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ABSTRACT

Over the past decades, pharmaceutical companies have conducted a large number of high-quality in vivo repeat-dose
toxicity (RDT) studies for regulatory purposes. As part of the eTOX project, a high number of these studies have been
compiled and integrated into a database. This valuable resource can be queried directly, but it can be further exploited to
build predictive models. As the studies were originally conducted to investigate the properties of individual compounds, the
experimental conditions across the studies are highly heterogeneous. Consequently, the original data required
normalization/standardization, filtering, categorization and integration to make possible any data analysis (such as
building predictive models). Additionally, the primary objectives of the RDT studies were to identify toxicological findings,
most of which do not directly translate to in vivo endpoints. This article describes a method to extract datasets containing
comparable toxicological properties for a series of compounds amenable for building predictive models. The proposed
strategy starts with the normalization of the terms used within the original reports. Then, comparable datasets are
extracted from the database by applying filters based on the experimental conditions. Finally, carefully selected profiles of
toxicological findings are mapped to endpoints of interest, generating QSAR-like tables. In this work, we describe in detail
the strategy and tools used for carrying out these transformations and illustrate its application in a data sample extracted
from the eTOX database. The suitability of the resulting tables for developing hazard-predicting models was investigated by
building proof-of-concept models for in vivo liver endpoints.
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In vivo repeat dose toxicity (RDT) studies are a compulsory com-
ponent of the safety assessment of drug candidates carried out
for regulatory purposes. The pharmaceutical industry has con-
ducted thousands of RDT studies over the past few decades.
Until now, most of the data reported from these RDT studies
has not been stored in a structured format or database (even by

the companies who conducted the studies). The eTOX project
(Sanz et al., 2015), started in 2010, aims to remediate this situa-
tion by compiling the reports from RDT studies donated from
participating companies, extracting and harmonizing the data
therein and storing it in an integrated database. As of May 2016,
(version 2016.1), the eTOX consortium has compiled reports
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from 7156 studies (1855 compounds) resulting in almost 9
million data points. The eTOX database is a highly valuable re-
source on its own, which can be queried to extract information
about any of the RDT studies. A detailed description of the eTOX
database is beyond the scope of this work and can be found
here (Cases et al., 2014). However, to summarize the work
briefly, study reports were manually curated and entered into a
classical normalized relational database scheme (depicted in
Figure 1) (Codd, 1970; Date, 1995; Ullman and Widom, 2008). The
database contains RDT studies, carried out for a compound with
a certain experimental design. The database tables contain
observations from diverse experimental domains: clinical
chemistry, urine analysis, organ weight, histopathology, etc.,
which are common to the majority of regulatory oriented RDT
studies. Some of these observations (so called “findings”) de-
scribe an observed effect of a certain compound in a group of
animals treated under the same conditions (same dose, admin-
istration route and time point). They are labeled as “treatment-
related” or “non-treatment-related” based on the original expert
toxicological assessment present in the report.

Studies in the eTOX database were carried out by pharma-
ceutical companies or contract research organizations (CROs)
under good laboratory practices conditions. Harmonizing data
from many diverse study providers has been a major challenge.
Biological results were often captured using inconsistent
nomenclatures; hence, the originally reported terms required
mapping to target ontologies one of which was developed
specifically for the eTOX project (Ravagli et al., 2017).

One of the goals of the eTOX project is to go beyond database
Structured Query Language (SQL) queries and explore novel
ways of exploiting this valuable resource. In particular, we aim
to use the in vivo data therein for building computational mod-
els able to predict the toxicological properties of drug candi-
dates not present in the database (Sanz et al., 2015). The
computational methods used for this purpose work by inferring
the properties of new compounds from those observed in the
database. The predictive modeling algorithms can be very di-
verse and the nature of the prediction can be either quantitative
or qualitative, but in all the cases the accuracy of the prediction
depends on the accuracy of the properties attributed to the drug
candidates in the database. This consideration is not trivial,
since the diagnostics which we aim to predict (in vivo endpoints)
do not have a direct correspondence with the descriptive anno-
tations present in the reports and collected in the database
(reported findings). For example, if we want to develop a model
predicting liver toxicity, this endpoint is not present as such in
the database, but as a collection of findings (eg, liver necrosis,
increase of transaminases and bilirubin, etc.) which are likely to
be observed and noted when the compound produces that type
of toxicity. Also, RDT studies are not designed to compare the
properties of a series of compounds but to assess the toxicity of
a single drug candidate. Indeed, one of the characteristics of
RDT studies is that they are designed to observe toxicity and
hence the dose range is carefully selected on the basis of
preliminary studies to make sure that, at least, the animals ex-
posed to the highest doses exhibit significant toxic effects. For
these reasons, not all the compounds were studied at the same

Figure 1. eTOX 2016.1 relational database schema. The schema represents the main tables in the database and their relationships. The main table stores the tested

compounds. For every compound we have several studies with diverse designs. For every study the experimental findings are stored in different tables according to its

type. Each finding summarizes the experimental observation as well as the dose and study timepoint.

288 | TOXICOLOGICAL SCIENCES, 2018, Vol. 162, No. 1

Deleted Text: nine 
Deleted Text: <xref ref-type=
Deleted Text: ) (
Deleted Text: l
Deleted Text: (GLP) 
Deleted Text: ,
Deleted Text: .
Deleted Text: l
Deleted Text: .
Deleted Text: .
Deleted Text: &hx2026;


dose or using the same administration route, and there are also
differences in species and strains. In vivo data are still the “gold
standard” in preclinical toxicology, but the aforementioned rea-
sons explain the impossibility of using the reported data in its
raw form for generating computational models.

The objective of the work described here, was to develop a
methodology addressing the limitations of the raw RDT studies
for extracting toxicity scores amenable for the development of
predictive models. This methodology was developed within the
project eTOX, making use of the project database, and imple-
mented in open source software that can be easily adapted to
similar databases. Here we will describe our method, the soft-
ware and present examples illustrating how our methodology
was applied and how the toxicity scores generated from the
original studies can be used to build predictive models. This
method is applicable to any other database collecting RDT
reports, such as ToxRefDB (Martin et al., 2009), or in-house
pharma companies databases.

MATERIALS AND METHODS

Storage of eTOX Database
To facilitate data processing, the eTOX database (2016.1 version)
was downloaded and stored in a local PostgreSQL database
(PostgreSQL, 2016; Stonebraker et al., 1986) containing only
tables relevant for our purposes. The schema of this database is
very close to the simplified view of the eTOX 2016.1 database
shown in Figure 1. The data import was carried out using a set
of extraction, transformation and loading scripts (Kimball et al.,
2008).

Ontologies Storage
The ontologies used to annotate histopathology findings (ie, the
anatomy ontology and histopathology ontology) were stored
centrally within the eTOX project using a tool called
OntoBrowser (Ravagli et al., 2017). The anatomy ontology is an
extended version of the Adult Mouse Anatomy (Hayamizu et al.,
2005; Mouse Anatomy, 2017) while the histopathology ontology
was built by the eTOX Consortium and aligned to INHAND
(Keenan et al., 2015). A massive curation effort took place to map
all verbatim terms used in reports to preferred terms from the
ontologies. These mapping were generated and stored into the
OntoBrowser. Ontologies were extracted from the eTOX central
repository (Ravagli et al., 2017) and stored in parent-child rela-
tional form in the PostgreSQL database. The type of relationship
between concepts (eg, is_a, part_of, etc.) and all the synonyms
of the preferred terms within the ontologies were also captured
within the same database.

Data Extraction
All data extracts from the eTOX database were carried out using
an in-house developed tool written in Scala (Odersky et al., 2004)
and Slick (Typesafe Slick, functional relational mapping for
Scala). Slick is a domain-specific language (Mernik et al., 2005)
that provides a mechanism directly within Scala to execute
queries against relational databases following the ideas of
Kleisli (Wong, 2000). This enabled us to develop a very flexible
query building tool incorporating the complex and diverse fil-
tering required for extracting data from the database. For exam-
ple, we were able to define filtering criteria for studies (eg, based
on sex, exposure period, and/or administration routes) in addi-
tion to the observation properties (eg, type of observation, rele-
vance, organ, etc.).

This tool implements a novel query reformulation method
(Necib and Freytag, 2004) to extract information from the rela-
tional database. Essentially, the query reformulation rewrites a
conventional SQL query based on a single value condition (eg,
organ ¼ “liver”) to a query that uses all the synonym terms as
well as child terms in the ontology tree. This reformulation
method is based on ontology reasoning but instead of imple-
menting it using standard Web Ontology language (OWL) rea-
soners (Baader et al., 2010) we used PostgreSQL recursive queries
(Garcia-Molina et al., 2008). We chose this approach because it
allows to integrate the inference and the query processes.
Technically, we computed the transitive closure of “part_of”
relationships. For example, by recursively traversing the
“part_of” relation starting from “liver” we obtain all the ana-
tomic components that are considered parts and subparts of
the liver in our anatomy ontology. With respect to classical
OWL reasoners, this method has the advantage that it integra-
tes reasoning and querying in a single step and a single tool.
The application of this query strategy enriches the raw informa-
tion stored in the database by augmenting it through logical
reasoning.

Model Building
The quantitative and qualitative scorings for diverse in vivo end-
points (described in the “Results” section) have been used to
build predictive models which represent their association with
different descriptors of the compound structure. For the qualita-
tive scorings, the models aim to predict if a new compound is
positive or negative. In the case of the quantitative scorings, the
model predicts the lowest dose at which an endpoint would be
observed.

The model building process started by selecting a series of
small molecules annotated with both qualitative and quantita-
tive scorings for the 3 following endpoints: (see “Case-study ap-
plication: liver toxicity” section), “degenerative lesions” (DEG),
“inflammatory liver changes” (INF), and “nonneoplasic prolifer-
ative lesions” (PRO). These endpoints were observed in 332, 258,
and 246 compounds respectively. Two-dimensional structures
were extracted from the eTOX database in SMILES format and
they were then normalized using standardizer (Atkinson, 2014).
Then, reasonable 3D structures were obtained using CORINA
(Sadowski et al., 1994). The ionization state of every compound
was adjusted to pH 7.4 using MoKa (Milletti et al., 2007;
Molecular Discovery, 2017a). The series of compounds was then
divided randomly into a training series (for building the models),
which contained 70% of the compounds and a test series (for ex-
ternal validation) containing the remaining 30%. The structures
in the training series were used to compute Adriana (Molecular
Networks, 2017) and GRIND2 (Dur�an et al., 2009; Molecular
Discovery, 2017b; Pastor et al., 2000) molecular descriptors using
respectively AdrianaCode (Molecular Networks, 2017) and
Pentacle (Molecular Discovery, 2017b) software. This procedure
produced a matrix of descriptors (X) which was submitted to a
panel of machine learning methods described below (partial
least square-regression [PLS-R], PLS-discriminant analysis (PLS-
DA), and random forest [RF]) to obtain mathematical functions
describing the relationship between them and the toxicity scor-
ings, suitable for predicting the properties of new compounds.

Partial least squares. We used an in-house implementation of
PLS-R (Wold et al., 2001) and PLS-DA (Wold et al., 2001) using
Nonlinear Iterative Partial Least Squares (NIPALS) algorithm. For
the PLS-DA, the cutoff value used to discriminate positive from
negative objects was adjusted automatically during the building
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step to obtain an optimal balance between the model sensitivity
and specificity (characterized by the minimum difference be-
tween both parameters), in the training series. We applied the
NIPALS algorithm to extract a maximum of 7 latent variables,
retaining in the final model the dimensionality producing best
predictive quality according to leave one out (LOO) cross-
validation. The models were further refined by using Fractional
Factorial Design variables selection (Baroni et al., 1993). ADAN
(Carri�o et al., 2014) methodology was applied for assessing the
applicability domain of predicted compounds and to provide
pseudo 95% CIs, as described in Carri�o et al. (2014).

Random forest. We used the RF-regressor and RF-classifier (RF-C)
available in the scikit-learn library (Pedregosa et al., 2011). The
number of trees (n_estimators), and max features (features)
were adjusted using a grid search algorithm to obtain optimum
values according to out of bag criterion. Additionally, to obtain a
comparable assessment of the models’ predictive quality, we
carried out LOO cross-validation.

The performance of the qualitative models has been
assessed computing the sensitivity (sen), specificity (spe) and
Matthews correlation coefficient (MCC), as described in the
equations below:

sen ¼ TP
TPþ FN

; (1)

spe ¼ TN
TNþ FP

; (2)

MCC ¼ TP� TN� FP� FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FPð Þ TPþ FNð Þ TNþ FPð Þ TNþ FNð Þ

p : (3)

The goodness-of-fit of the quantitative models was assessed us-
ing the determination coefficient (r2). Their predictive perfor-
mance was assessed using LOO cross-validation and quantified
using cross-validated determination coefficient (q2) and the
Standard Deviation Error of the Prediction (SDEP).

Finally, all models have been further validated by predicting
the test series and computing the external sensitivity, specific-
ity and MCC parameters for the qualitative models and q2 and
SDEP for the quantitative ones.

RESULTS

Overview
The methodology described here generates data suitable to
model hazard for in vivo endpoints from a collection of in vivo
RDT studies. The original data is processed to produce hazard
scores assigning a single value to each compound that charac-
terizes its properties with respect to a certain in vivo endpoint.
Ideally, such scores must be quantitative and the scale must
represent the compound hazard in “point of departure” (PoD)
terms, the dose from which the toxic effect starts to appear. The
values must be comparable between compounds allowing to
rank them from lower to higher hazard.

This work does not aim to produce risk scores, because the
data available in the eTOX database is too limited for modeling
the substance exposure without introducing toxicokinetic (TK)
information from external sources. Also, for similar reasons,
the scores will express hazard in terms of substance dose and
not absolute concentration in the target organ.

The proposed approach involves 3 steps: (1) study filtering,
(2) finding aggregation, and (3) score generation, which will be

described in detail in the following sections. The quality of the
scores obtained in a case-study application will be analyzed in
terms of their suitability for modeling (eg, value distribution,
number of positives, etc.) but also by analyzing the predictive
quality of example models developed from them.

All these steps were implemented in a set of scripts written
in Scala (Odersky et al., 2004) which generate the complex SQL
queries required to extract the data. Some of these scripts in-
clude a web-based graphical user interface (GUI) that facilitates
their use. All this software and the associated documentation is
distributed as open source under license GNU v3.0 (Free
Software Foundation, 2007) and can be downloaded from the
URLs included in the following references (Lopez-Massaguer,
2017a,b). The commands used to generate the examples in this
article were included in section source code 1 (Ontology based
data extraction) and source code 2 (Scoring computation scripts)
of the Supplementary Material.

Study Filtering
The eTOX database integrates studies conducted on different
species/strains with various compound administration routes
and diverse dosing durations. Figure 2 illustrates the diversity
of data collected and the number of compounds and data points
present in the database.

The generation of comparable scorings requires starting
from a set of comparable studies with a reasonable degree of
similarity with respect to the aforementioned design character-
istics. However, any study consistency criteria applied here will
impose a limit to the number of substances and studies used for
generating the scores, and therefore a suitable compromise is
required. For example, using all the studies and substances
available in the eTOX database (7156 studies and 1855 com-
pounds for the 2016.1 version) will be unacceptable, since this
will merge studies from rat, mouse, dog, monkey, etc. (see
Figure 2) as well as studies of different duration and route of ad-
ministration. Conversely, if we restrict our analysis to studies
carried out only with Wistar rats, 20-day treatment duration,
oral gavage, only 6 out of the 7156 studies would be selected (4
out of 1855 compounds).

Our approach uses an iterative process, relaxing slightly the
selection criteria and checking the effect on the number of stud-
ies/compounds until obtaining a reasonable compromise be-
tween the consistency and the number of the studies selected.
In the previous example, the use of a relaxed criteria permitting
a range of related species (rodents: rats and mice of any strain),
routes (oral: feeding and gavage) and duration (approximately 4
weeks, from 21 to 32 days) allowed selecting 883 out of the 7156
studies (597 out of 1855 compounds). The effect of the 2 filtering
strategies is illustrated in the Tables 1–3.

The use of such iterative approach was made possible by an
interactive data extraction tool developed in house.
Conceptually, the tool is based on the On-Line Analytical
Processing (OLAP) multidimensional model (Agrawal et al., 1997;
Gray et al., 1997); the original relational database has been trans-
formed in a multidimensional database (Figure 3) where the
“facts” are the findings and the “dimensions” are the character-
istics of the study design and the finding, as listed in Table 4.
The transformation was done to adapt the original database
model to a data extraction oriented model, based in the OLAP
principles.

Based on this conceptual model, we can filter the studies by
defining 1 or several acceptable values for fields containing
qualitative variables (eg, species) and/or a range of acceptable
values for fields containing quantitative data (eg, exposure
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period). Table 5 describes the characteristics which can be used
and shows some examples.

In terms of OLAP model, this data operation (filtering the
database by choosing several values for 1 dimension) is equiva-
lent to “dice” the multidimensional data cube (Figure 4).

In our tool, the values of the filtering parameters can be se-
lected using a web-based GUI or a command line interface. In

either case, the query parameters are translated internally to
SQL queries that apply the filtering.

Most of the studies and finding characteristics listed in
Tables 4 and 5 are selfexplicative (eg, species, route, and organ)
but the “relevance” field deserves a separate explanation. Only
findings which were declared by the responsible toxicologist to
be caused by the drug candidate were labeled as “treatment-
related”. Therefore, this field introduces expert judgment add-
ing valuable insight in the database, even if it is always a subjec-
tive appreciation and cannot be considered infallible.

One of the sources of complexity in this filtering is the need
to consider the diverse terms which can be used to describe an-
atomic structures or histopathology findings. For example, in
the case of selecting findings by the affected organ (eg, liver),
the end-user typically wants to obtain findings affecting any
part of the liver (eg, liver lobule, liver acinus, portal triad, etc.).
Incorporating this anatomical understanding into the queries
required the use of an anatomic ontology capturing the many
different terms used in the report to describe the anatomic
structures as well as their relationships (eg, “is part of”). This
knowledge is used internally by our tool to expand the filtering.
For example, the term “Liver” is searched in the ontology and all
concepts connected by “is part of” are added to the collection of
queried terms recursively (see an example in Figure 5A). The
complete list of “Liver” connected terms can be seen in the
Supplementary Table 1.

A similar, but more complex situation is the filtering applied
to histopathology findings (eg, necrosis). As in the previous
case, the query is expanded by recursively exploring a suitable
ontology term; in this case using “subclass of” relationships (see
an example in Figure 5B). The final result is a collection of terms
describing the queried finding with different levels of detail

Figure 2. Database statistics. This figure depicts some general database statistics: number of compound, studies and findings. It also shows the distribution of studies

and findings by species, administration route and exposure period as well as the distribution of findings by finding type, and the ratio of studies per compound and

findings per compound.

Table 1. Filtering Conditions Used

Narrow Broad

Species Rat Rat, mouse
Administration route Oral Oral, oral gavage
Exposure period 20 days 20–32 days

Table 2. Summary of Studies/Compounds Selected

Narrow Broad

Studies 6 883
Compounds 4 596

Table 3. Summary of Observations Selected

Finding Type Narrow Broad

Clinical chemistry (general) 595 119 860
Clinical chemistry (haematology) 668 111 920
Histopathology 1576 244 721
Organ weights 8 126 717
Clinical chemistry (urine) 0 36337
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(eg, necrosis zonal, necrosis zonal centrilobular, necrosis zonal
periportal), all of which are used to query the database. The
complete list can be seen in the Supplementary Table 2.

Finding Aggregation
The result of the filtering step is a collection of several findings
observed in comparable studies, for diverse compounds at di-
verse doses. This collection is represented in the table at the
left-hand side of Figure 6 and often contains several rows per
compound and finding, indicating that for a certain compound
the same finding has been observed at different doses, in some
cases in different studies.

The findings extracted from the database often contain a
nonhomogeneous level of detail, for this reason, the raw collec-
tion of findings is preprocessed using the same ontology de-
scribed above to obtain parent findings, thus facilitating

posterior aggregation. For example, if the extraction obtains
“perilobular necrosis”, the parent finding “necrosis” is also
assigned to the same compound.

The next step of the process is to collapse all the aforemen-
tioned rows into a single line representing a single compound-
finding combination. This can be done in 2 different ways:
quantitative, by recording the lowest dose at which the finding
was observed, or qualitative, by simply recording that the find-
ing was observed in any of the studies. The aspect of the tables
obtained is shown in the middle of Figure 6. In the case of the
dose, it can be interpreted as a LOEL (lowest observed effect
level), even if it is not strictly correct, since this dose can be
obtained from a collection of studies.

In any case, the resulting table still contains more than 1
row per compound, and to obtain a QSAR-like table, we need to
apply a pivoting transform, assigning a column to each finding
and include in the compound-finding intersection either the
LOEL value or a binary indicator (see the rightmost column in
Figure 6). At this point it must be stressed the importance of the
previously described ontology preprocessing (rollup) of the
extracted findings. This operation effectively maps detailed
endpoints to higher-level parents.

Scoring Generation
The tables produced by the aggregation described earlier con-
tain a single row per compound but many columns describing
individual findings. Each of these findings represents an
“observable manifestation” of an effect (endpoint) produced by
the compound, which is the real object of the study, and the bio-
logical property that we aim to predict using our computational
models.

Diagnostics or endpoints like “liver inflammation” or
“cholestasis” are not described in the report as such. For this
reason, our method proposes to infer these endpoints from a
profile of observed findings. All the findings considered to be as-
sociated to the endpoints are combined using a logic OR

Figure 3. OLAP schema. Schema of the multidimensional data model used to build the data extraction mechanism. Findings are modeled as facts in a multi-dimen-

sional space, located at the center and connected to the dimensions around, describing 8 different properties: species, organ, parameter change, compound, finding

type, finding/parameter, administration route and exposure period.

Table 4. OLAP model dimensions.

Dimension Example

Species Rat, mouse
Administration

route
Gavage, intra venous

Exposure period (number of days)
Finding class Clinical chemistry, histopathology, organ

weights
Finding type In case of qualitative observations like histopa-

thology findings: necrosis, inflammation
Parameter In case of quantitative parameters like clinical

chemistry findings: ALT, AST, Bilirubin
Organ Liver, spleen
Treatment

relevance
Treatment-related/non treatment-related

Change Change in quantitative values: Increased/
decreased
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operation, which means that compounds for which any of the
findings in the profile is observed will be assumed to produce
the endpoint. For example, if we consider that “degeneration” is
strongly associated with findings like “amyloidosis” and
“mineralization”, the observation of any of these findings in a

compound will be used to consider it positive for the endpoint.
To avoid false positives, it is advisable to consider only
“treatment related” findings, as explained in the Filtering sec-
tion. It is important to stress that the definition of the finding
profiles associated to the toxicity endpoints considered in this

Table 5. Filtering capabilities, including parameters and examples.

Filter Level Filter Filter Parameter Example Only for Tablea

Study Species One or more species of the study Rat or mouse
Study Administration route One or more administration routes of the study Oral or oral gavage
Study Exposure periods A range of days for filtering the exposure

period of the study
From 20 to 32 days

Findings Relevance of findings Include or not only treatment related findings Only treatment-related
findings

Findings Organ One or more organs of interest Liver Histopathology
Findings Finding One or more type of findings Necrosis Histopathology
Findings Clinical chemistry parameter One or more Parameter ALT or AST Clinical chemistry
Findings Change in clinical chemistry

parameter
Increase or Decrease Increase Clinical chemistry

aThese characteristics of the findings are exclusive of the tables listed here.

Figure 4. Slicing OLAP cube. Schematic representation of the database filtering as the slicing of a data cube, where the findings are located in a 3D space, with axis rep-

resenting exposure, administration route and species. The filtering process can be graphically represented as a progressive slicing of this multidimensional data cube,

selecting only the findings enclosed within the ranges of values defined for every axis. This representation is a simplification, since the actual data cube is 8-

dimensional.
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study was carried out by expert toxicologists, without the use of
any statistical method. In this study, in line with a previous
work (Mulliner et al., 2016), the association between findings
and endpoints was described using a hierarchical structure,

defining a first level of finding clusters, associated with specific
endpoints (eg, necrosis) and a second level association of such
endpoints to describe higher level in vivo endpoints (eg, degen-
erative lesions). A complete list of the findings and their first

Figure 5. Ontologies. A, Fragment of the Organ ontology showing a subset of concepts related to the “Liver” concept by the predicate “part_of.” B, Fragment of the

Histopathology ontology showing a subset of the concepts of the ontology related to “Necrosis” concept by the predicate “subclass_of.”
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and second level association profiles was included in
Supplementary Tables 3 and 4.

In this study, we applied “finding profiles” to generate quali-
tative and quantitative scorings. The qualitative scoring only
assigns to the compound a positive value if any of the findings
of the profile has been observed. The quantitative scoring
assigns to the compound the lowest LOEL of these findings. The
LOEL values, originally in mg/kg/day, were transformed to mo-
lar units by dividing them by the molecular weight. This value
is scaled using a minus logarithmic transform to obtain values
following a growing scale: the more positive the scoring is the
lower the dose is at which the first sign of the toxicity was ob-
served. The logarithmic transform make these scorings also
amenable for QSAR according to the extrathermodynamic prin-
ciple (Leffler and Grunwald, 1963).

The result of this process is a list that only contains “positive
compounds”, annotated to at least one of the findings in the
profile. Model building methods also require the inclusion of a
suitable collection of “negative compounds”. This requires the
identification of compounds tested under similar conditions to
the positive but for which no relevant finding was observed. We
must stress that selecting compounds for which nothing was
noted is not enough, since this will merge untested and nega-
tive compounds. For this reason, the selection must require a
minimum dose tested, and the definition of any other charac-
teristic that makes a compound non-eligible as “negative”, typi-
cally if the findings are treatment-related or not, and the tables/
organs affected. Quantitative models require assigning a toxic-
ity score also to the negative compounds. Any low value would
represent their distinction from the positives. However, to in-
corporate the effect of the tested doses, we choose to assign
them a score representing a dose 10 times higher than the max-
imum value tested. This means that, for modeling purposes, we
are arbitrarily assuming that all compounds are toxic, but in the
case of the negatives, at a dose higher than the highest dose
tested. It must be stressed that this approach requires the appli-
cation of very strict selection criteria for the negative

compounds, like those described earlier. Otherwise we risk
assigning similar scores to negative compounds than to toxic,
but poorly bioavailable ones.

Case-Study Application: Liver Toxicity
As an example of the whole procedure, we present here a case-
study application of the method for obtaining qualitative and
quantitative scores for 3 liver toxicity endpoints: “nonneoplasic
proliferative lesions” (PRO), “inflammatory liver changes” (INF),
and “degenerative lesions” (DEG). For this, first all available pri-
mary treatment-related and standardized microscopic liver find-
ings from the studies were clustered into groups of similar terms
from a pathological point of view (first level cluster). For exam-
ple, for the first level cluster term “necrosis” the following pri-
mary terms were aggregated: “necrosis”; “necrosis, fibrinoid”;
“necrosis, focal/multifocal”; “necrosis, hepatocellular”; “necrosis,
zonal”; “necrosis, zonal, centrilobular”; “necrosis, zonal, mid-
zonal”; “necrosis, zonal, periportal”; “single cell necrosis”; “single
cell necrosis, epithelial”. Then, different first level clusters were
aggregated into groups of similar second level cluster, also from
a pathological point of view. For example, for the second level
cluster “degenerative lesions” the following first level cluster
were aggregated: “necrosis”; “apoptosis”; “vacuolation”; “fatty
changes”; etc.

The first step was to apply sensible filters to extract a collec-
tion of comparable studies. Table 6 lists the criteria applied,
aimed to extract rat studies of any duration and oral adminis-
tration (excluding dietary). We obtained 2226 studies of these
characteristics. From the 1855 compounds present in the data-
base, only 934 appear in any of these studies and incorporate
finding annotations. This list of compounds constitutes the
base chemical universe (BCU) of our study, and any further fil-
tering is restricted to only these compounds.

For the compounds of the BCU we extracted from the histo-
pathology table treatment-related findings in which liver is the
organ affected. At this point it is worth mentioning the effect of
the query expansion using the organ ontology (to add findings

Figure 6. Aggregation. Schema of the method proposed for calculating quantitative (upper path) and qualitative (lower path) hazard scores. Starting from a collection

of findings, these are aggregated by compound producing only 1 line per compound and finding, containing the lowest dose in the case of quantitative scores and a bi-

nary variable for the qualitative ones. This table is pivoted, producing a single line per compound and separating the findings in columns. Finally, we use a profile of

findings known to be associated to the endpoint (A-B-D in this case) to collapse these values into a single compound score.
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assigned to parts of the liver) and the histopathology ontology
(to add parent findings): the raw number of findings was 6207,
but the use of the anatomy ontology increased this number to
6245 (38 more, 0.6% increase) and the histopathology ontology
to 7292 (1085 more, 17% increase).

The second step was to aggregate all these findings per com-
pound. As illustrated in Figure 6 the compounds were associ-
ated with the corresponding findings either using a binary
indicator or the lowest dose at which this finding was observed
in any study, thus producing a qualitative and a quantitative ta-
ble with a single row per compound and columns representing
every finding observed.

The final step was the generation of the scorings for the 3
considered endpoints, using the finding profiles shown in
Supplementary Tables 3 and 4 generated by expert toxicologists.
We computed 2 kinds of scorings (quantitative and qualitative)
as described in the Materials and Methods section: qualitative
(logical OR of the findings observed) and qualitative (minimal
dose of the observed findings transformed into logarithmic
scale). The positive compounds obtained are listed in Table 7. For
this particular case-study negative compounds were defined as
(1) substances included in the BCU, (2) tested at least at a dose
higher or equal to 1000 mg/kg (252 compounds), and (3) with no
observed treatment-related, liver-related histopathology find-
ings. These criteria guarantee that the negative compounds have
been tested (1) in conditions comparable with the positives one,
(2) at doses high enough to avoid selection of untested com-
pounds, and (3) excluding compounds with any liver-related
finding, even unrelated to those in the scoring profile. These cri-
teria can be seen as restrictive, but even so the number of nega-
tive compounds obtained is already larger than the positive ones
(see Table 7), and there is no benefit in obtaining a larger series.

A closer inspection to the scores shows that, for most posi-
tive compounds more than one of the findings of the profile has
been observed. The median number of findings is 3 for DEG and
INF and 4 for PRO. Bar charts describing the full distribution of
values have been included as supplementary information
(Supplementary Figure 3).

Regarding the quantitative scorings, their means and stan-
dard deviations have been included in Table 7 and histograms
with the distribution of the values were also included in
Supplementary Figure 3. The distribution is multimodal,
probably due to the use of discrete doses. As expected, the val-
ues cover a relatively narrow range of 3–4 log units, with SDs
under 1 log unit. The values represent pseudo-LOEL doses in
mg/kg/day, and not potency expressed as molar concentration,
as it is usual in QSAR modeling. All in all, these circumstances
(narrow range, no incorporation of pharmacokinetics) can be
expected to limit the quality of quantitative models, but in the
next section we present some preliminary models that show
how, in spite of the limitations, the obtained scores represent a
reasonable starting point to describe the toxicity of a collection
of compounds in a comparable way.

Finally, we have run a comparative analysis of the quantita-
tive LOEL with other PoD reported in the eTOX database.
Unfortunately, these data are only present for a few number of
the drug candidates in the BCU (572 NOAEL, 301 NOEL, and 14
LOAEL) and the database does not specify the responsible end-
point, but it still could be expected a rough correlation between
these values and our pseudo-LOEL. The results are depicted in
Figure 7 where we plot the pseudo-LOEL for all LIVER endpoints
compared with the NOAEL (maximum NOAEL), expressed as
mol/kg/day.

Remarkably, the pseudo-LOEL values obtained from liver-
related findings exhibit the expected correlation. Some of the
reported LOAEL and NOAEL are lower than our quantitative
LOEL, probably representing endpoints not considered in our
analysis. Only for a few compounds the reported PoDs are
slightly higher and only in 1 case the difference is larger than 1
logarithmic unit. These deviations can be explained by the fact
that not all effects in our LOEL represent adversity. In any case,
the scatterplot clearly shows the existence of a relationship, fur-
ther justifying the relevance and usefulness of the proposed
quantitative scoring.

Model Building and Results
The scorings obtained were used to build models for the 3 se-
lected endpoints as described in the Materials and Methods sec-
tion and their quality was evaluated using both LOO cross-
validation and external validation. The results for the qualitative
and quantitative scorings were summarized in Supplementary
Tables 5–11.

A detailed analysis of the effect of the different molecular
descriptors and machine-learning methods on the model qual-
ity is out of the scope of this work. The models were shown
here only to show that the hazard scores generated by our
method can be used for modeling, and therefore we will focus
on the description of the best qualitative and quantitative mod-
els (highlighted in green in Supplementary Tables 5–11).

Qualitative Scores
The choice of the best model was based on the values of
sensitivity and specificity obtained for the external prediction,

Table 6. Hepatotoxicity filtering criteria used for the case-study
application.

Filter Level Filter Value

Study Species Rat
Study Administration route Intraesophageal

Intragastric
Nasogastric
Oral
Oral gavage
Oropharyngeal

Study Exposure periods Any
Findings Relevance of findings Treatment related
Findings Organ Liver
Findings Finding Any

Table 7. Distribution of values for qualitative and quantitative hepatotoxicity scorings.

Endpoint Number of Negatives Number of Positives Median Number of Findings Mean Quant. Scorings SD Quant. Scorings

DEG 168 164 3 3.76 0.84
INF 164 94 3 3.88 0.92
PRO 164 82 4 3.84 0.95
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represented in Figure 8A. The best models for the three end-
points were obtained with Adriana descriptors. Regarding the
modeling technique, RF-C produced better results for DEG and
INF, while PLS-DA produced slightly better results for PRO.

For the DEG endpoint, the cross-validation results were ac-
ceptable (spe ¼ 0.55, sen ¼ 0.68) and similar to the results
obtained using the external series (spe ¼ 0.59, sen ¼ 0.67). For
the INF endpoint we observed a similar situation, even if the
results of the predictive quality assessment were slightly better,
both in cross-validation (spe ¼ 0.84, sen ¼ 0.44) and for the ex-
ternal series (spe ¼ 0.76, sen ¼ 0.54). In these models, the use of
RF-C produced a perfect fitting of the training series (spe ¼ 1.0,
sen ¼ 1.0) which has no value for evaluating the model quality.
Conversely, for the PRO endpoint, built using PLS-DA, the fitting
obtained for the training series was not so good (spe ¼ 0.75, sen
¼ 0.75) and these quality parameters are closer to those
obtained in cross-validation (spe ¼ 0.69, sen ¼ 0.70) and for the
external series (spe ¼ 0.62, sen ¼ 0.50).

Assuming that the external prediction produces the strictest
evaluation of the predictive performance, we can see that we
obtained values of spe and sen over 0.5 in all cases, with a range
between 0.5 (PRO sen) and 0.76 (INF spe). It is noteworthy that
the unbalanced datasets (Table 7) present in INF and PRO end-
points produced less sensitive models (Figure 8A) while the
more balanced dataset (DEG) (Figure 8A) yields a better spe-sen
compromise and higher sensitivity. In general, the quality of
the models is not excellent, but is surprisingly good if we con-
sider the complexity of the in vivo endpoints based on many dif-
ferent mechanism of liver toxicity that are being described and
the simplicity of the model approach described here.

Quantitative Scores
We selected as the best model the one with the lowest SDEP for
the external prediction. PLS-R produced the best results in all

instances, but for DEG and INF the best molecular descriptors
were the Adriana ones, while for PRO Pentacle worked better.

In general, the quantitative models were poor, with
goodness-of-fit statistics ranging between 0.26 and 0.58. We
only obtained a positive value for the external q2 (0.07) for the
PRO endpoint, the only represented in Figure 8B. However, the
scatterplots suggest the presence of a linear trend, particularly
for the training series and confirm the feasibility of using the
proposed scores for quantitative modeling of in vivo endpoints.

DISCUSSION

The above-mentioned example illustrates how the proposed
hazard scores can be used for modeling, even if they are imper-
fect and suffer from different limitations that need to be dis-
cussed in detail to understand their potential applications.

The first step is to select a subset of studies carried out in
comparable conditions (with respect to species, treatment dura-
tion, administration route, finding type, etc.). This selection is
always a compromise between selecting a very homogeneous
set of studies (but with a limited number of compounds fulfill-
ing the selection criteria) and relaxing the selection criteria for
obtaining larger series (but including studies carried out in very
different conditions). Our method does not impose any con-
straint and the end user is offered a flexible filtering tool which
can be applied interactively, exploring the effect of different se-
lection setting on the number of compounds selected. This
leaves to the end-user the responsibility of calibrating the effect
that merging studies obtained in different species, administra-
tion routes or duration might have on the quality of the scores.

RDT studies are designed to observe toxicity and, therefore,
at the highest tested dose, most studies report some toxic effect.
But some of these might be not representative of the drug can-
didate chronic toxicity, since at very high dose the animals of-
ten develop nonspecific toxicity that produces alterations at
multiple levels. However, in our study, this contamination is
partially mitigated by the use of the “treatment related” flag,
based on expert toxicological judgment. Even if it is always a
subjective appreciation and cannot be considered infallible, in
many cases such nonspecific or secondary effects will not be
labeled as related with the drug candidate by the expert signing
the report. Moreover, in the proposed quantitative scores, find-
ings observed at a high dose will correspond to the lowest scor-
ing values, very close to the values assigned to the compound
for which the finding was not observed.

Another important consideration, briefly discussed in the
Results section, is the selection of negative compounds.
Choosing substances for which the relevant findings have not
been observed is not sufficient, because in some cases the doses
tested could have been too low to cause toxic effects. For this
reason, it is important to select compounds tested at doses high
enough to guarantee testing conditions comparable to the com-
pounds in the positive series. It is also important to use ontolo-
gies to normalize findings. Otherwise, one risk is to classify a
compound as negative for certain finding (eg, necrosis) for
which an identical finding was observed but described in more
detail (eg, necrosis zonal centrilobular).

Regarding the quantitative scorings, it must be noted that
these are expressed as dose and not as the organ specific in vivo
drug exposure. This simplification neglects TK effects like the
compound absorption, bioavailability, renal and hepatic clear-
ance as well as protein binding, to name only a few. The incor-
poration of these effects would be possible with diverse degrees
of accuracy, depending on the availability of TK parameters.

Figure 7. NOAEL vs pseudo-LOEL. Scatter plot representing the NOAEL reported

in the studies with our computed pseudo-LOEL values in logarithmic scale as

mol/kg/day. If the proposed simplifications are reasonable, most values must be

under the diagonal line. This happens for the vast majority of cases, with a few

exceptions showing deviations no larger than a logarithmic unit and a single

compound with slightly larger deviations.
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In our case, limiting the analysis to compounds for which TK
parameters were available (like maximum plasma concen-
tration, area under the curve, etc.) would have reduced the size
of the series to unacceptable levels.

The models presented here illustrate how the proposed
scores are amenable for modeling, even if the predictive quality
is limited and it is doubtful that, in its present form, they can be
used for predictive purposes. In order to obtain better models
diverse paths can be explored. First, we can try to overcome the
score limitations listed above, refining the way the data is
extracted and the criteria used to associate a compound with a
given endpoint. The criteria used to assign negative compounds
are particularly important, as well as the incorporation of TK
parameters for the quantitative scores. Another strategy is us-
ing these scores in more sophisticated modeling approaches,
representing better the complexity of the endpoints, most
representing a mixture of diverse toxicity mechanisms.

An example of this strategy was also published by our group
(Carbonell et al., 2017) where we applied a systems biology ap-
proach to model in vivo liver toxicity using an earlier version of
the scoring method described here. Finally, recent advances in
machine learning methods (Angermueller et al., 2016) and the
use of deep learning techniques (Mayr et al., 2016) suggest that
we can still improve the predictive quality of models obtained
using our proposed hazard scoring.

CONCLUSIONS

We have described a practical method that can be used to trans-
form the information present in databases from RDT reports
into hazard scorings for in vivo endpoints. The characteristics of
these scorings in terms of positive-negative balance and value
distributions make them challenging but suitable for building
predictive models, as was illustrated in the results section.

Figure 8. Best qualitative and quantitative models. Calculated values correspond to the values assigned by the model to the compounds in the training series. Internal

predictions were obtained using LOO cross validation. External predictions represent real predictions of 30% of the original series, not used for model building. A,

Representation of the confusion matrix, sensitivity and specificity for the best qualitative models obtained for the different endpoints. B, Scatterplot showing the best

quantitative model, according to the lowest SDEP for external prediction, for the PRO endpoint.
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The proposed procedure involves a mixture of standard
database handling techniques (filtering, aggregation, pivoting)
with other, more sophisticated, involving the use of ontologies
plus reasoning. In this study, all these operations were carried
out very simply, with the use of ad hoc developed software
tools, which are accessible as open source under GPL license.
They were specifically developed to be used with the eTOX
database but, given that we release the source code, they would
be easily adapted to other databases containing similar infor-
mation. Moreover, the characteristics of the source code make it
scalable for its application to very large databases.

Building relevant computational models requires series with
a good balance between positive and negative compounds. We
discussed the importance of avoiding the confusion between
absences of observation and negative results. We proposed a
practical method that was further illustrated in the modeling
application.

One of the key components of the proposed strategy is the
definition of finding profiles associated to toxicological end-
points. These associations were a highly valuable contribution
of expert toxicologists and allowed transforming collections of
observable findings into meaningful in vivo endpoints. Its use
has been illustrated for 3 selected in vivo endpoints. We also
have included additional profiles for other endpoints as supple-
mentary information material (Supplementary Table 3). The
way in which such assignments were used to infer the proper-
ties of the compounds was only a first approach and more so-
phisticated analyses are being carried out, oriented to improve
the accuracy of the assignments.

All in all, we consider that the methods described here rep-
resent a significant advance for the exploitation of highly valu-
able data using computational methods, but we do not claim
that they provide a complete solution to such a challenging
problem. More work is on its way to address the open problems
listed in the “Discussion” section.

SUPPLEMENTARY DATA

Supplementary data are available at Toxicological Sciences
online.
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