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Abstract Head turning experiments are widely used to test
the cognition of both human infants and non-human animal
species. Monitoring head turns allows researchers to non-
invasively assess attention to acoustic or visual stimuli. In
the majority of head turning experiments, the head direc-
tion analyses have been accomplished manually, which is
extremely labor intensive and can be affected by subjectivity
or other human errors and limitations. In the current study,
we introduce an open-source computer program for mea-
suring head directions of freely moving animals including
common marmoset monkeys (Callithrix jacchus), Ameri-
can alligators (Alligator mississippiensis), and Mongolian
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gerbils (Meriones unguiculatus) to reduce human effort
and time in video coding. We also illustrate an exemplary
framework for an animal head turning experiment with
common marmoset monkeys. This framework incorporates
computer-aided processes of data acquisition, preprocess-
ing, and analysis using the aforementioned software and
additional open-source software and hardware.

Keywords Head turn - Computer-aided video analysis -
Computational ethology - Common marmoset - Animal
cognition

Introduction

The head turning experiment was first used by Dix and
Hallpike (1947), and Suzuki and Ogiba (1961) to assess
auditory perception in children. This procedure has been
widely used since then to test cognition of not only in
infants, but also various animal species such as cotton-top
tamarins (Saguinus oedipus) in Fitch and Hauser (2004),
chimpanzees (Pan troglodytes) in Okamoto, Tanaka, and
Tomonaga, (2004), and dogs (Canis lupus familiaris) in
Siniscalchi et al (2010). Today, head turning experiments are
one of the valuable standard tools for investigating cogni-
tive functions of subjects who cannot understand or follow
verbal or written instructions.

Several types of experiments, such as testing the ability to
discriminate novel auditory stimuli or assessing an animal’s
attention to a set of visual stimuli, have been conducted
using head turning procedures. Although the procedures in
these experiments can vary in details, the common core
procedures involve recording the subject’s head orientation
direction during the entire experiment and identifying the
direction that the focal subject is facing at a given time from
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this recorded video. These core procedures are typically per-
formed with manual coding based on visual observations
in the vast majority of studies. Not only is manual coding
inherently subjective, manual coding often has been con-
ducted without any exact and objective threshold, and in
many cases a clear methodological description of the pro-
cedure was not provided. In the cases where a description
is provided, the analysis is typically qualitative rather than
quantitative due to subjective human interpretation.

In the current study, we developed and tested coding soft-
ware for analyzing head directions and an exemplary frame-
work, which also incorporates technological data acquisi-
tion and data preprocessing. Our two central aims were to
increase efficiency and to increase objectivity. Regarding
efficiency, we aimed to save time while increasing accuracy:
scoring video of animal behavior manually is extremely
time consuming in general, and this is particularly true if
one attempts to analyze each frame of a video to get accu-
rate temporal information (e.g., how long after a stimulus
onset did the animal respond with a head turn or the total
duration of stimulus looking time during an entire trial). A
semi-automated system, which requires a bit of human input
when the algorithmic result is inaccurate, but runs auto-
matically otherwise, can provide high spatial and temporal
accuracy with little human effort. Perhaps more importantly,
regarding objectivity we began developing our framework
in response to worries about how unconscious bias could
enter into data collection and analysis in a behavioral exper-
iment, which has become a major topic in animal cognition
in particular (due in part to the allegations of bias surround-
ing the work of Marc Hauser at Harvard, Gewin (2012) and
Hauser, Weiss & Marcus (2002)), as well as an important
aspect of the replicability crisis in psychology more gener-
ally (Pashler & Wagenmakers, 2012; Cesario, 2014; Stroebe
& Strack, 2014; Simons, 2014). In general, we believe that
while increasing efficiency is highly desirable, increasing
objectivity and accuracy is a crucial prerequisite for solid
empirical work involving videos of animal behavior. We
thus think that a good, low-cost solution for semi-automated
coding will be of great value to many researchers in ani-
mal cognition and communication research, as well as for
human research in some cases.

One potential alternative solution to the problems of
efficiency and objectivity is to use eye-tracking, which is
widely done for adult humans and increasingly attempted
with animals (Senju & Csibra, 2008; Kimmel, Mammo, &
Newsome 2012). Unfortunately, there are serious issues for
performing non-invasive eye-tracking in unrestrained ani-
mals, that include issues with calibration (which can be done
in animals but takes enormous training) and drift caused by
postural readjustments during a series of trials. Thus, most
published eye-tracking work on primates involves monkeys
with surgically implanted eye coils (little calibration needed

(Robinson, 1963)) and restrained, often head-fixed animals
(e.g., Bruce & Goldber, 1985; Groh et al., 2001). This,
too, takes considerable training for animals to be comfort-
able. For many species and problems, this solution is simply
untenable. Thus, our goal is to have a non-invasive solution,
requiring little or no training of the animal subject, which
can be broadly applied to free-moving animals.

The developed software is open source and available
at http://www.github.com/jinook0707/HDC (Head direction
coding software) and http://www.github.com/jinook0707/
AHTE (scripts used in our common marmoset case). All of
the open-source Python packages and programs used in this
study are listed in Table 1.

Head direction coding software

Manual coding of head directions of an animal subject with
recorded video data is labor intensive. Implementing soft-
ware to automatically track animal head direction can be
quite simple, if we attach visual markers to the subject’s
head. For our American alligator case (one of the follow-
ing subsections), we indeed tested using a color tag because
applying a color tag on these reptiles is feasible due to the
physical characteristics of the reptile skin. However, the
software we introduce in this study does not require such
artificial visual markers on animal subjects. We pursued
an approach that did not require visual markers because
attaching markers can be difficult depending on the type
of animal and stress levels of animals can be elevated by
the attachment and/or presence of the markers. Also, in our
marmoset monkey case, any attached tag on the head could
be easily removed manually by the monkeys. We also did
not consider painted or sprayed color marking on their fur
due to possible effects of artificial coloration on their social
interactions.

Implementing entirely automatic tracking software with-
out visual markings is possible, although it is not an easy
task due to the highly deformable body structure of animals,

Table 1 External packages and programs used by the experimental
software

Software Version  Reference
numpy 1.8 (Van der Walt, Colbert, & Varoquaux, 2011)
scipy 0.14 (Jones, Oliphant, Peterson, et al., 2001)

OpenCV 24
pyaudio 0.2

(Bradski, 2000)
(Pyaudio, 2006)
(Pyserial, 2001)
(Wxpython, 1998)
(Arduino Software, 2014)
(Ffmpeg, 2000)

pyserial 2.7
wxPython 2.9
arduino 1.5
FFmpeg 1.1
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Table 2 Example output CSV file hPos: position of anterior end of
head, mHPos: manual hPos positioning, bPos: base position of a head
direction line such as head center or neck, hDir: head direction, mHD:
manual head direction

Frame-index hPosX hPosY mHPos bPosX bPosY hDir mHD

1 946 250 True 923 254 9 True
2 926 248 False 897 253 8 False
3 930 248 False 901 253 8 False
4 930 248 False 901 253 8 False
999 343 374 False 373 381 167 False
1000 346 372 False 375 381 164  False

especially in mammals and birds. One method would be
to make software with machine learning algorithms, which
would be costly in time for implementation and preparing
sample pictures for training the learning algorithms. Fur-
thermore, it would work only for one or a few specific
species or body types.

Another method would be to implement semi-automatic
software with relatively simple algorithms for one or sev-
eral species, expecting somewhat more erroneous output
data, but with less effort and shorter time in software imple-
mentation, compared to implementing machine learning
algorithms.

In this study, we selected the latter method. Even though
the second method could be less accurate, realistically nei-
ther will be accurate enough to avoid human validation.
Furthermore, the latter method with manual input features
can be easily adjusted to different animal species due to
its simplicity. The software tool (Head Direction Coding

M

)1:12  since program started  Animal

(5) 0:01:00  sincy

ssion started

®)

software or HDC hereafter) that we developed for this
study calculates head directions using a rather simple and
straightforward algorithm, however, it accepts manual over-
ride input on any frame whenever a human coder deems
it necessary. The method for manual input is simple and
straightforward as well.

HDC takes frame images (JPEG, PNG, or TIFF) as input
data. When a frame image is loaded into HDC, a head
direction for the loaded frame can be determined by a
species-specific algorithm (this will be described in each
species’ section) or manual input (a mouse click and drag
on the loaded frame image). HDC generates a CSV file (see
Table 2) and a video file as output files. The mHPos, manual
hPos positioning, in the CSV file is a Boolean value to indi-
cate whether a head position was determined manually and
mHD, the manual head direction, in the CSV file indicates
whether a head direction was determined manually. The dif-
ference between mHPos and mHD is that mHPos is True
only when a mouse click and drag occurred, while mHD is
True both on a manual input and while ‘continuous manual
input’ (Fig. 1-(4)) is on. More descriptions about ‘continu-
ous manual input’ will be given in the next subsection. The
output video file is a record of analysis process in original
video’s quarter frame size for a “sanity check” of coding
performance.

General program features

At the beginning of an analysis, a user specifies a folder
that contains all of the frame images by pressing the ‘Start
analysis’ button (Fig. 1-(1)). Filenames of the frame images
must be formatted as ‘fn.jpg’ where n is zero padded six
digits representing the frame number; it starts with a letter

2 3 @

Head-direction Coder

t

M: set
@)

Fig. 1 Screenshot of HDC; (1) Start/Stop analysis, (2) Determine species-specific algorithm, (3) Display different stages of image processing
(for debugging purpose), (4) Toggle continuous manual input, (5) Current frame index, (6) Number of frames, (7) Head direction of the current
frame, (8) Line graphically representing head direction (the small circle at one end of the line denotes /#Pos and the other end of the line is bPos)
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‘t” and the file extension is ‘jpg’. This format string can be
changed in the init function of HDCFrame in hdc.py file.
The selected folder should also have ‘bg.jpg’ file, which is
a background image showing the scene without an animal
subject. A user can navigate forward or backward through
frame images with the right and left arrow keys. An arrow
key can be combined with the Shift or Ctrl (Cmd in OSX)
key to increase the number of frames it navigates to 10
or 100 frames, respectively. The ‘Spacebar’ key is used to
toggle on/off continuous analysis of frames. In HDC, anal-
ysis and storing of the resultant data (including the head
direction) is conducted as navigation through each frame
occurs. The ‘M’ key or the ‘Continuous manual input’
checkbox (Fig. 1-(4)) is used to toggle on/off continuous
manual input. A user can pause analysis by pressing the
spacebar at any frame and manually set a head direction
(Fig. 1-(8)) with a mouse click and drag. When ‘continuous
manual input’ checkbox is checked, the manually entered
head direction will be kept in following frames regardless
of algorithms until the user turns it off by clicking the
checkbox again. This is useful when the animal’s behavior
causes an error in the applied algorithm for prolonged time.
Such confusing behaviors include standing up with two legs,
curling its body, twisting its head, which makes the target
feature to disappear from the scene and so on. When no
manual input is given, the current frame image is processed
(see general image processing section below), then passed
to a species-specific function to obtain hPos, bPos, and the
head direction.

General image processing

This subsection describes what HDC calculates from a
frame image before it applies the species-specific algorithm
to the image. It is composed of three processes: (1) first,
obtain a binary image of the animal body, (2) then gather
edge information using an edge detection algorithm on the
obtained binary image, and (3) detect motion, to trigger a
species-specific algorithm.

To obtain a binary image of the animal body, HDC first
calculates absolute differences between a frame image and
the stored background image, I; = |F; — BG;| where i is a
pixel index of x, y, and color channel. This image of differ-
ences is converted to a greyscale image. Then, noise, small
differences, and even small body parts depending on a user-
defined parameter, mExOlter, are deleted with OpenCV’s
function, ‘morphologyEx’ (Bradski and Kaehler, 2008, p.
136), which can be written as the following formula, I; =
max((min(/y))y) where i is a pixel index and N is a set
of pixel indices including i and i’s eight neighboring pix-
els. The user-defined parameter, mExOlter, determines the
number of iterations of this formula. This image is con-
verted to a binary image using a user-defined threshold. The

binary image can be displayed by changing ‘Display-image’
(Fig. 1-(3)) to ‘Greyscale(Diff)’.

The binary image is then processed with the Canny
edge detection algorithm (Canny, 1986). The detected edges
can be displayed by changing ’Display-image’ (Fig. 1-(3))
to ‘Greyscale(Edge)’. The minimum bounding rectangle
(MBR hereafter) of all the contours and each contour’s size
and center points are calculated with the obtained contours
from the Canny algorithm. MBR is a minimum rectan-
gle which can bound all the given points, which can be
expressed (x, y, w, h) or (x1, yl, x2, y2) where (x, y) rep-
resent upper left corner, w is width, 4 is height, (x1, y1)
represent the upper left corner and (x2, y2) represent the
lower right corner.

Finally, HDC checks whether there was motion or not
by calculating the absolute difference (absdiff) between the
current frame image and the last frame in which motion
was detected. Only when there is motion in the frame

6 < /Zx’ y absdiff/255 < 6,, while 6; and 6, are lower

and upper thresholds), it does pass the data to the species-
specific function. Otherwise, the previous frame’s hPos,
bPos and head direction are used.

Species-specific parameters and processing

There are currently six species-specific parameters that are
necessary for general image processing. They are mEx-
Olter (number of iterations of the aforementioned mor-
phologyEXx), thParam (threshold to produce binary image),
contourTh (minimum half girth of a contour; minimum
width+height), motionTh (lower and upper thresholds to
determine motion), degTh (maximum angle difference
between previous and current head direction) and hdLine-
Len (length of head direction line). These parameters
change when a user changes species (Fig. 1-(2)) and they
are set in onChangeAnimalSp function in hdc.py.

The species-specific image processing is one function
in HDC. This function is different depending on the tar-
get species’ body structure, features, colors, and so on. This
function will be described for each animal test case.

American alligator/Mongolian gerbil case

We tested HDC with the American alligator and Mongo-
lian gerbil (Fig. 2). The alligator video used in this study
originated from an unrelated study on early-life behavior in
Alligatoridae conducted by Reber et al. at “Crocodiles of
the World”, a zoo in the UK, in October 2015 (manuscript
in preparation). The study was given ethical approval by
the Faculty Research Committee of the University of Lin-
coln, UK in April 2015 (reference number: CoSREC36).
Gerbil videos were recordings of a pet of a coauthor (TB)

@ Springer
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Fig. 2 Alligator and gerbil binary image (obtained by subtracting background image) and clustered body points (by k-means clustering white

points of the binary image)

made specifically to test HDC. Both videos were recorded
at 60 frames per second (FPS) with a video camera (Hero3+
Black edition, GoPro, USA).

An algorithm for the American alligator was imple-
mented first. The same algorithm was also successful for
Mongolian gerbil with slightly different user parameters
such as k for k-means algorithm and mExOlter.

Species-specific algorithm

First, this algorithm determined hpt, which was a pro-
jected point based on a previous head direction calculated
as (by + cos(d) -1, by — sin(d) - I) where b was previous
bPos, d was previous head direction, / was the longer length
between width and height of MBR of all contours. White
points in the binary image from general image processing
were clustered using a k-means algorithm and an additional
species-specific parameter k. The k was set to 10 for Amer-
ican alligator and four for Mongolian gerbil. When more
body parts are visible (more complex body shape), the algo-
rithm was more successful with larger k. Distances between
hpt and each cluster’s centroid were calculated. The closest
cluster to hpt was assigned to a head cluster and the clos-
est point to Apt in the head cluster was determined as A Pos.

@ Springer

Distances between the head cluster’s centroid and each of
other cluster’s centroids were calculated. The centroid of the
closest cluster to the head cluster was determined as bPos.
The angle of the line connecting hPos and bPos was cal-
culated as atan2(—(hy — by), (hy — by)) where atan2 is
an arctangent function for appropriate quadrant output, A
is hPos, b is bPos. This angle was determined as a head
direction. Example results are shown in Fig. 2.

Additional test with a color tag

Although the tested alligator hatchling had a plastic color
tag on the center of its head and the base of its tail, these
tags were not used in the above species-specific algorithm.
We additionally tested using the color tag on the head. In
this test, the algorithm was the same as the above species-
specific algorithm except that bPos was determined using
a color detection algorithm on the color tag as follows.
The frame image was converted (Smith, 1978) to HSV
(Hue, Saturation and Value) from RGB (red, green and
blue) format. The red color was detected using OpenCV’s
‘inRangeS’ function (Bradski & Kaehler, 2008, p. 65) with
a range of (175,100,90)-(180,255,255). The position of
red color tag was calculated using OpenCV’s ‘Moments’
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(Bradski & Kaehler, 2008, p- 252) as (mlo/m()o, m()]/m()o)
and determined as bPos. This approach reduced errors in
confusing situations such as an alligator turning sharply to
one direction so that its head touches its fore limb. As it
was already discussed in ‘Head direction coding software’
section, a conspicuous color tag or marking will obviously
make the tracking task easier, but only when the target
species can accept it physically and behaviorally (such as
this reptile species).

Common marmoset case

The alligator and gerbil cases illustrate the applicability of
HDC’s features, assuming that the goal is only to analyze
a resultant videos of an experiment. In the common mar-
moset case discussed in this section, we present an entire
cognitive experiment where assessing head turning was
important. This experiment was designed and conducted
with many considerations in mind, including reduction of
experimenter’s bias, errors, and time in data extraction and
analysis with a semi-automatic coding program. We think
this is an exemplary case to set a standard for experiments
concerning an animal’s head direction, hence more details
will be described in this section, and the software and
hardware used introduced.

Ethics

The housing conditions and the experimental design were
in accordance with Austrian legislation and the European
Association of Zoos and Aquaria (EAZA) husbandry

.. B0 Camera —
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7 OSubject

= D IR LED
. ®

Experimenter-1 Computer &
Microcontroller

Wireless control
Phase - 1

Data acquisition

LOG file Video file

DTB
[jFrame images

L

Phase - 2
Data extraction

HDC T
D H Phase - 3
> Data analysis &
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Video file| |

Fig. 3 Framework overview to obtain the final CSV and video file data
from the acquired experimental data of a common marmoset monkey

guidelines for Callitrichidae. The research complied with
protocols approved by the Institutional Review Board for
animal experimentation (license number 2015-012) and
adhered to all legal requirements in Austria.

Framework overview

The experimental framework in this case study involves three
phases, namely data acquisition, data extraction, and data
analysis as shown in Fig. 3. During the data acquisition phase,
an experimenter uses custom software to control many
aspects of the experiment. In the data extraction phase, trial
single frame images are extracted from a session video file
based upon LED light signals from the first phase. In the anal-
ysis phase, a head orientation direction for each extracted
frame is calculated using HDC (as described above).

Preparation of experimental hardware and software
Experimental apparatus

The experimental apparatus (Fig. 4) was positioned inside
a larger experimental cage. One side of the apparatus was

Isometric view (c) = ()
<» rd
@ |
( (d)
-
(a) front view (b) rear view
camera lens . (= =]

(c) top view (d) side view

camerag,
40cm
Protected\p‘c;wer cord
for LED light 40cm
webcam &

Fig. 4 Experimental apparatus to record video of a common mar-
moset monkey’s head turning behaviors
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completely open, therefore the monkey subject could freely
move in and out of the apparatus within the experimental
cage. During each trial, the subject was fed with preferred
food items by an experimenter through a feeding hole (see
Fig. 5) on the side opposite the entrance of the appara-
tus to entice the monkey into the apparatus and orient it
away from a loudspeaker (AV-40, M-AUDIO, USA). A
video camera (Hero3+ Black edition, GoPro, USA) with a
high-speed recording capability situated above the appara-
tus continuously recorded the entire experimental session at
100 FPS. Additional video from a webcam on the side wall
was used by an experimenter (see Fig. 5) to monitor the
monkey inside the apparatus during the session. The video
from this webcam was not recorded. Below, ‘camera’ will
always refer to the recording camera on top of the appa-
ratus, not the monitoring webcam. An LED light on the
ceiling of the apparatus brightened the inside of the appara-
tus, and infrared LED light bulbs on the bottom, controlled
by a microcontroller (Arduino UNO, Arduino, Italy), were
used to emit light indicating the beginning of a session and
onset of each stimulus play. The light emission at the start of
a session was used to synchronize the video recorded by the
camera with the time recorded in the session log file. A cus-
tom program to control and monitor experimental sessions

Experimenter (E2) ﬂ
Webcam-2

Headphone
HT*

Webcam-1
-

Camera
it m

Micro
controller

Lou(li( |
speaker- Radio
HT* hg transceiver ))
Computer L Ker-2
RO USB hub oudspeaker
@ Experimenter (E1)
Outside of Walls
the experiment ) Outdoor
room Experiment room enclosure

Fig. 5 Schematic drawing of the electronic device setup for the head
turning experiment. The solid black lines between electronic devices
denote the connections via cables and the dotted grey lines denote the
wireless connections.** HT: Handheld Transceiver with ear piece and
microphone.*** RC: Remote control for the camera

@ Springer

(‘ExCon’) generated the session log file. The light emis-
sion marking the beginning of each stimulus play was used
to measure accuracy of automatic extraction for trial frame
images.

Other experimental hardware

Before starting a session, electronic systems were arranged
as in Fig. 5. The computer was used by El to control the
overall experimental procedure using ExCon. Two hand-
held transceivers (M48 plus, CTE International, Italy) were
used to enable verbal communication between two exper-
imenters. A remote control was used to start or stop the
video recording of the camera. Over-ear headphones played
loud music to E2 to mask the playback stimuli and avoid
any unconscious cueing. Webcam-1 was used to monitor the
inside of the apparatus, while webcam-2 was used to mon-
itor the entire experimental cage. Loudspeaker-1 was used
to play acoustic stimuli to the marmoset in the experimental
apparatus, while loudspeaker-2 was used to play masking
white noise to other marmosets in an outdoor enclosure to
prevent any pre-exposure to future subjects.

An automatic machine feeder instead of E2 was also con-
sidered, but we preferred a human in this position for several
reasons. First, various types of food including wet food for
coaxing were changed depending on the monkey’s reaction
to the food during a session to keep the subject’s interest.
Second, the human experimenter was very experienced with
marmoset monkeys, and thus able to judge when to stop
the session due to distress or lack of interest. Third, mon-
keys were familiar with the human experimenter, while a
mechanical feeder’s appearance and motor noise can cause
fear for some subjects, resulting in more difficult and longer
apparatus habituation. However, depending on the specific
animal experiment situation, an automatic machine feeder
maybe preferred.

Because this experimenter, E2, listened to loud music
throughout the experiment, she was unaware of the stimuli
played and unable to bias the results.

Experimental control program

The function of the experiment running program, ExCon
(See Fig. 6), was to load, randomize, and play acoustic stim-
uli, play white noise, monitor the experimental room via
webcams, send signals to a microcontroller to turn on/off
infrared LED lights, and log all the important operations
with timestamps.

Data acquisition

To avoid human bias such as unconscious cueing, two
experimenters were involved in running the experiment. E1
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2/16

Interface for experimental operations |—Logs

Fig. 6 Screenshot of the experimental software. The software is to
help an experimenter to start/end experimental sessions, watch the
experimental room situation via webcams, play stimuli and leave notes
in the log file

conducted the experimental session with ExCon, a remote
control for video recording, and a handheld transceiver. E2,
who was always unaware of the stimuli being presented,
coaxed the monkey into the experimental chamber and fed
the monkey subject following E1’s instructions, which were
to feed or stop feeding.

An experimental session was conducted as follows. A
monkey subject was moved into the experimental cage and
all other marmosets were moved to the outdoor enclosure.
El then started a session by commencing video recording
via a remote control, and then clicking on the ‘start session’
button of ExCon. During each trial, E1 waited until the mon-
key was attending to the feeding hole, facing toward E2, to
eat the food provided through the hole, E1 then clicked the
‘white noise’ button. A white noise stimulus, which was 10
s long, was then played to the other marmosets in the out-
door enclosure via loudspeaker-2. If the monkey was still
attending to the food during the white noise, E1 directed E2
to stop feeding, clicked ‘play a stimulus’ to play an auditory
stimulus, which was 0.42-1.44 s long, via loudspeaker-1
and waited for at least 15 s before starting the next trial. E1
conducted 16 trials per session.

Data extraction

The majority of the resultant video was irrelevant data
because the head turning behavior was important only dur-
ing a short time period before and after stimulus playback.
Therefore, the next step was to extract the relevant data
(frame images of each trial) for the head direction cal-
culation step, using the LED light emissions described
previously. ExCon turned on the LEDs as soon as the exper-
imenter clicked ‘Start session’ button. The time difference

between the start of the session and the initial light emis-
sion in the resultant video showed how long the timestamps
in ExCon’s log file are delayed, compared to the time in
the video. The relevant video data extraction points were
determined by searching for the initial LED light emission,
calculating the delay time, and adding the delay time to the
timestamps of each stimulus play in ExCon’s log file.

Each frame image of the video file was converted to HSV
format from RGB format. The color detection for white
color in the minimum bounding rectangle for the LED light
bulbs of the first frame image was executed with OpenCV’s
‘inRangeS’ function.

The zeroth image moment (m(g), hereafter denoted sim-
ply as ‘m’, of the output greyscale image of ‘inRangeS’
function was calculated with OpenCV’s ‘Moments’ and
stored in a variable. This is essentially just the total sum of
pixel intensity, scaled by 255. This image moment, m, was
calculated for each consecutive frame until the difference
between the initial m and the current m was greater than a
threshold. The threshold was heuristically determined and
remained the same for all sessions. The number of frames
required to reach this difference of m was used to calculate
the time difference, AT, in milliseconds between the video
recording initiation and the experimental program’s session
initiation. This calculated time difference was inserted at
the beginning of the session log file. Then, another Python
script used this time difference and the stimulus onset time
of each trial recorded in the log file to extract the frames
that made up each trial using FFmpeg. This resulted in ten
seconds of frames from the video: 5 s before the stimulus
onset frame and 5 s after the stimulus onset frame (this time
span can be easily adjusted). These frames were cropped so
that only the required center area remained, in which the
monkey subject could appear. The result frame images from
the above extraction process for each trial were stored in
a folder, programmatically generated with a name includ-
ing the group number, subject’s name, trial number, and the
presented stimulus type.

Data analysis and evaluation

This analysis was conducted using HDC with a marmoset-
specific algorithm. A result example is in Fig. 7. In general
image processing, most body parts except two white ear
tufts were excluded by setting mExOlter (number of itera-
tions of morphologyEx) with a high value, eight. Contour
information, each contour’s size and center point, was cal-
culated after the exclusion. The two largest contours of these
contours were assigned to ear contours. The middle point of
a line connecting the two ear contours was determined as
bPos. This ear connecting line was then rotated by 90°, one
end point of the rotated line, whichever made the resultant
head direction closer to the previous head direction, became
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Fig.7 An example binary image, detected edge and result image of marmoset monkey head direction

hPos. The head direction vector was then calculated with
hPos and bPos in the same way as the alligator/gerbil case.

Results

Experimental data from 128 trials with eight different mon-
key subjects were processed computationally. Although a
total of 128 000 data entries were generated through data
analysis, only 128 assessments of head turning occurrences
(Boolean values) were required for this specific experiment.
However, more exact and demanding data assessments are
often required such as precise head angle, or assessing
length of time facing a specific direction. In such a case, all
128 000 data assessments could be required, which would
have taken significantly more human effort and time if
coded in a completely manual way. A comparison between
manual and semi-automatic method will be described in the
next section.

Extraction of trial frames

How accurately the trial frames were extracted from the
method described in the ‘Data extraction’ section is depicted
in Fig. 8.

The time difference was measured by human visual
observation of LED light emission for stimulus onset, which

Accuracy in extracting trial frames

o o OOOO}

—_

T T T T T
-100 -50 0 50 100
Difference (ms)

Fig. 8 Accuracy in automatic extraction of trial frames. Difference
is in milliseconds. The difference was obtained by counting how
many frames the LED light emission frame was off from the 500th
frame and multiplying by 10 (because each frame was taken every 10
milliseconds)
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should be observed in the 500th frame in the 1,000 extracted
frame images of each trial, if the frame extraction pro-
cedure was accurate. The video data and the log file’s
timestamp were synchronized once for the start of a ses-
sion using computer vision algorithms. However, onset of
each trial stimulus was calculated by adding the calcu-
lated difference between the video start and session start to
the timestamp of stimulus play within the log file. There-
fore, Fig. 8 shows inaccuracies in generating timestamps in
ExCon and/or latency in the microcontroller’s operations to
receive a signal from ExCon and turn on LED lights.

These inaccuracies could have been eliminated by
extracting trial frames using the LED light emission for each
trial and the same algorithms that we used to determine
the frame in which the session was started. However, this
approach was not applied due to the increased amount of
data processing time depending on the lengths of recorded
video files. The inaccuracies from this approach are well
within the tolerance range for assessing head turning exper-
iment results.

(1) Coding time

T ] oo o

40 60 80 100 120
Coding time per trial in seconds

(2) Number of manual input (click & drag to specify a head direction)

T — | o oo

5 10 15 20 25 30
Number of manual inputs per trial (1,000 frames)

o

Fig. 9 Elapsed time and number of manual inputs per trial in coding
head directions
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Table 3 Human effort comparison of manual method and semi-
automatic method; (ET: Elapsed Time in seconds, NM: Number of
manual inputs, M: Manual method, SA: Semi-automatic method)

Coder Species ET (Manual) ET (Semi— NM (M) NM (SA)
Automatic)

JO Marmoset 1135 71 885 10
Alligator 1055 133 999 11
Gerbil 1193 273 999 5

VS Marmoset 1622 176 717 23
Alligator 1438 188 990 9
Gerbil 1426 241 825 1

SR Marmoset 1542 83 846 2
Alligator 1468 185 932 31
Gerbil 1521 238 897 2

Head direction data

The final output of the analyzing software HDC was imme-
diately viewed and corrected by a coder when its algorithm
incorrectly analyzed head directions. Thus, the coder had
to invest some time to produce the final data. Elapsed time
for coding the head directions of video frames for 128 tri-
als was about 117 min. Thus, the average time for coding
was 54.74 s per trial (median: 50, SD: 20.354) as shown in
Fig. 9-(1).

When the algorithm failed to correctly analyze the head
direction, it was necessary for the user to manually specify
the head direction by a mouse click and drag. The measure-
ment of the number of manual input indicates the coder’s
effort, and the efficiency of the analyzing software as well.
In total, there were 861 frames with manual input which was
about 0.673 % of all 128 000 frames. The average number

of these manual inputs was 6.727 times per trial (median: 4,
SD: 6.747) as shown in Fig. 9-(2).

Comparison with manual coding

Whether electronics and computers with custom software
are truly needed to conduct and analyze an experiment
depends on several points such as the type of experiment,
the subject species, and measurement resolution. We tested
the analyzing software HDC with 3000 sample video frames
of freely moving animals, the aforementioned three species,
under an assumption that we need continuous measure-
ments of the head direction. Three coders (JO, VS, and SR)
coded 3000 frames, 1000 for each species, once with a com-
pletely manual method and again with the semi-automatic
method already discussed. The manual method was con-
ducted by indicating head direction using a mouse click and
drag on each frame. The semi-automatic method is to deter-
mine head directions mainly with HDC’s algorithm, but to
manually correct unacceptable algorithm output data.

The elapsed time of the manual method was about nine
times longer than the semi-automatic method on average. In
the semi-automatic method, the manual input was made on
about 1 % of data on average as shown in Table 3.

There were some frames in which a monkey was out
of the video scene, hence the numbers of manual input in
manual method, NM(M), of each coder were below 1000.
However, NM(M) was supposed to be 1000 in alligator and
gerbil videos because a subject was present on all 1000
frames in the video of each animal. The numbers less than
1000 in NM(M) in those two animal videos represent human
error (missing some frames by accident).

For both methods, manual and semi-automatic, there was
excellent agreement between the coders (ICC > 0.955, F >

Head direction differences of data produced by three coders
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Fig. 10 Head direction difference. Each data point represents the maximum absolute difference among the three head directions coded by three

coders
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22.077, p < 0.001). However, the variance among the coders
was significantly greater in the manual method (Wilcoxon
signed-rank test, N = 2883, Z = —8.211, p < 0.001, see
Fig. 10).

Conclusions

In the present study, we built semi-automatic head direction
analysis software and established a complete technologi-
cal framework, incorporating data acquisition, processing,
and analysis, needed to perform and analyze a head turning
experiment. With this framework, we were able to obtain a
larger quantity of measurements with better accuracy, less
human bias, and less human effort in a much shorter time,
compared to manual coding of the same recorded videos.

By using computer vision algorithms, our framework has
the advantage that it did not require restraining animals,
which can cause an animal much higher stress levels than
usual in its captive environment. We aimed to collect data
without causing a high stress level, both for ethical reasons
and because stress can alter cognitive functioning (McEwen
& Sapolsky, 1995; Mendl, 1999). This may lead to more
accurate assessment of normal cognitive functioning, and
supports overall animal welfare.

Our video analyzing software, HDC, can be used as
base software to analyze resultant video data of any animal
head turning/gaze experiment with relatively small modi-
fications (setting species-specific parameters and inserting
one function for the target species). With a framework such
as our example framework from the marmoset monkey head
turning experiment, many different experiments looking at
animal head directions in freely moving situations are possible.

Overall, our software and framework enabled us to
increase our productivity and the quality of results and to
reduce subjectivity in acquiring and analyzing data in an
animal head turning experiment. We anticipate that such
advantages offer important benefits for many researchers
working in animal cognition.
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Further Implementations HDC can be used or easily modified to
function in many typical free moving animal head turning experiments.
This is due to HDC’s rather simple algorithm and rules to calculate
the head direction of an animal in a frame. However, HDC might have
erroneous results in atypical cases. To deal with these cases, such as
additional animals being present within a frame, more elaborated com-
puter vision algorithms could be implemented in the species-specific
function.

Another potentially helpful improvement will be Bayesian infer-
ence of the current head direction based on previous directions when
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HDC encounters a frame with missing or ambiguous data. The cur-
rent logic to determine the head direction when data is missing simply
maintains the last recorded direction. When the direction is ambigu-
ous it chooses the possible head direction that is closest to the previous
direction. Rather than just considering the last recorded frame, consid-
ering a series of previous directions and inferring the most probable
current head direction may lead to more accurate results.
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