculated
from the operating point of the diode for the memristive state of 350 kΩ and added to
VREAD. With this method, an equal distribution of reading potential around 0.1 V for
every memristive state can be achieved while avoiding memristor’s non-linearities. For
the in-memory-computing filtering operation, a size-3 mask [VREAD, VREAD, VREAD]T was
used and shifted on arrays TEs. For this case, the corresponding accumulated currents
were collected from the BEs and summed externally in groups of three. In both cases, eight-
level images were exported with clearly separable current levels. Finally, Table 2 shows
a comparison between fundamental characteristics similar to our work in memristive
in-sensor computing architectures proposed in the latest literature.
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Table 2. In-sensor computing concepts based on RRAM devices.

Technology
[Reference]

NVH RRAM-CMOS
Architecture

[9]

Networking
Retinomorphic

Sensor
[36]

UMV 2D
Material

Image Sensor [6]

ATO Machine Vision
Processor

[37]

AFV Memory System
[38]

1P1R
Image
Sensor

[39]

This Work

Biological
System

emulation

Retinal
bioarchitecture

Human
Retina No Human

vision system
Human

visual memory No No

CMOS
process

compatibility

Only
Pixel Array

Not
compatible

Not
compatible

Not
compatible

Not
compatible

All
structure

All
structure

Memristive structure Hexagonal
circuitry

1T1R
crossbar

1PD-1FGT
crossbar

MoS2 photo-FET
crossbar

1SMW-1R
array

1T1R
crossbar

1D1R
crossbar

Memristive
element Pt-Hf-Ti VTEAM Model Pt/Ta/HfO2/Ta hBN-Au-Al2O3

(Floating gate memory) FET PCC (1) Ni-Al2O3-Au
SiNx

Experimental
data model

SiNx
Experimental
data model

Analog
Resistive states

2 levels
On/Off

[0 mA, 4 mA]: [0 V, 0.4 V]
discrete levels
not mentioned

discrete levels
not mentioned

4 discrete
levels

2 levels
On/Off

16 discrete
levels

8 discrete
levels

Photosensitive element PN
photodiode

WSe2/h-BN/Al2O3
phototransistor

WSe2
photodiode

MoS2
photo-FET

In2O3
SMW (4)

NPN-BJT
phototransistor

PN
photodiode

Development stage IC Mask Layout design
and sims Fabricated Fabricated Fabricated Fabricated Simulation Simulation

Estimated power
consumption 7.8 µW (2) N/A N/A 1.65 µW (3) N/A N/A N/A

Estimated IC pixel area
size N/A N/A 17 × 17 µm2 300 × 300 µm2 0.5 × 0.5 cm2 10 × 10 µm2 10 × 10 µm2

Sensor size
investigated

128 × 128 PDs
16 × 16 RRAMs

arrays
N/A

27× 3 × 3 Pixel
(PD + FGT)

array

32 × 32
photo-FET

array

10 × 10
(SMW + RRAM)

array

32 × 32
(PD + RRAM)

array

28 × 28
(PD + RRAM)

array

In-memory
computing

application Demo

Retinal Line spread
function approximation

Edge
enhancement,

stylization and
recognition

ANN
classifier

Edge Detection,
Embossing, Blur and

Visual recognition
N/A

Mean Filtering
And

Edge Detection
Mean Filtering

(1) Persistent photoconductivity; (2) Single Cell; (3) Average per input image; (4) SMW = Semiconductor micrometer-sized wires.
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Figure 10. 28 × 28 1D1M vision sensor’s in-memory-computing SPICE simulation results for (a) an
original image as was captured by the sensor and read row-by-row after 30 discrete light pulses on
PDs. (b) A READ operation simultaneously with mean filtering.

4. Conclusions

In this work, the potentiation/depression characteristics of a SiNx memristor were
measured and modeled, successfully mimicking the neuronal synapses. The architecture
of one photodiode–one memristor was presented and simulated. A 1D1M crossbar sensor
array was developed and its in-memory computing properties like filtering were demon-
strated through SPICE simulations. Finally, an integration and manufacturing perspective
was discussed.
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