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The leakage of the intestinal barrier and the disruption of the gut microbiome are
increasingly recognized as key factors in different pathophysiological conditions, such as
irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), chronic liver diseases,
obesity, diabetes mellitus, types of cancer, and neuropsychiatric disorders. In this study,
the mechanisms leading to dysbiosis and “leaky gut” are reviewed, and a short summary
of the current knowledge regarding different diseases is provided. The simplest way
to restore intestinal permeability and the microbiota could be ideal nutrition. Further
therapeutic options are also available, such as the administration of probiotics or
postbiotics or fecal microbiota transplantation.
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INTRODUCTION

The intestinal epithelial barrier (IEB) has the greatest surface in the body, that separates the
interior part from the environment. The IEB has two main roles: it is both responsible for nutrient
absorption and serves as the first line of defense against external pathogens. The IEB has a well-
regulated structure. Its permeability is organized into transcellular and paracellular ways. Recently,
the importance of the mucous surface in the intestine has also been recognized as a crucial regulator
of permeability. The mucous surface is colonized by the commensal microbiota, which helps in
nutrient production, the elimination of pathogens, and the overall maintenance of gut health. Food
passing through the gastrointestinal tract has an enormous influence on the microenvironment
of the intestinal microbiome and also on the IEB. Food can be a selective advantage for certain
members of the microbiota that have influence on gut function. In conditions with increased
intestinal permeability, the alteration of the microbiota is also often observed. In the last decade,
there was a great effort made in the scientific community to verify the direct link between the

Abbreviations: ASCA, anti-Saccharomyces cerevisiae antibody; FGID: functional gastrointestinal disorders; GF, germ-free;
IEB, intestinal epithelial barrier; IBD, inflammatory bowel disease; IBS, irritable bowel syndrome; IBS-C, constipation-
predominant irritable bowel syndrome; IBS-D, diarrhea-predominant irritable bowel syndrome; IBS-M, irritable bowel
syndrome with mixed bowel habit; LPS, lipopolysaccharides; SCFA, short-chain fatty acids.
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microbiota and disease progression, and the regulatory options
of these diseases through the microbiota. In this review, the
relations based on the currently available literature were explored.
The impact of food intake on gut microbiota, as well as the
mechanism of how it modifies intestinal permeability, which
results in various pathological conditions, is described.

INTESTINAL PERMEABILITY AND THE
MICROBIOME

The intestinal microbiota is a complex but not fully understood
ecosystem of microorganisms. Recent signs of progress in
molecular biology techniques have made it possible to collect
more data about the impact of the microbiota (1). Usually, the
microbiota consists of mostly anaerobic bacteria, fungi, archaea,
viruses, phages, and protozoa, which live in balance with the
host organism. This genome contains 100 times as many genes
as the human host (2, 3). The microbiota can be considered an
“organ” within the body, as it has a complex structure and specific
functions (4).

Microbiome and Microbiota Composition
Disruption in the balance of the bacterial composition of the
microbiota is referred to as dysbacteriosis (5). A very important
aspect of microbiota analysis is that the “normal microbiota
composition” has not yet been clearly defined. Right after birth,
the microbiota is present in the human body, and there occur
changes in its composition during the first years of development,
which continue until the beginning of aging in an individual (6,
7). Aging induces moderate changes in the microbiome, wherein
diversity is diminished in old people, especially in people living
in older adult homes. The composition of the microbiota also
depends on the host’s genetics, diet, and cultural and geographical
factors, which make it even more difficult to identify an ideal,
universal profile of the healthy microbiome (8, 9). Furthermore,
lifestyle can significantly influence the microbial community;
consequently, different microbiomes and microbiota are present
in healthy rural and urban people (10–13). Due to this high
variability, no conclusions should be drawn about the healthy
microbiome and microbiota composition based on taxonomic
classification, and as a result, more useful data could be provided
by the metabolic functions (14–16).

Intercellular Junctions and Intestinal
Epithelial Barrier Permeability
The regulation of IEB permeability is a complex, not clearly
understood system. Intercellular junctions, such as tight junction,
adherent junction, and desmosomes, have a key role in the
paracellular passage (17, 18). The subunits of these subcellular
structures are located on the lateral membranes of the epithelial
cells. Adherent junctions play a role in the stabilization of cell-cell
contacts and consist of E-cadherin, nectin as a transmembrane
protein, and catenin-associated cytoplasmic protein, which
directly connect the structure to the actin cytoskeleton (19).
Desmosomes have a significant role in joining adjacent cells
to each other and providing anchoring sites for intermediate

filaments (20–22). Tight junctions are responsible for water,
certain small molecules, and ions passing through the barrier.
Tight junction proteins regulate this complex system. These
proteins consist of transmembrane (occludin, claudin, junctional
adhesion molecules, and tricellulin) and cytoplasmic proteins
(zonula occludens, cingulin, and afadin), which help coordinate
the alteration of the cytoskeleton (23). Claudin and occludin
regulate permeability together with other members of the
complex. In human, the epithelial claudin family has 26 members
with different functions. Tight claudins are responsible for sealing
the intestinal barrier (e.g., types 1, 3, 4, 5, or 6), whereas other
claudins can form a pore to precipitate paracellular water and
ion transport mechanisms (e.g., types 2 and 15). Certain proteins
have been found to have other properties; junctional adhesion
molecule A is also considered to be responsible for leukocyte
migration (24, 25). Mucosal damage, such as in ulcers of patients
with inflammatory bowel disease (IBD), disrupts this complex
regulatory structure and causes an uncontrolled leakage through
the barrier (26–28) (Figure 1).

Increased permeability of the IEB and dysbacteriosis is
considered to be strongly correlated. There is a bidirectional
link between the two phenomena: an increase in permeability
promotes dysbacteriosis (29), and the changes in the microbiota
can also modify intestinal permeability (30, 31). Increased
epithelial tight junction permeability promotes commensal
bacteria to cause an intestinal cluster of differentiation 4+
(CD4+) T-cell expansion and interleukin 17A production that
limits enteric pathogen invasion (32). In contrast, chronic
Salmonella typhimurium infection is more severe in transgenic
mice with increased intestinal permeability, suggesting that
barrier defects ultimately result in enhanced disease progression
despite the activation of protective mucosal immunity (32,
33). Altered gut permeability is observed in patients with IBD
and even in their first-degree relatives, who are otherwise
healthy (34).

Intestinal mucus is a critical component of the IEB since
it forms a direct link between the host and the microbiota.
The mucous layer comprises a hydrated network of polymers
including the mucin glycosylated protein. Mucin consists
of a protein core of the proline–threonine–serine (PTS)
sequences with tandem repeats and serine and threonine are
extensively O-glycosylated; this molecular structure forms a
“bottle-brush” structure of conformation (35). Glycated mucin
domains have water-binding abilities. Mucins exist in two forms:
transmembrane mucins are linked to the surface, and secreted
mucins form a 3-dimensional network in the intestinal lumen.
Membrane-linked mucins have an impact on the composition of
the microbiota. The communication between the luminal content
and the barrier is supposed to be through specific cleavage,
glycosylation, phosphorylation, and some other ways. However,
the complete functions of the transmembrane mucins have not
yet been discovered completely (35). Mucins are secreted by the
goblet cells (36) in the crypts; the main type of secreted mucin
is encoded by the Muc2 gene (37, 38), which forms various
structures depending on the intestinal segment. Small intestinal
mucin is less dense and penetrable to bacteria. Antimicrobial
peptides are secreted by Paneth cells, and the passage can help
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FIGURE 1 | Components of the healthy intestinal barrier and the potential mechanisms of barrier damage. The intestinal epithelial barrier consists of outer and inner
layers of mucus, epithelial cells, and intercellular junctions. In a healthy stage, the outer mucous layer forms a 3-dimensional network in the gut lumen containing
microbiota. The inner mucous layer containing antimicrobial peptides and secretory IgA keeps away the microbes from the epithelial cells. Intercellular junctions (tight
junctions, adherent junctions, and desmosomes) connect the cells to form a barrier between the subepithelial surface and the microbiota.

maintain barrier defense. In the large intestine, mucus forms
two layers: a dense mucous layer in the proximity of epithelial
cells, which is normally impenetrable to bacteria, and the loose
mucous layer, which is colonized by commensals. Degradation
of the mucus maintains a continuous turnover from dense to
loose mucus (39). This layer is an important interface between the
luminal microbiota and the epithelial cells, which can maintain
intestinal permeability and serve as a nest for the microbiota.

Microbial Impact on the Innate and
Adaptive Immune Responses
During the past two centuries, the incidence of several
diseases with multifactorial etiology has increased. In
developed countries, there are numerous hypotheses about
the pathophysiological background of frequent diseases, such
as obesity, asthma, cancer, autoimmune diseases, and allergy.
In parallel, developing multidisciplinary molecular biological
techniques (“omics”) try to investigate the background of these
diseases using microbial, immunological, environmental, and
genetic approaches (40, 41).

Immunological examinations have found that the mucosal
immune system has a crucial role in the regulation of gut
microbiotic homeostasis through optimizing normal and
dysbiotic microbiome balance (42). Several pathways seem to

be responsible for avoiding dysbiosis. Nucleotide-binding
oligomerization domain-containing protein 1 (NOD1)
recognizes peptidoglycans from the bacterial wall and suppresses
commensal bacteria extension, such as Enterobacteriaceae,
Clostridiales, and Bacteroides spp. (43). The function of NODs
has been proved in transgenic mice studies. Nod2−/− mice
have the same commensal microbiota characteristics, and an
increased burden of mucosa-associated bacteria leads to mucosal
inflammation and colorectal cancer (44–46). In human studies,
NOD2 polymorphism has also been connected to Crohn’s
disease (CD) (47). Toll-like receptors (TLRs) are responsible
for activating the innate immune system via sensing microbial
particles such as flagellin. Flagellin sensor TLR5 mice−/−

have an altered microbial composition compared to the wild
type, manifesting in hyperphagia and metabolic syndrome
phenotype (48).

Aside from the innate immune system, adaptive changes
may also have a significant impact on the regulation of the
gut microbiota composition (49, 50). Mucosal IgA, secreted
by B cells, binds to a specific bacterium or bacterial particles
resulting in neutralization. Human studies have revealed the
proximal-distal colonization characteristics of the mucosa (51).
Follicular helper T-cells (TFH) promote the secretion of IgA and
express programmed cell death protein 1 (PD-1) as well. PD-1
deficiency may then result in an altered microbial composition
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characterized by increased Enterobacteriaceae and decreased
Bifidobacterium abundances (52).

Microbiome Metabolomics – A New Key
for Permeability Regulation and Disease
Pathogenesis
Bacterial metabolic products are in the focus of recent studies,
including but not limited to the following: short-chain fatty
acid (SCFA) metabolites, tryptophan metabolites (serotonin
and tryptamine), bacterial lipopolysaccharides (LPS), and
peptidoglycans. SCFA metabolites, such as acetate, propionate,
and butyrate, can act on fatty acid receptors in epithelial,
enteroendocrine, and neuronal cells, and they could affect
the central nervous system in experimental model organisms
(53, 54). Enterochromaffin cells produce serotonin after
SCFA recognition. Neuronal and glial cells react to the fatty
acid receptor stimulation in the peripheral nervous system,
and potentially, in the central nervous system (55, 56).
Tryptophan metabolism is considered to play an extremely
important role in gut physiology. Serotonin, a tryptophan
derivate with neurotransmitter functions, plays a role in the
gut-neuronal/enterochromaffin cells and in gut-bacterial
interactions. Another tryptophan metabolic pathway is
supposed to be through kynurenine. About 90% of the
tryptophan is metabolized in this way. Some of the regulating
enzymes are produced in all tissues, and the activation of
these enzymes is dependent on the inflammatory cytokines
and glucocorticoids. The downstream metabolites of the
kynurenine metabolic pathway, quinolinic and kynurenic
acids, are neuroactive metabolites acting on the glutamatergic
N-metyl-D-aspartate (NMDA) receptor (57). Members of the
microbiota can act on these enzymes of the cascade. Lactobacilli
may accelerate the conversion of tryptophan to kynurenine,
which has been linked to behavioral changes in rodent models
(58). This finding also demonstrates the functioning of the
microbiome-gut-brain axis.

DISEASES LINKED TO DYSBIOSIS AND
INCREASED INTESTINE PERMEABILITY

Recently, some studies have demonstrated that several diseases
are correlated with the perturbation of microbiota and intestinal
permeability changes. However, the pathophysiological role of
dysbiosis has not exactly been determined yet in the case of
several diseases. A short summary is provided on the diseases
related to dysbiosis and showed increased intestinal permeability
according to the available literature.

Irritable Bowel Syndrome
Functional gastrointestinal disorders (FGID) are multifactorial
diseases with poorly characterized pathophysiology. Several
studies have examined the background of IBS, which has a
significant impact on the healthcare system due to the high
costs of its care. There are regional differences in the prevalence;
nonetheless, it involves 12% of the population on average (59,

60). One of the first pathophysiological observations was the
increased intestinal permeability in all subtypes of the disease
(61–63) seen mostly in the diarrhea-predominant IBS (IBS-D)
subgroup (64, 65). Permeability changes have not been verified
yet in the constipation-predominant IBS (IBS-C) subgroup by
other investigations, whereas patients with mixed bowel habits
(IBS-M) have not been investigated so far. In addition, increased
permeability correlated with symptom severity in IBS-D (66). It is
also well-known that visceral hypersensitivity and dysbacteriosis
are important parts of the disease (67).

Nowadays, there is an increasing scientific interest in other gut
microbiota components. Fungi are also altered in IBS compared
to healthy people, with enrichment of Saccharomycetes and
Candida spp., with a distinct genotypic profile and different
phenotypical features. However, the significance of these
mycobiotic changes has not completely been described. A better
understanding of the role and function of archaebacteria, viruses,
phages, and protozoa could also change the scientific view of the
microbiota in the future (68, 69).

Irritable bowel syndrome pathophysiology studies draw
attention to the importance of bacteria through fecal
transplantation experiments from patients with IBS-C and
IBS-D to germ-free (GF) animals. This intervention could
transfer intestinal permeability and visceral sensitivity and
transit alterations to the recipient rodents (70–72). Bacterial
imbalance is also observed in many patients of IBS; however,
the bacterial genera have been found to be very heterogeneous
in several studies (73, 74). A Swedish study could not identify
any specific microbiota profile in patients with IBS. Nevertheless,
microbiome-richness has been found to be lower in the
IBS group compared to healthy individuals (75). A greater
diversity has been identified to be associated with fewer IBS-
like complaints (74). Some studies have found that either
Streptococci (73) or Alistipes (76) may be responsible for the
IBS symptoms. Nevertheless, no further studies have proved
these results. It suggests that the disease pathogenesis is not
directly linked to certain phyla, and thus, patients could not
be diagnosed exclusively based on the microbiota profile.
Novel results in microbiome studies suggest that microbial
metabolic products are common factors that determine health
or disease conditions (77). A recent study has described
that the separation between patients with IBS-D and healthy
controls is possible by using proton (1H) nuclear magnetic
resonance (NMR) to examine fecal microbial metabolites.
Among the 55 metabolites identified, the authors have found
five potential biomarkers of IBS-D to distinguish from healthy
controls: cadaverine, putrescine, threonine, tryptophan, and
phenylalanine (78). Microbial metabolite analysis presents great
challenges for future IBS research. Although urine, stool, or
volatile samples can be collected in a non-invasive way, the
time of elimination has an impact on the degradation of the
microbial products, which may have an impact on the analysis
(79). It is estimated that more than 50,000 metabolites are
present from the microbial metabolism of food, and more than
25,000 compounds can be present in the diet (80). It poses a
great challenge for scientists to clearly see through this metabolic
jungle in the future.
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As mentioned above, serotonin signaling is a potential
therapeutic target in IBS (53). SCFA can stimulate serotonin
production in the gut from nutrient tryptophan, an essential
amino acid. Serotonin production is linked to commensal
bacteria through enterochromaffin cells or by direct bacterial
production. Bacteria can have an influence on the serotonin
metabolism through the regulation of the bioavailability of
tryptophan (54–56). Tryptamine is also synthesized from
tryptophan by the bacterial tryptophan decarboxylase enzyme.
Tryptamine can act on the 5-HT4R serotonin receptor in
gastrointestinal motility and secretion (81).

Bacterial LPS and peptidoglycans are components of the
bacterial cell wall. They can be recognized by the pattern
recognition receptors and can activate and modulate the innate
immune system. Mast cell activation and degranulation are
followed by immune activation, for instance, the recognition
of LPS by toll-like receptors or by IgE receptor activation.
Degranulation products, such as histamine, cytokines,
chemokines, proteases, and nitric-oxide, have further immune
and defensive roles. Histamine takes part in the pathophysiology
of IBS and increases intestinal permeability and visceral
hypersensitivity (82).

The microbiota can communicate via the brain-gut axis
and the host immune system through their enzymes and
cell wall components. In IBS, this equilibrium is disturbed,
as dysbacteriosis, increased gut permeability, visceral
hypersensitivity, and mucosal microinflammation are present.
The initiator of the pathophysiological process has not been
elucidated yet, although acute gastrointestinal infections have
been found to initiate the symptoms in a certain group of patients
with IBS (post-infectious IBS) (81).

Inflammatory Bowel Diseases
Inflammatory bowel disease has multifactorial etiology; hence,
genetic, environmental, and microbial factors take part in the
etiology of the disease. Increased intestinal permeability can be
present in remission, while increased intestinal permeability
correlated with the severity of the disease in patients with IBD
(57, 58, 83, 84). Increased permeability without severe mucosal
damage is caused by tight junction protein abnormalities,
whereas severe mucosal damage disrupts the barrier and causes
uncontrolled leakage of the luminal contents. Dysbacteriosis
is also documented in patients with IBD. Reduced bacterial
diversity, decreased relative abundance of Firmicutes, and an
increase in the number of Proteobacteria are the common
patterns described in these studies. In ulcerative colitis,
alterations of Roseburia are present, and Faecalibacterium
prausnitzii appears to be particularly underrepresented.
Geographical variations of the disease were also observed.
In Chinese patients with ulcerative colitis, the presence of
Gardnerella and, in patients with colonic CD, the presence
of Fusobacterium have been found to be important (85–87).
Some studies point out the role of the bacteriophages and the
virome in IBD pathogenesis, although this field has not been well
studied yet (88, 89). The role of the intestinal mycobiota is under
investigation, and the importance of the fungal fraction of the gut
can be demonstrated in IBD by a CD biomarker ASCA antibody

(anti-Saccharomyces cerevisiae). The metabolomic approach to
the gut microbiome suggests that the diminished SCFA level
caused by the lower abundance of Firmicutes and similar bacteria
may have an effect on the immune system. The determination
of the significance and the therapeutic role of SCFA in IBD
needs further investigation. In general, tryptophan metabolism is
also impaired in IBD. Tryptophan deficiency aggravates disease
severity (90), and indole also has a role in the maintenance of
gut health (91). Enzymes involved in tryptophan metabolism
are studied as potential therapeutic targets. Whether dysbiosis is
a cause or a consequence of IBD has not been determined yet.
Nevertheless, pathogenic bacteria can invade the mucosa in IBD.

Future IBD diagnostic tools are proposed using microbiota
analysis. The latest studies have identified bacterial markers
obtained from Campylobacter spp. indicating disease activity in
CD (92). The presence of Faecalibacterium is a sign of successful
ustekinumab therapy in anti-tumor necrosis factor-alpha (anti-
TNF-α) refractory patients with CD (93).

A better understanding of the microbiota–gut interaction
in IBD will be helpful in developing novel therapeutic and
diagnostic options in the future.

Chronic Liver Diseases
Morbidity and mortality of chronic liver diseases (CLD) increase
rapidly worldwide. The most common causes of CLD are chronic
alcohol abuse, Hepatitis B and C virus infection, and non-
alcoholic fatty liver disease (NAFLD). CLD can provoke the
weakening of mucosal immunity.

Changes in the microbiota composition are observed in
pre-cirrhotic patients with CLD, including the reduction of
the diversity and overgrowth of the potentially pathogenic
Enterobacteriaceae and Enterococcaceae. In viral hepatitis,
modified fecal microbiota can be observed before the appearance
of the cirrhotic stage (94). A human study has classified patients
into NAFLD, control, and healthy donor groups based on
their liver biopsy and analyzed fecal samples of the subjects.
The NFALD group was then divided into two subgroups:
patients with simple steatosis and steatohepatitis. The authors
have verified a lower relative abundance of Bacteroidetes in
the steatohepatitis group. This observation is independent of
body mass index and fat intake (95). A similar microbiota
profile has been observed in Hepatitis B virus-induced cirrhosis.
Reduced intestinal blood perfusion, mesenteric ischemia, and
decreased bowel movements caused by cirrhosis have appeared
to change the normal microenvironment to be less suitable for
beneficial populations of Bacteroides and Clostridium, resulting
in invasion and colonization of opportunistic pathogens, such as
Enterobacteriaceae and Veillonella.

Veillonella can hydrolyze conjugated bile salts and promote
the impairment of micelle formation resulting in cirrhosis.
Bile salt hydrolases (BSHs) are members of the Choloylglycine
hydrolase family and are important in bile acid metabolism
and deconjugated bile acid formation. BSHs have been isolated
from several species of intestinal bacteria, mostly by Bacteroides
and Clostridium. Under normal conditions, intestinal anaerobic
microbiota cannot metabolize glutathione. In the case of viral
hepatitis, the ability of the intestinal microbiome to metabolize
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glutathione helps the body in detoxification, while bacterial
generation of glucose from non-carbohydrate carbon substrates,
such as pyruvate, helps to maintain the body’s energy supply.
Branched-chain amino acids, nitrogen and lipid metabolism
acceleration and decreased aromatic amino acid levels, and cell
cycle-related metabolism have been observed in the microbiota
of patients with viral hepatitis (96).

Alcohol consumption causes mast cell degranulation and
endotoxemia, and it increases intestinal permeability. This effect
depends on the degradation of ethanol to acetaldehyde by the
microbiota, which can be antagonized by antibiotic treatment
(97). In alcoholic liver diseases, the role of the gut-brain axis
should also be taken into account since anxiety and depression
are usually coupled with excessive alcohol consumption (98). The
latest observations show that colonization of Streptococci can
predict liver damage in alcoholic liver disease (99).

The incidence of NAFLD is increasing in western countries.
The common co-morbidity with obesity, diabetes, and metabolic
syndrome makes it almost impossible to distinguish the
pathophysiology (100). In these patients, an increase in the
Enterobacteriaceae abundance is associated with endotoxemia
(101). Some recent data suggest that the altered gut microbiome
can produce alcohol in the intestinal lumen, which in turn
is responsible for liver damage just like in direct alcohol
consumption (102, 103).

Hepatic encephalopathy, as a consequence of advanced
liver disease, is the major manifestation of the perturbed
brain-gut microbiome axis. Experiments on cirrhotic GF
mice and conventional mice have shown that ammonia
level in cirrhotic animals is higher than in non-cirrhotic
GF ones and similarly in conventional mice, but neuro-
inflammation and microglial activation have only been seen
in the conventional cirrhotic mice (104). Microbial imbalance
is responsible for neurological symptoms. Recent studies have
demonstrated promising results concerning the safety and
efficacy of fecal microbiota transplantation in the treatment
of hepatic encephalopathy (105). However, further research is
needed before the clinical application of this treatment.

Obesity, Chronic Kidney Disease, and
Cardiovascular Diseases
Obesity has an increasing prevalence, estimated to be 42% in
the United States in 2017–2018 (106). Patients with obesity have
altered gut microbiome, as food and fiber intake can be a driver
of natural selection in the gut microbiome. Studies with GF and
conventional mice have described that GF animals have lower
body weight and less white adipose tissue than the conventional
ones despite the increased calorie intake (107, 108). Furthermore,
GF mice have increased insulin sensitivity and accelerated
cholesterol metabolism compared to conventional mice (109).
Fecal microbiota transplantation derived from humans with
obesity to GF mice caused excessive weight gain compared to lean
ones (110). Similar observations have been made with humans
after fecal microbiota transplantation (111, 112). These findings
underline the causative role of the microbiome in weight and
metabolic changes. LPS are important regulators of these diseases,

as long-term LPS administration to mice has induced weight gain,
insulin resistance, and increased intestinal permeability (113).
Short intravenous administration of LPS in humans has induced
a storm of cardiovascular hormonal and cytokine markers (113),
suggesting that the bacteria increase the cardiovascular risk.
There is a link between bacterial metabolism, dietary choline
intake, and cardiovascular risk (114). The food sources for
phosphatidyl-choline (lecithin) might be eggs, milk, liver, red
meat, poultry, shellfish, and fish. The intestinal microbiota
can metabolize phosphatidylcholine to trimethylamine. This
metabolite is the substrate for the hepatic flavin monooxygenase
enzyme, which forms trimethylamine N-oxide. This metabolite
is responsible for the regulation of the surface expression levels
of macrophage scavenger receptors known to participate in the
atherosclerotic process. In a study, the blood microbiome has
been analyzed by comparing the samples of patients at high
cardiovascular risk but free of coronary disease and the samples
of patients who had myocardial infarction (107). An increase in
blood bacterial DNA concentration has been observed, which
was dependent on blood low-density lipoprotein cholesterol
elevation in the myocardial infarction group. Differences in
the proportion of numerous bacterial taxa in blood have been
significantly modified with the onset of the myocardial infarction.
Some of the bacteria, the proportions of which are decreased
in patients with myocardial infarction, are known to include
species that can metabolize cholesterol. Further research would
be promising to find microbiology-based biomarkers for the
diagnosis or treatment.

Kidney diseases could also be modulated by the microbiome.
Calcium-nephrolithiasis is caused by calcium oxalate stone
formation. Oxalate excretion results from endogenous catabolism
of hydroxyproline, uracil, orotic and ascorbic acids, and oxalate
can originate from dietary sources. The presence of oxalate-
degrading functionality in the gut microbiota may limit oxalate
absorption and reduce oxalate excretion (115) and oxalate
degrading microbiota function can reduce oxalate absorption and
excretion. Gram-negative gut commensal Oxalobacter formigenes
was able to degrade oxalate in the intestinal lumen (116).
This bacterium has high oxalate degrading activity; however,
probiotic supplementation of O. formigenes has not had an
impact on the course of nephrolithiasis or oxalate excretion.
A recent study has revealed several bacteria with a lesser extent
of oxalate degrading activity compared to O. formigenes. The
analysis has demonstrated an increased representation of these
taxa in the fecal samples of non-lithogenic subjects. The complex
intestinal metabolic synergy may help maintain the oxalate
metabolism (117).

Chronic kidney disease-microbiome interaction has become
the focus of interest over the past decade. The alteration of the
microbiome is observed in these patients (118, 119). Normal
gut microbiota-derived SCFAs stimulate glucagon-like peptide-1
secretion, which exerts protective effects against renal oxidative
stress and chronic hyperglycemia. In renal failure, perturbed
intestinal microorganisms produce several metabolic products
that can have an influence on the kidneys, including indoxyl
sulfate, trimethylamine N-oxide, phenylacetylglutamine, and
p-cresyl sulfate. Bacterial tryptophan metabolism metabolites are
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considered to take part in the development of hypertension
and chronic kidney failure (120, 121). Uremic toxins of
bacterial origin are large, protein-bound toxins, which cannot
be eliminated by hemodialysis. Advanced glycation end products
lead to oxidative stress and inflammation. Their effect is more
general through the receptors for advanced glycation end
products (RAGE), which are concentrated in the heart, lungs,
and skeletal muscles. Advanced glycation end products finally
lead to arterial stiffness, diabetic nephropathy, and endothelial
dysfunction. Patients with kidney disease are characterized by
congestion in the intestinal tract, reduced fiber digestion, and
metabolic acidosis. Each of these factors take part in the increase
of intestinal permeability (122). An important component of
kidney failure pathogenesis is bacterial hydrolysis of urea by
ureases within the GI tract. This reaction leads to increased gut
luminal ammonia and increased intestinal pH. The changes in
the intestinal microenvironment aggravate dysbacteriosis (123).
Higher gut pH induces the expression of tryptophanase (124).
Tryptophanase limits tryptophan availability to the host, which
influences serotonin levels affecting the enteric and central
nervous systems (125–127).

The Gut–Lung Axis
Lung microbiota has recently got into the focus of scientific
interest. Most of the studies focus on the bacterial component
(128), but the fungal, viral, and other parts of the ecosystem are
almost neglected (129). Lung microbiota is less prominent in
terms of quantity than the gastrointestinal microbiota; however,
it is originally colonized by the oropharynx and microaspirations
from the gastrointestinal tract. The predominant bacterial phyla
in the lungs and the gut are identical, and mainly Firmicutes and
Bacteroidetes have been observed (130). The fungal component is
also prominent, which communicates with the bacteria. Intestinal
and lung microbiota are in parallel throughout life, although
changes in diet affect not only the intestinal microbiota but
also the lung microbiome (131, 132). The bidirectional crosstalk
has been demonstrated by animal experiments. It has been
proven that LPS instillation in the mouse lungs is resulting in
bacterial changes in the gut thereafter (133). The communication
between the lungs and the gut is not just the direct link
through aspiration and immune modulation, but a so-called co-
immunity can play the most important role in the gut–lung
axis. Intestinal microbiome members induce immune tolerance
and block pathogen colonization through the activation of the
immune system and the direct and indirect actions of the
microbiota. When the immune system “learns” to recognize the
enemy from the microbiome, the effect may also occur in a distant
organ (129, 134). This dynamic interaction is now in the focus of
studies on chronic lung diseases.

Cancer and the Gut Microbiome
It is also known that microbiota can play a role in tumorigenesis.
Yet, this field of research is still in an early stage. Several
observations have been made in different types of cancer to find
the microbial key of the disease. The importance of Helicobacter
pylori in the development of gastric cancer is now widely
accepted, and the eradication of this bacterium reduces the risk

of gastric cancer (135). Although the pathogenetic steps have not
completely been explored, nowadays, research has highlighted
the role of the intestinal microbiota in H. pylori-mediated gastric
cancer development. The intestinal microbiota colonization
produces inflammatory metabolites, which establishes the way
for carcinogenesis. A study has found that Lactobacilli and
Fusobacteria colonize the stomach in gastric cancer. Intestinal
microbiota colonization is considered an important step in the
pathogenesis of stomach cancer. Microbial metabolites have an
effect on inflammation and carcinogenesis (136). H. pylori can
regulate several signaling pathways, stimulate inflammation and
immune responses, and trigger epithelial atrophy, achlorhydria,
and dysplasia in cancer (137, 138).

An increase in the relative abundance of Fusobacterium
nucleatum has been observed in fecal samples of patients
with colorectal cancer compared to healthy humans (139).
Perturbations in the gut microbiota expose the intestine to
inflammatory and genotoxic metabolites such as secondary
bile salts, trimethylamine N-oxide, hydrogen sulfide,
heme, nitrosamines, heterocyclic amines, and polyaromatic
hydrocarbons. The production of these metabolites is augmented
due to dietary factors, such as red or processed meat, and a diet
poor in fibers (140). These carcinogenic metabolites are called
oncotoxins (141). Indigestible dietary fibers in the intestine are
metabolized by the gut microbiome into SCFAs such as acetate,
propionate, and butyrate, and they have an anti-inflammatory
effect on the colonic mucosa. These products are considered to be
protective against colorectal cancer. It is still not known whether
dysbacteriosis is the cause or the consequence of diet-induced
inflammation. Dysbiosis alone is not sufficient for tumorigenesis,
but genetic and environmental factors are needed for cancer
progression. Certain bacteria have been found to be abundant
in colorectal cancer. F. nucleatum promotes myeloid infiltration
of intestinal tumors in ApcMin/+ mice, and it increases the
expression of pro-inflammatory genes (142). F. nucleatum
upregulates inflammatory factors and microRNA 21 through
toll-like receptors and causes the activation of the mitogen-
activated protein kinase cascade (143). Pancreas cancer tissue can
be colonized by the intestinal commensal Gammaproteobacteria.
These bacteria can metabolize gemcitabine through their specific
enzymes, leading to the diminished effect of chemotherapy (144).
The microbiome can also have an additive effect on oncotherapy.
The efficacy of the checkpoint inhibitor immunotherapy is
augmented in the presence of Bifidobacterium and Bacillus
fragilis through the shaping of the host immune system (145,
146). A better understanding of the microbiome-immune
system interactions will help us develop more targeted, specific
antitumor medications in the future.

Neuropsychiatric Disorders and the
Gut-Brain Axis
The microbiome–gut-brain axis does not only affect the
gastrointestinal system, but it has a role in the development of
various behavioral and neurodegenerative diseases. The relevance
of the microbiota in the development of the central nervous
system has been well demonstrated by previous studies using GF
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animals. GF mice present behavior changes such as hyperactivity
and memory and learning deficits. GF mice have alterations in 5-
HT1A serotonin receptor expression and NMDA receptor in the
hippocampus, changes in myelination in the prefrontal cortex,
and impairment of the blood-brain barrier (56, 147–150). For
the understanding of neuropsychiatric disorders, it is important
to know that neurogenesis in the cortex is a prenatal process,
while gliogenesis happens both prenatally and after birth; thus,
the intrauterine and early life periods should have importance in
the development of these diseases.

Autism spectrum disorder is one of the first extraintestinal
diseases in the research of the brain-gut axis where increased
intestinal permeability has been observed (151). Autism is
considered to be the consequence of defective neuronal
development. Several genetic factors have been discovered;
however, none of them explain the pathogenesis of the disease
universally (152). The causative role of increased intestinal
permeability and microbiota imbalance has been the focus
of research interest since gastrointestinal symptoms are very
common in autism spectrum disorder. Fecal samples of autistic
children contain a significantly higher proportion of Clostridia
and Ruminococci and a lower relative abundance of Akkermansia
muciniphila compared to healthy populations. The lower
bacterial mucinolytic activity is supposed to contribute to the
slower mucus turnover and to the “leaky gut,” leading to intestinal
inflammation. One recent animal study has hypothesized that
maternal salt intake might be responsible for autism. High
salt diet-induced dysbacteriosis in mice, and the offspring had
also dysbacteriosis coupled with behavior alterations. However,
dietary interventions that are effective in patients with IBS or
other probiotic supplementation have not shown the expected
effect in the case of autism spectrum disorder. We can
assume that these abnormalities initiate a cascade effect during
the period of neuronal or glial development, which has a
permanent effect on the behavior. In the symptomatic phase,
the treatment of gut leakiness does not radically change the
behavior (153).

Anxiety disorder, major depression, bipolar depression, and
schizophrenia are also linked to the microbiome-gut-brain axis.
Anxiety disorder and depression are often observed in patients
with IBS. Microbiota imbalance is also documented in these
diseases, but research in this field is in an early stage (154).

In neurodegenerative diseases, including Alzheimer’s disease
and Parkinson’s disease, studies have detected gut microbial
imbalance (155, 156). In the case of Alzheimer’s disease,
the amyloid-β peptide accumulation is considered to be the
hallmark pathology. A study in mice has demonstrated that
this peptide has antimicrobial effects. As a part of the immune
system, it has a protective role for infections, and it is
a double-edged sword in the brain (157). This observation
suggests an antimicrobial activation of the immune response,
which is linked to dysbiosis. In Parkinson’s disease, gut
dysbacteriosis and gastrointestinal dysfunctions can precede
the neurological symptoms, suggesting a pathophysiological
role of the intestine. Toll-like receptor misrecognition is
considered to be an important step in alpha-synucleinopathy
progression, and increased intestinal permeability, immune

activation, and enteric neuroglial activation are keys in the
pathophysiology of Parkinson’s disease (158). Recent studies
focus on early signs of the disease and therapeutic targets
in the intestine.

As discussed in the previous paragraphs, the spectrum of the
diseases in which the brain-gut–microbiome axis is known to
play a role is increasing. However, it is currently unclear about
which of the diseases will be modifiable through the intestinal
microbiota. Most of the modifications of the microbiota are
not targeted now and not disease-selected or individual-selected.
Fecal microbiota transplantation is also at the center of research
interest, but the key questions are to find the indication spectrum
and donor selection.

The Gut–Bone Axis
Recently published studies have verified the connection between
the gut microbiota and bone metabolism not only in ill, but
also in healthy, subjects (159). Some authors have claimed that
microbiota alterations have an effect on osteoclast–osteoblast
activation and skeletal homeostasis regulation via nutritional and
immunological pathways and also through bacterial metabolites.
Increased abundance of Lactobacillus, Actinomyces, and Blautia
has a correlation with osteoporosis (OP) compared to patients
with normal bone mass density (BMD) (43). There are some
nutritional effects throughout the gut microbiota with an impact
on bone health. After the administration of prebiotic or probiotic
products, enhanced mineralization has been seen beside the
increased availability of magnesium and phosphorus in rats (160).
Microbial metabolites also have an impact on bone metabolism. It
has been observed that serum trimethylamine N-oxide (TMAO)
level, which is a microbiota-dependent metabolite, is associated
with OP. Microorganisms of the gut might play a key role in the
osteoblast–osteoclast balance via the activation of the immune
system. Recent findings have proven that F. nucleatum could
increase osteoclast differentiation via increased expression of IL-
17A and TNF-alpha (161). On the other hand, gastrointestinal
commensal bacteria, such as Bacteroides, Lactobacillus, and
Bifidobacterium, can facilitate the development of Treg cells and,
by this, increase the osteoblast activity (162). Further randomized
controlled trials are needed to verify the effect of gut microbiota
on bone remodeling. Possible connections between the intestinal
microbiota and various organs and disorders are summarized in
Figure 2.

EFFECTS OF NUTRITION ON
INTESTINAL PERMEABILITY AND THE
GUT MICROBIOME: POSSIBLE
THERAPEUTIC INTERVENTIONS

Food has an essential effect on the intestinal microbiota
community. It may have selective advantages for certain phyla
and disadvantages for other ones (163). Knowledge about the
role of diet in disease modification has been derived from
ancient times. However, the impact of the microbiome is less
known. There are dietary differences between the industrialized
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FIGURE 2 | Possible connections between the intestinal microbiota and various organs result in various disorders. Nutrition and diseases have an impact on the
intestinal microbiome, and the microbiome has a potential role in the pathogenesis of disorders.

and non-industrialized parts of the world. An Urbanized
diet is characterized by decreased fiber and increased sugar
consumption and high meat and fat intake. Descriptive studies
have demonstrated the increased microbial diversity in the areas
of the world where fiber intake is higher in the general diet.
The causative role of fiber in microbial diversity is demonstrated
by multiple animal and human dietary intervention studies
(164, 165).

Dietary fibers are indigestible carbohydrate polymers, which
are substrates of microbial degradation in the intestine. The
fermentability, solubility, and viscosity of fibers are key properties
that influence their metabolism by the microbiota. Insoluble
fibers such as cellulose increase the transit time, which has
consequences on the community of gut microbes. Psyllium is also
an insoluble fiber but has a higher viscosity, which influences the
cholesterol and sugar metabolism of the host. Fermentable fibers
that are soluble, such as pectin or β-glucan, are common parts
of the diet. Bile acid-binding will change the hosts’ absorption
ability and the microbiota microenvironment. Inulin is a soluble,
low viscosity fiber, and inulin-type fructans are supposed to have
beneficial metabolic effects including bodyweight reduction and
the normalization of blood sugar and cholesterol (166). Dietary
fibers, which are subjected to bacterial fermentation and which
stimulate the growth of certain beneficial microorganisms, are
considered prebiotics. SCFAs are important end-products of the
fermentation of complex carbohydrates, the key energy sources
of enterocytes (167). Various dietary fibers induce the elevation
of the relative abundance of different organisms. Further
investigations are needed to define the role of the individual

dietary fibers on the microbiome, and prebiotic containing food
can be an important weapon against these diseases.

Probiotics can be naturally present in the food or they can
be added artificially. Kefir and yogurt are natural probiotic
products. The health benefits of the regular consumption of
food containing probiotics seem to have anti-cancer, anti-
inflammatory, metabolism stabilizing, and antihypertensive
effects (168). These products have been in the human diet for
centuries. Although probiotic supplementation is considered
to be safe, long-term probiotic administration in infants or
immunocompromised people requires special consideration.
Now, it is clear that probiotics in preterm newborns can
prevent the development of necrotizing enterocolitis, although
the effect could be augmented by the combination of strains and
added to prebiotics (169). The universal, industrial addition of
probiotics to food could be inappropriate, or it may even be
harmful (170).

The long-term consumption of processed food that is rich
in meat induces pro-inflammatory modulation in the gut
microbiome. This diet is a risk factor for cardiovascular diseases
and kidney failure (171, 172). The effect of ultra-processed
food is not only the result of the small fiber content, but
an excess of certain nutrients and salt may also change the
microenvironment of the microbiota. Food additives can also
have an additional impact on the microbiota. One of the
components can be inorganic nanoparticles. These nanoparticles
can pass through paracellular transport, damage the tight
junction proteins, activate the immune system, and contribute
to disease pathogenesis. Current theories suggest that there
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is a contribution of nanoparticles in the pathogenesis of
some diseases. Though the results are controversial, as iron
nanoparticles have no effect on the microbiota, zinc (Zn)-
nanoparticles can have some beneficial effects, and other
components such as silicon dioxide (SiO2) nanoparticles may
cause IEB disruption. Titanium nanoparticles are hypothesized to
take part in tumorigenesis (173). The real mechanisms of action
and the clinical significance of widespread nanoparticle used in
the industry are currently being investigated.

Some components are considered protective and are beneficial
for gut health. Postbiotics are metabolites of bacterial metabolism
that can potentially have beneficial functions (174, 175).
Functional food production now focuses on this possible
therapeutic approach to promote health.

Specific components of food, for example, ginseng or
resveratrol from cabernet sauvignon grape extract, are considered
to be healthy through microbial modifications (175, 176).
Generally, dietary polyphenols have an influence on lipid
metabolism and related metabolic diseases through the prebiotic
effect on the selection of beneficial bacteria.

In the case of obesity, dietary regimes are used to reduce
body weight. Calorie restrictive diet and intermittent fasting also
have an influence on the gut microbiome. Fifteen replications of
intermittent fasting with the same calorie intake have induced
body weight loss in mice (177). The role of the microbiome
is supported by the fact that this metabolic profile has been
transmitted to microbiota-depleted mice via fecal microbiota
transplantation (177). Human studies are still to be conducted to
verify similar effects in human.

Xyloglucan is a food component from the tamarind tree
extract, which is often used as a gelling agent in the food
industry. This plant-derived polymer has a mucus-like molecular
structure. The application of xyloglucans on the mucosal surfaces
may function as a protective agent in the gut barrier. In the
intestine, the effect of xyloglucan has a spotlight in research
as it is a commonly used additive. The effect is examined in

a xyloglucan, a pea protein, and a tannin-containing medical
device, and the first results show symptomatic improvement and
reduction in diarrhea. However, studies on the hypothesized
permeability change and the microbiota composition are yet to
be performed (178).

A future direction in the food industry can be functional food,
which shapes the intestinal microbiota to a health-promoting
composition. A varied, homemade, fruit- and vegetable-rich
Mediterranean diet has similar health-promoting effects on the
microbiota (179–181).

SUMMARY

The microbiota plays a crucial role in the maintenance of
human health. While dysbiosis is observed in several diseases,
its pathological background has not yet been fully clarified.
Increased intestinal permeability can be a decisive step in the
pathophysiological effect of dysbiosis. Diet has a huge impact
on the microbiota, but the development of direct, individualized
dietetic advice or selected microbiota substitutions may restore
health in the early stage of the diseases.
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