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Background. In our previous studies, we found a disordered taxonomic composition and function of gut microbiota (GM) in atrial
fibrillation (AF) patients. However, direct evidence about the association between dysbiotic microbiota and thromboembolic risk in
AF is lacking.Aims. In this study, we analyzed the interaction of GM and related functional patterns in AF with different CHA2DS2-
VASc scores to assess its potential as a biomarker for predicting stroke risk. Patients and Methods. -e CHA2DS2-VASc score was
used for thromboembolic risk stratification in AF according to American Heart Association (AHA) guidelines. We investigated the
taxonomic and functional annotation of GM based on metagenomic data from 50 AF patients (32 with high thromboembolic risk
(CHA2DS2-VASc score ≥2 (males) or CHA2DS2-VASc score ≥3 (females)) and 18 individuals with low thromboembolic risk
(CHA2DS2-VASc score <2 (males) or CHA2DS2-VASc score <3 (females))). Results. -e gut microbial diversity, composition, and
function in AF were different in high and low CHA2DS2-VASc score groups. In high thromboembolic risk group, the abundance of
Prevotella, Lachnospiraceae, and Eubacterium rectale, related to the production of short-chain fatty acids and anti-inflammatory were
reduced (all P< 0.05). Furthermore, annotated by Kyoto Encyclopedia of Genes and Genomes (KEGG), a database of genes and
genomes, the KEGG orthology-based scoring approach exhibited a significant association with thromboembolic risk in AF patients.
Conclusions. Imbalance of GM and microbial dysfunction are involved in aggravated thromboembolic risk of AF.

1. Introduction

Atrial fibrillation (AF), the most frequent cardiac arrhyth-
mia in adults, increases the risk of cerebral and systemic
thromboembolic events and is associated with increased
morbidity and mortality [1]. Up till now, CHA2DS2-VASc
(congestive heart failure (CHF), hypertension (HTN), age
≥75 years, diabetes mellitus (DM), stroke, vascular disease,
age 65 to 74 years, female sex) has been the most widely used
thromboembolic risk prediction score in patients with AF.
According to large observational studies, patients with
greater scores, CHA2DS2-VASc score ≥2 (males) or
CHA2DS2-VASc score ≥3 (females), have high risks of
embolism and are recommended to receive prevention
treatment [1]. However, oral anticoagulants are also asso-
ciated with bleeding events.

Increasing evidence shows an association between the
gut microbiota (GM) and cardiovascular diseases, in-
cluding atherosclerosis, dyslipidemia, HTN, and heart
failure [2–7]. -e GM can affect host immunomodulatory
function and cardiovascular health by producing bioac-
tive metabolites, such as amino acids, peptides, lipo-
polysaccharides (LPS), trimethylamine-N-oxide
(TMAO), and bile acids [5–8]. Our previous studies found
that dysbiosis of GM and metabolic patterns is associated
with the development and types of AF [2, 9, 10]. However,
whether the composition of GM can impact stroke risks
remains unexplored. In this study, we analyzed the in-
teraction of GM and related functional patterns in AF
patients with different CHA2DS2-VASc scores to assess
the relationship between disordered GM and thrombo-
embolic risk in AF patients.
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2. Patients and Methods

2.1. Study Cohort. Fifty nonvalvular AF patients were in-
cluded in our previous study [2] According to history and
personal information, patients were divided into two groups:
low (n� 18) CHA2DS2-VASc score group and high (n� 32)
CHA2DS2-VASc score group. -e CHA2DS2-VASc score
was defined as follows: CHF, HTN, age 65 to 74 years, DM,
history of vascular disease and female (1 point), age ≥75
years, and history of stroke (2 points). All patients received a
standardized evaluation, including face-to-face surveys,
physical examination, 12-lead electrocardiogram, blood
chemistry, and echocardiography. -e study had approval
from the Ethics Committee of Beijing Chaoyang Hospital.
-e research protocol conformed to principles of the
Declaration of Helsinki. All subjects were enrolled at in-
formed consents.

2.2. Assessment on GM Composition. -e whole meta-
genome sequencing data of 50 feces samples used in the
present study were available from our previous study [2].
Metagenomic analyses were performed as we previously
described [2, 3, 9, 10]. Detailed processes are shown in the
supplementary methods (Additional file 1).

Two parameters of GM composition, including Pielou
evenness and Shannon diversity, were assessed. Further-
more, all samples were clustered via partitioning around
medoid (PAM) clustering methods and principal coordinate
(PCoA) analysis based on the Jensen–Shannon distance [2].
-e linear discriminant analysis (LDA) with effect size
measurements (LEfSe) were used to identify differentially
abundant bacterial taxa among groups.

2.3. Construction and Validation of a Predictive Model for
Risks of Embolism in AF Patients. -emost useful predictive
indexes between AF patients with low or high CHA2DS2-
VASc scores were selected by the least absolute shrinkage
and selection operator (LASSO) analysis as previously re-
ported [11, 12]. A linear combination of retained taxa
weighted by respective coefficients was performed to
compute the taxonomic score (KO score) of individual
patients. Meanwhile, the area under the curve (AUC) was
estimated to validate the predictive model.

2.4. Statistical Analysis. Data were presented as mean-
± standard deviation (SD) for normally distributed data
and median (first quartile and third quartile) for non-
normally distributed data. -e t-test or Mann–Whitney
test was used to compare two groups with normally or
non-normally distributed data. Qualitative data were
carried out using the χ2 test for between-group com-
parisons. Statistical analyses were performed with SPSS
version 25.0 (IBM Corp., Armonk, New York). Differ-
ential abundance of genera and Kyoto Encyclopedia of
Genes and Genomes (KEGG) orthology was tested based
on the Wilcoxon rank-sum test, and P values were

corrected for multiple testing with the Benjamini and
Hochberg method. Statistical analyses were conducted
using the R software (version 2.15.3). Partial least-squares
discriminant analysis (PLS-DA) was carried out using the
SIMCA-P software to cluster sample plots across groups.
Mediation analysis was used to examine the proposed
indirect effects via bootstrapping conducted in the
SmartPLS 3 software [13, 14]. Pearson’s and Spearman’s
correlation coefficients were calculated in the R software
(version 2.15.3). All statistical analyses were two-sided,
and P< 0.05 was regarded as statistically significant.

3. Results

3.1. Baseline Clinical Characteristics of the Participants.
Fifty nonvalvular AF patients (32 men, 64%), including 18
low-CHA2DS2-VASc score patients and 32 high-
CHA2DS2-VASc score patients, were included in the study.
Comparisons of the baseline data are presented in Table 1.
Compared to the low CHA2DS2-VASc score group, AF
patients in the high CHA2DS2-VASc score group possessed
more elderly, HTN, and vascular disease, and lower serum
total cholesterol (TC) levels (all P< 0.05). Other baseline
clinical factors, including the proportion of paroxysmal AF
and the time of AF history, were similar between the two
groups (Table 1).

3.2. Increased GM Diversity in AF Patients with High-
CHA2DS2-VASc Scores. It has been demonstrated that
microbial diversity is associated with different diseases [15].
Shannon index and Pielou evenness based on the genera
profile were calculated to estimate the within-sample (α)
diversity (P � 0.311 for Shannon index, Figure 1(a); P �

0.109 for Pielou’s evenness, Figure 1(b)). Due to the small
sample size, there was no statistical difference between the
two groups. However, the α diversity at the genus level was
higher in AF patients with high-CHA2DS2-VASc scores.
As shown in Figure 1(c), PLS-DA showed a notable dis-
crepancy in gut bacterial composition between the two
groups.

Furthermore, the PCoA analysis based on the Jensen–
Shannon divergence suggested a significantly altered dis-
tribution of enterotypes in the high-CHA2DS2-VASc score
group. In comparison, the high-CHA2DS2-VASc score
group had an increasing tendency of enterotype 1 dominated
by Bacteroides and a decreasing tendency of enterotype 2 and
3 dominated by Prevotella and Faecalibacterium, respec-
tively (Figures 1(d) and 1(e)).

3.3. Compositional Alteration of GM in AF Patients with Low
or High CHA2DS2-VASc Scores. To get an overview of the
species composition in two groups, we analyzed the relative
abundance of 5436 reference genomes previously annotated
[2]. Based on Wilcoxon rank-sum (adjust P value <0.05)
[10, 16], we found that 132 species were differently enriched
between the two groups. 32 species were enriched in the
high-CHA2DS2-VASc score group and 100 in low
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CHA2DS2-VASc score group based on linear discriminant
analysis effect size (LEfSe) analysis, all of which had an
absolute LDA score (log 10) >2 (Figure 2(a)). -e top 10
species differentially dominated in AF patients with high
CHA2DS2-VASc scores included Eubacterium rectale
CAG:36, Clostridium sp. KLE 1755, Alistipes timonensis,
Coprobacillus sp. 29_1, Streptococcus pneumoniae,
Odoribacter laneus, Olsenella umbonata, Prevotella sp. P5-
125, Prevotella oris, and Selenomonas sp. oral taxon 136
(Figure 2(b)). Eubacterium rectale CAG:36 was signifi-
cantly reduced in the high-CHA2DS2-VASc score group
compared to the low-CHA2DS2-VASc score group (all
P< 0.05). Eubacterium rectale (E.rectale) has critical
protective roles against inflammation by producing
butanoate, a known anti-inflammatory compound; its
abundance is negatively correlated with inflammation
levels [17, 18]. Similarly, our observations showed that the
higher thromboembolic risk was linked to a reduction in
its abundance. -ese results suggested the potential role of
GM dysbiosis in AF patients with high thromboembolic
risk.

3.4. Functional Variation in GM of High CHA2DS2-VASc
Score Patients. According to our data, the gut bacterial
composition exhibited obvious distinction in AF patients
with high or low CHA2DS2-VASc scores. To figure out the
specific biological effect of the GM, we performed corre-
sponding functional annotation based on the KEGG data-
base. According to Wilcoxon rank-sum test and Benjamin
and Hochberg test, 84 KEGG orthologys (KOs) were dif-
ferently enriched between two groups, and PLS-DA revealed
the significant discrepancy (Figure 2(c)). Our results showed
that in the KEGG pathways, differentially enriched gut
bacterial functions related to urease, short-chain fatty acids
(SCFAs) (including propanoate and butanoate) metabolism,
pyruvate metabolism, amino acid and aromatic compounds
metabolism, biosynthesis of ascorbate, degradation of
nitrotoluene and aminobenzoate, ABC transporters, two-
component system, and so on, were related to the host health
(Figure 2(d)). Notably, the sixty-two KOs involved in the
metabolism of SCFAs, degradation of histidine, serine,
4-methylcatechol, nitrotoluene, and aminobenzoate, and
activation of bacterial urease were overexpressed in patients

Table 1: Clinical characteristics of all subjects.

Low CHA2DS2-VASc score High CHA2DS2-VASc score P value (low vs. high)
Number 18 32
Score 0.8± 0.8 3.7± 1.2
Congestive heart failure 0 0
Male/female 12/6 20/12 1.000
Age, years 54.0± 9.2 69.7± 7.1 <0.001
HTN (%) 2 (11.1) 25 (78.1) <0.001
DM (%) 2 (11.1) 10 (31.3) 0.170
Stroke/TIA prior (%) 0 (0.0) 4 (12.5) 0.283
Vascular disease (%) 3 (16.7) 29 (90.6) <0.001

pAF/psAF 13/5 17/15 0.237
Time of AF history, years 0.7 (0.2, 2.5) 1.5 (0.2, 5.8) 0.460
BMI, kg/m2 26.3 (24.0, 29.3) 26.5 (23.6, 28.4) 0.952
LVEDD, mm 47.3± 3.6 47.2± 3.7 0.938
LVESD, mm 28.5 (27.5, 31.3) 29.0 (27.0, 33.0) 0.654
LVEF (%) 67.7± 5.0 66.6± 6.3 0.548
LAE (%) 9 (50.0) 21 (65.6) 0.242
TC, mmol/L 4.6± 1.0 3.8± 1.0 0.009
LDL-C, mmol/L 2.6± 0.7 2.2± 0.9 0.073
HDL-C, mmol/L 1.1± 0.4 1.1± 0.3 0.950
TG, mmol/L 3.1± 5.4 1.4± 0.5 0.185
AST, U/L 22.0± 12.6 20.6± 5.8 0.600
ALT, U/L 26.9± 15.9 21.5± 10.5 0.201
TBil, μmol/L 12.2 (10.1, 20.3) 14.6 (10.0, 26.5) 0.664
sCr, μmol/L 69.7± 13.3 72.9± 19.5 0.531
UA, μmol/L 341.3± 71.5 327.0± 68.6 0.489
WBC, ×109/L 5.7± 1.6 6.3± 1.4 0.206
HGB, g/L 141.9± 17.1 135.0± 13.5 0.122
PLT, ×109/L 218.2± 46.7 213.6± 48.7 0.748
ALB, g/L 41.2± 2.9 39.5± 2.9 0.055
FBG, mmol/L 4.9 (4.4, 5.6) 5.2 (4.6, 6.0) 0.322
HbA1c (%) 6.0± 0.9 6.3± 0.7 0.348
Data are expressed as mean± SD, median (first quartile, third quartile). AF, atrial fibrillation; ALT, alanine aminotransferase; AST, aspartate amino-
transferase; ALB, albumin; BMI, body mass index; DM, diabetes mellitus; FBG, fasting blood glucose; HTN, hypertension; HGB, hemoglobin; HbA1c,
hemoglobin A1c; HDL-C, high-density lipoprotein cholesterol; LVEDD, left ventricular and diastolic diameter; LVESD, left ventricular and systolic systolic
diameter; LVEF, left ventricular ejection fraction; LAE, left atrial enlargement, pAF, paroxysmal atrial fibrillation; psAF, persistent atrial fibrillation; PLT,
platelet; sCr, serum creatinine; TC, total cholesterol; TG, triglyceride; TIA, transient ischemic attack; LDL-C, low-density lipoprotein cholesterol; TBil, total
bilirubin; UA, uric acid, WBC white blood cell.
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Figure 1: Continued.
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with high CHA2DS2-VASc scores (all P< 0.05). In contrast,
the twenty-two KOs involved in the biosynthesis of ascor-
bate and histidine were distinctly enriched in AF patients
with low CHA2DS2-VASc scores (all P< 0.05). -is gut
microbial dysfunction is generally related to many diseases,
especially cardiovascular disease [15, 19]. Although func-
tional annotation analysis was predictive, our results pre-
liminarily suggested that altered GM functions might
disturb host physiological functions and lead to a high
thromboembolic risk in AF patients.

3.5. Prediction of High ?romboembolic Risk Based on GM.
LASSO analysis was used to determine the most predictive
tax of GM and KOs, including 20 species and 22 KOs
(Figures 3(a) and 3(b)). Pearson’s correlation analysis was
carried out to evaluate the associations between these species
and KO. Notably, predictively KOs were highly correlated
with several gut species (Figure 3(c)). Considering the effect
of GM relying on its function and aberrant function profiles
between two groups, we sought to construct a related
grading approach, based on KOs with significant difference
enrichment in two groups, to further estimate individualized
thromboembolic risk. -e KO score was determined by a
linear combination of retained taxa weighted by the cor-
responding coefficients, respectively (Additional file 1:

Table S1). AF patients in two groups revealed a significant
difference in the KO scores (P< 0.001) (Figure S1A), and the
KO score had a significant association with thromboembolic
risk (r� −0.820, P< 0.001). -e multiple linear regression
analysis showed that the KO score as the dependent variable
was significantly affected by thromboembolic risk in AF,
independently of age, HTN, vascular disease, and TC (ad-
justed R2 � 0.679, beta coefficient� −0.759, P< 0.001) (Ad-
ditional file1: Table S2). -en, to assess the predictive value
of the KO score, the AUC based on the receiver operating
characteristic (ROC) curve was determined (AUC� 0.993,
95%CI: 0.916–1.000, P< 0.001) (Figure 3(d)). Our data
revealed that the altered GM was significantly associated
with thromboembolic risk in AF.

3.6. Association between Altered GM and Left Atrial
Enlargement. Previous studies have reported an indepen-
dent association between left atrial volume index (LAVI)
and cardioembolic stroke [20, 21]. Similarly, LAVI was
positively related to thromboembolic risk in AF in the
current study (ROC analysis, AUC� 0.716, 95% CI:
0.565–0.838, P � 0.023; Spearman’s correlation analysis,
R� 0.354, P � 0.015) (Figure S1B). Pearson’s correlation
analysis confirmed the correlation between the KO score and
LAVI (R� −0.303, P � 0.038) (Figure S1C). However, P
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Figure 1: GM in the high or low CHA2DS2-VASc score group. (a, b) Comparison of the microbial α diversity comprising Shannon index
and Pielou evenness according to the genera profiles in two groups. -e boxes represent the interquartile ranges, and the line inside
represents the median. (c) A discrepancy in GM composition accessed by PLS-DA. (d) All samples classified into three enterotypes showing
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the enterotype characterized by Bacteroides; P � 0.736, χ2 test.
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wave duration (PWD), as an electrocardiographic (ECG)
index reflecting atrial conduction [22], was not significantly
associated with the KO score (R� −0.172, P � 0.411) in
patients with paroxysmal AF. Furthermore, we performed
mediation analysis between the microbial diversity based on
Shannon index and Pielou evenness, KO scores, LAVI, and
risk of embolization in AF. -e results suggested that gut
bacterial dysbiosis had an important role in accelerating

thromboembolic risk in AF patients, and simultaneously,
aberrant microbial function and LAVI together mediated
partial indirect effect (VAF� 11.1%, P< 0.05) (Figure 3(e)).

4. Discussion

GMhas a crucial role inmultiple physiological functions and
metabolism. Alterations in GM profiles are closely
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associated with various host diseases such as HTN, coronary
artery disease, and DM [4, 19]. Our previous study dem-
onstrated that intestinal microbiota dysbiosis contributes to
AF development and a higher risk of recurrence following
radiofrequency ablation [2, 10].

In this study, we revealed that an increasing degree of
disordered GM was associated with higher thromboembolic
risk. Meanwhile, significant imbalanced GM functions were
also observed, suggesting a possible role of GM dysbiosis and
relevant functional variation in increasing thromboembolic
risk in AF patients.-e newly defined score based on KOs in
the current work was significant related to thromboembolic
risk in AF. Moreover, mediation analysis revealed that in
addition to direct effects, GM dysbiosis via a synergistic
effect between the variation in KO and LAVI indirectly
increased thromboembolic risk (around 11.1% of this effect).
An independent association between left atrial volume index
(LAVI), an indicator of the degree of left atrial fibrosis, and
cardioembolic stroke in AF has been demonstrated
[20, 21, 23]. Hence, gut microbial profile and function were
associated with the thromboembolic risk stratification in AF.

Previous studies suggested that Prevotella enterotype
triggers beneficial effects in lipid metabolism and car-
diometabolic diseases, while Bacteroides enterotype is as-
sociated with systemic inflammation [24, 25]. In the analysis
of sequencing data, we found higher levels of Bacteroides and
lower levels of Prevotella in the high-risk CHA2DS2-VASc
score group compared to the low-risk CHA2DS2-VASc
score group, which was consistent with previous studies
examining persistent AF and end-stage renal disease (ESRD)
patients [9, 26]. Simultaneously, Eubacterium rectalewith an
anti-inflammatory activity was significantly abundant in the
low CHA2DS2-VASc score group. -is conversion suggests
the association between thromboembolic risk in AF patients
and GM.

Short-chain fatty acids produced by intestinal bacterial
fermentation of dietary fibers, including acetate, butanoate,
and propionate, exert crucial protective effects in cardiac
hypertrophy, fibrosis, vascular dysfunction, atheroscle-
rotic, cardiac ventricular arrhythmias, and inflammation
[27, 28]. Prevotella, Lachnospiraceae, and Eubacterium
rectale have been associated with the production of SCFAs
[7, 29, 30]. In this study, these GM were significantly
enriched in the low CHA2DS2-VASc score group.
Meanwhile, through functional annotation of the meta-
genome, we also found that the metabolic functions of
SCFAs are altered in AF patients with low or high
thromboembolic risk. Our results tentatively indicated that
alteration of GM might raise thromboembolic risk via
alteration of SCFAs metabolism, but further confirmation
are needed. Additionally, recent studies suggested a strong
link between microbial production of free amino acids and
diseases, and that GM participate in de novo synthesis of
several nutritionally essential amino acids, which regulate
amino acid homeostasis in the host [31–33]. Wang et al.
found that the concentration of serine produced by gut
bacteria was decreased in Alzheimer’s disease patients [32].

Histidine is a dietary essential amino acid that regulates
reactive oxygen scavenging, proton buffering,

erythropoiesis, and anti-inflammation [34]. In agreement
with our observations, factors related to the degradation of
serine and histidine were enriched in AF patients with high
thromboembolic risk. Conversely, enzymes engaged in the
biosynthesis of histidine were abundant in low thrombo-
embolic risk patients.

Previous research studies reported that urease as a
virulence factor of various pathogenic bacteria is related to
the progress of several long-lasting diseases, including
colitis, atherosclerosis, and rheumatoid arthritis [33, 35].
Similarly, assimilatory ferredoxin-dependent nitrate re-
ductase (nirA) is essential for the full virulence of various
bacteria [36, 37]. In the light of our results, three distinct
subunits with alpha, beta, and gamma (as a crucial
structural component of urease [35, 36]) and nirA were
enriched in AF patients with high thromboembolic risk.
Several studies demonstrated that 4-methylcatechol, a
flavonoid metabolite formed by GM, with potent vaso-
relaxant, anti-inflammatory, antidiabetic, and antiplatelet
effects, reduces endothelial dysfunction [38, 39]. Our data
indicated that catechol 2,3-dioxygenase (catE), which was
significantly involved in the degradation of 4-methyl-
catechol, was enriched in AF patients with a high
CHA2DS2-VASc score. Ascorbate possesses various pro-
tective cardiovascular effects, ranging from anti-oxidative
and anti-inflammatory, and may decrease plasma levels of
tissue plasminogen activator (tPA) and von Willebrand
factor (vWF) as well as affect thrombosis/fibrinolysis
system in patients with type 2 diabetes and coronary artery
disease [40, 41]. In our study, AF patients with low
thromboembolic risk had a higher level of mannose-1-
phosphate guanylyltransferase (GMPP) that participate in
the biosynthesis of ascorbate. -ese findings preliminarily
indicated the association between gut bacterial dysfunc-
tions and thromboembolic risk of AF patients. Although
the functional annotation analyses are predictive, they
indicated that the impairment of GM might evoke a dis-
ease-linked state through the interference of physiological,
metabolic functions.

-ere were some limitations in this study. -e
CHA2DS2-VASc score was a surrogate risk marker of
thromboembolism, and the sample size was small. More-
over, the duration and type of AF were also associated with
thromboembolic risk [23, 42], and the effect of AF duration
was not evaluated. -erefore, further studies with a large
sample size based on the thromboembolic event, and pro-
spective cohort studies are needed.

5. Conclusion

To sum up, our study indicated that the distinct GM dys-
biosis and related dysfunctions are associated with high
thromboembolic risk in AF patients. -e newly constructed
tax score based on KOs was related to the thromboembolic
risk in AF patients. -ese findings provided novel insights
for further investigation of the interaction between GM and
thromboembolic risk. Yet, larger follow-up studies are
needed to further confirm and investigate the specific
mechanisms involved.
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