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Aging is a major driver for chronic kidney disease (CKD) and the counterbalancing of aging processes holds
promise to positively impact disease development and progression.
In this study we generated a signature of renal age-associated genes (RAAGs) based on six different data sources
including transcriptomics data as well as data extracted from scientific literature and dedicated databases.
Protein abundance in renal tissue of the 634 identified RAAGswas studied next to the analysis of affectedmolec-
ular pathways. RAAG expression profileswere furthermore analysed in a cohort of 63 CKDpatientswith available
follow-up data to determine association with CKD progression. 23 RAAGs were identified showing concordant
regulation in renal aging and CKD progression. This set was used as input to computationally screen for
compounds with the potential of reversing the RAAG/CKD signature on the transcriptional level. Among the
top-ranked drugswe identified atorvastatin, captopril, valsartan, and rosiglitazone,which arewidely used in clin-
ical practice for the treatment of patients with renal and cardiovascular diseases. Their positive impact on the
RAAG/CKD signature could be validated in an in-vitro model of renal aging.
In summary, we have (i) consolidated a set of RAAGs, (ii) determined a subset of RAAGs with concordant regu-
lation in CKD progression, and (iii) identified a set of compounds capable of reversing the proposed RAAG/CKD
signature.

© 2019 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural
Biotechnology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Global life expectancy increased over the last 35 years from 62 to
72 years, while in the same time period causes of death and the profile
of diseases significantly changed [1]. More individuals reach higher age
and develop chronic diseases. Among them, kidney diseases are still a
rising cause of disability adjusted life years and amid the thirty leading
causes of death. Age in this context is a heterogeneous term that
needs to be differentiated into chronological age defined as counting
time in days, months, and years from birth, and biological age as a func-
tional decline of cellular function leading to alterations of organs and
eventually thewhole organism [2]. Various triggers havebeen identified
that can cause or accelerate the process of aging. Scientific effort has
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been invested to understand these mechanisms and to findways to de-
celerate the aging process [3–5].

The process of renal aging leads tomass loss of renal cortex aswell as
to loss of function including vascular abnormalities, reduced renal
plasma flow and a decline in glomerular filtration rate (GFR) with a
mean loss of GFR of 0.75 mL/min/1.73 m2 per year. Histologically,
renal aging manifests in interstitial fibrosis, glomerulosclerosis, tubular
atrophy and thickening of the intima of arteries [6].

Several causative mechanisms involved in renal aging have been
catalogued by Halloran and Melk in 2001 for the first time [7]. Cellu-
lar senescence triggers many of these pathological changes and se-
nescence as well as aging promote and influence each other [8].
Twomajor pathways were defined, leading to growth arrest and cel-
lular senescence, in part interacting with each other. Shortening of
telomeres can be stopped by cell cycle arrest to protect the end of
chromosomes of erosion. Besides telomeres the cell cycle inhibitors
p16 (CDKN2A) and p21 (CDKN1A) have been found to play major
roles in cellular senescence. While CDKN1A induction is directly
related to telomere shortening via the p53 pathway, CDKN2A
has been shown to induce cellular senescence independently of
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telomere attrition [9]. Functional kidney decline results in an accu-
mulation of urea and other substances interfering withmany cellular
pathways including cellular senescence [10].

High-throughput Omics technologies coupled with bioinformat-
ics analyses have paved the way for systematic studies of molecular
mechanisms associated with age-related diseases. Blankenburg and
colleagues for example recently consolidated over thirty age-
related Omics datasets to construct a catalogue of common aging
mechanisms with a particular focus on mechanisms and molecular
features linking different age-related processes [11]. Data integra-
tion approaches also lead to the identification of novel age-related
genes. Jiang and colleagues used RNA sequencing to screen for
age-related genes being associated with IgA nephropathy to search
for novel therapeutic targets [12]. Researchers have also started
making use of available drug mechanism of action datasets as well
as 3D drug models to identify compounds with potential beneficial
effects on molecules and processes being deregulated in aging
[13,14].

In this work we generated a comprehensive set of renal age-
associated genes (RAAGs) via literaturemining andOmics data analysis.
This constructed set of RAAGswasmechanistically analysed on the level
of molecular pathways. RAAGs being significantly associated with CKD
progression on the transcriptional level served as input for in-silico
compound screening. Compounds with a positive impact on aging and
disease mechanisms by reversing RAAG expression changes were iden-
tified and are discussed in this work.
2. Material and Methods

2.1. Constructing the Renal Age-Associated Gene (RAAG) Set

We mined scientific literature for RAAGs using the following
PubMed query: “(aging OR ageing OR replicative senescence) AND
(renal OR kidney)” in February 2018. Human genes were extracted
from the resulting set of publications using NCBI's gene2pubmed map-
ping file [15]. Gene-publication associations of all genes with at least
two publications were manually curated to only include true positive
age-related genes for further analysis.

We furthermore downloaded genes associatedwith the Gene Ontol-
ogy (GO) term “aging” from theGOwebpage atwww.geneontology.org
[16] as well as from the GenAge database [17]. We used data from the
Human Protein Atlas on protein abundance and RNA expression in
renal tissue to limit the gene sets extracted from GO and GenAge to
those being expressed in kidney tissue [18]. We specifically focused on
proteins with medium or high abundance in either glomerular or tubu-
lar tissue. We in addition determined the median RNA expression
values for all three RNA datasets provided in the Human Protein Atlas
of these proteins with medium or high abundance in glomerulus or tu-
bules. Genes showing an RNA expression value above the calculated
median RNA expression were also considered as relevant and included
in the set of RAAGs. Another source for RAAGswas the Digital Aging Da-
tabase [19]. RAAGs linked to kidney aging were downloaded using the
respective search forms at the Digital Aging Database. The set of
RAAGs extracted from scientific literature or age-related databases
was complemented by including genes from transcriptomics studies.
The gene sets published by Rodwell and colleagues as well as by Melk
and colleagues were retrieved from the supplementary data files from
the two published articles [20,21].

The rentrez R package (https://cran.r-project.org/web/packages/
rentrez/index.html)was used to annotate transcripts in the supplemen-
tary table of Melk et al. via mapping the provided GenBank accession
numbers to the respective NCBI UniGene cluster IDs and subsequently
to the official Gene Symbols. The Ensembl Gene IDwas used as common
gene identifier and RAAGs were furthermore annotated with their offi-
cial Gene Symbols.
2.2. Determining Protein Abundance in Renal Tissue

Protein abundance levels in renal tissuewere retrieved from the kid-
ney expression summary section of the Human Protein Atlas for all
RAAGs [18]. Immunohistochemistry images have been manually anno-
tated by two independent researchers and protein abundance levels are
reported using one of the following four categories: “not detected”,
“low”, “medium”, or “high”. The protein abundance levels are based
on antibody staining intensity and fraction of stained cells. For kidney
tissue, there is one protein abundance level for tubules and one for glo-
meruli provided in the Human Protein Atlas.

2.3. Investigating Associations with CKD Progression

The expression of RAAGswas evaluated in a transcriptomics data set
consisting of 63 CKD patients [22]. Follow-up data were updated in Q2
2018 and patients were divided into a group with stable course of dis-
ease and a group with progressive course of disease. Progression was
defined as either reaching end-stage renal disease or experiencing dou-
bling of serum creatinine during the follow-up time with a minimum
follow-up time of six months. Patients in the stable group did not de-
velop ESRD nor doubling of serum creatinine. We further only kept pa-
tients with at least one year of follow-up in the stable group.

The institutional Review Board of the Medical University of Inns-
bruck has accredited the use of surplusmaterial from routine kidney bi-
opsies and anonymized patient data for research purposes.

Expression data are available in NCBI's Gene Expression Omnibus
with the accession number GSE60861 (https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=gse60861). The R limma package (https://
bioconductor.org/packages/release/bioc/html/limma.html) was used
for preprocessing and statistical analysis. Expression data were back-
ground corrected, quantile normalized, and probes with the same se-
quence were summarized. Differentially expressed RAAGs between
the group of stable and progressive patients were identified using the
Statistical Analysis of Microarrays (SAM) method setting the false dis-
covery rate (FDR) to b2.5% with a fold-change cutoff of N |1.25|.

2.4. Analysing the Functional Context of RAAGs

Enriched molecular pathways were determined based on the set of
RAAGs using the Database of Annotation, Visualization and Integrated
Discovery (DAVID) v6.8 tool [23]. The Kyoto Encyclopedia of Gene and
Genomes (KEGG) pathway set was used as underlying pathway re-
source. Enriched pathways with p-values b.05 after Bonferroni adjust-
ment for multiple testing were considered as relevant. Disease-specific
pathways such as “Type 2 diabetes mellitus” or “Pathways in cancer”
were excluded from further analyses.

2.5. Identifying Compounds Reversing CKD Associated RAAGs

The library of integrated network-based cellular signatures
(LINCS) L1000 data set was used to identify compounds reversing
the set of RAAGs showing significant association with CKD outcome
[24]. The LINCS L1000 data set holds over a million gene expression
profiles for around 20,000 compounds tested in different concen-
trations and cell lines to study drug mechanism of action on a mo-
lecular level. We restricted our input signature for the L1000
Characteristic Direction Signature Search Engine (http://amp.pharm.
mssm.edu/L1000CDS2/) to those RAAGs showing a concerted way
of expression in renal aging and renal disease, i.e. being either up-
or downregulated in both, renal aging and the group of progressive
CKD patients. The 50 top-ranked compounds based on the drug
score were further evaluated focusing in particular on the individ-
ual compound-gene combinations leading to high scores in the
compound-RAAG signature interaction. The drug score is calculated
based on the overlap of input RAAGs and the drug signature genes
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normalized to the effective input size defined as the number of
intersecting genes between the input gene set and the set of
L1000 genes.

2.6. Validating the Impact of Identified Compounds in Human Renal Proxi-
mal Tubular Cells

Proximal tubular human kidney cells (HK2) were purchased from
American Type Culture Collection (CRL-2190, Wesel, Germany) and cul-
tured in Keratinocyte-Serum Free Medium (KSFM) containing 10% fetal
bovine serum (FBS), 5 ng/ml recombinant epidermal growth factor
(rEGF), 0.05 mg/ml bovine pituitary extract (BPE), 100 U/ml penicillin
and 100 μg/ml streptomycin. Cell culture supplies were purchased
from ThermoFisher Scientific, Vienna, Austria. All cells were grown at
37 °C in a humidified atmosphere with 5% CO2. After growth to conflu-
ence, cells were pre-treated with 0.5 μM H2O2 for two hours to induce
oxidative stress. Subsequently cells were stimulated with atorvastatin,
captopril, rosiglitazone (10 μM each) or valsartan (1 μM). All chemicals
used for stimulation experiments were purchased from Sigma-Aldrich,
Vienna, Austria and solubilized in DMSO prior to use. Drug concentra-
tions were chosen based on prior studies [25–28]. After 24 h, RNA was
isolated with RNeasy Mini Kit (Qiagen, Valencia, CA, USA) according to
the manufacturer's protocol. RNA yield and quality were determined
using a DS-11 FX+ spectrophotometer (DeNovix,Wilmington, DE, USA).

For qPCR,mRNAwas reverse transcribed into cDNAwith theHighCa-
pacity cDNA reverse Transcription kit. Samples were analysed with the
following TaqMan® Gene Expression Assays: C3 (Hs00163811_m1),
GAPDH (Hs99999905_m1), EGF (Hs01099999_m1), CD52 (Hs0017434
9_m1), CFB (Hs00156060_m1), LTF (Hs00914334_m1), MMP7
(Hs01042796_m1), TNFRSF11B (Hs00900358_m1). All materials for
qPCR were purchased from ThermoFisher Scientific, Vienna, Austria.

Reactions were prepared in duplicate for each sample (technical
replicates) and analysed on the 7500 Fast Real-Time PCR System (Ap-
plied Biosystems) under the following conditions: 50 °C for 2 min, 95
°C for 10 min followed by 40 cycles of 95 °C for 15 s and 60 °C for
1 min. Three biological replicates per condition were performed. The
2-ddCt Method was used to calculate fold change values with respect to
untreated control cells usingGAPDHas housekeeper transcript [29]. Un-
paired t-test assuming equal group variances was used to compare fold
change values of H2O2 treated samples with H2O2 and drug-treated
samples.

3. Results

3.1. The Renal Age-Associated Gene (RAAG) Set

Six different data sources were used to generate the RAAG signature
consisting of 634 unique genes (Fig. 1 and Table 1).

Information from three sources, namely PubMed, GO and GenAge
DB, was mainly based on literature information whereas information
from the other three sources, namely the Digital Aging DB, TX-
Rodwell, and TX-Melk, was based on high-throughput transcriptomics
experiments. The largest contributions to the set of RAAGs were from
theGenAge DB (229) and from theGOdataset (196), even after filtering
for genes being expressed in kidney tissue based on information ob-
tained from the Human Protein Atlas, as these sources are not restricted
to and therefore not specific for renal aging per se. The overlap between
these two literature-based sources was significant (p-value b.0001, chi-
square test) with 49 genes being reported in both data sets. 49 RAAGs
were extracted from resulting publications using the PubMed query
“(aging OR ageing OR replicative senescence) AND (renal OR kidney)”
after manual curation of human gene-to-pubmed entries. The tran-
scriptomics datasets TX-Melk, TX-Rodwell, as well as the Digital Aging
DB contributed 155, 95, and 32 RAAGs respectively.

Matrixmetallopeptidase 7 (MMP7) showed up in five of the six data
sets with its expression going up with increasing age. Next in the list
was epidermal growth factor (EGF), which was found in four data
sets, with its expression going down with increasing age. A number of
genes was found in three data sets, among them the cyclin dependent
kinase inhibitors 1A and 2A (CDKN1A and CDKN2A), klotho (KL), the
mechanistic target of rapamycin kinase (MTOR), fibronectin 1 (FN1),
or apolipoprotein E (APOE). The full list of RAAGs is available in Supple-
mentary Table S1 along with information on the individual sources.

3.2. Renal Specific Protein Abundance

We evaluated RAAG expression in renal tissue using information
from the Human Protein Atlas on protein abundance levels in glomeru-
lar and tubular compartments. Information was available for 582 of the
634 RAAGs. 485 RAAGs showed at least low levels of protein abundance
in tubules, while at least low protein abundance in the glomerular com-
partment was observed in 323 RAAGs. Average protein abundance was
higher in tubules as compared with glomeruli with around 250 RAAGs
beingnot at all expressed in glomeruli. Fig. 2 displays protein expression
of RAAGs in tubular and glomerular compartment based on data from
the Human Protein Atlas.

3.3. Association with CKD Progression

We evaluated RAAG expression in renal tissue in a set of 63 CKD pa-
tients with available clinical follow-up data. Mean follow-up time of the
whole cohort was 7.01 years and key clinical parameters are listed in
Table 2. The percentage of male patients was higher in the progressive
group (p-value= .0142, chi-square test) and patientswere significantly
older (p-value = .00057, t-test) as compared with the patients in the
stable group. No significant difference between treatmentwas observed
(p-value = .3338, chi-square test).

31 RAAGs were identified as differentially expressed in the group of
24 progressive CKD Patients as Compared with the Group of 39 CKD Pa-
tients Showing a Stable Disease course (Table 3). Patient Core Clinical
Parameters and Information on Assignment to the Progressive and Sta-
ble Group Can Be Found in Supplementary Table S2

The gene set being significantly deregulated in progressive CKDwas
enriched in RAAGs from the TX-RODWELL (p-value b.00001) and the
Digital Aging DB (p-value = .0004) datasets, both transcriptomics-
based datasets. In contrast a significantly lower number of RAAGs than
expected was present from the GenAge DB (p-value = .0456) based
on a chi-square test.

25 of the 31 differentially expressed RAAGs were upregulated
and six RAAGs were downregulated in the group of progressive pa-
tients as compared with the group of stable CKD patients. 19 of the
25 upregulated RAAGs showed a concordant pattern of expression
with aging, i.e. being significantly upregulated in progressive CKD
patients and being also reported as significantly upregulated with
increasing age. Four of the six downregulated RAAGs on the other
hand showed a concordant pattern in the opposite direction, i.e.
being downregulated in progressive CKD patients and being re-
ported to show decreased expression with increasing age. The
RAAGs with concordant expression patterns in CKD and aging are
highlighted in Fig. 3 with colored labels.

EGF was downregulated 2.06-fold in progressive CKD patients. C3
and lactotransferrin (LTF) on the other hand showed the largest
upregulations in progressive CKD patients as compared with CKD pa-
tients showing a stable disease course with fold-change values of 2.69
and 2.61, respectively.

3.4. Enriched Molecular Pathways and Functional Context

33 enriched molecular KEGG pathways were identified using the
signature of 634 RAAGs as input for the DAVID tool with a Bonferroni
corrected p-value of b0.05. Among them, we identified well-known
age-related signaling cascades such as cell cycle, mTOR signaling,



B

A

Fig. 1.Generation of the renal age-associated gene (RAAG) set. Numbers of RAAGs extracted from the six different sources contributing to thefinal set of 634 unique RAAGs are provided in
Fig. 1A. Transcriptomics-based data sets are highlighted in red with literature-based data sets shown in green. The overlap of individual RAAGs between the six different data sources is
displayed in Fig. 1B.
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P53 signaling, insulin signaling, or focal adhesion. A representation
of enriched molecular pathways is displayed in Fig. 4. Next to the
enriched pathways, those genes showing concordant expression in
CKD and renal aging that could be assigned to at least one of the
enriched molecular pathways, are displayed.
Table 1
Listing of renal age-associated datasets.

Dataset
acronym

Dataset description

PubMed Human genes were extracted from the gene2pubmed mapping file for pu
senescence) AND (renal OR kidney)

GO Genes associated with the GO term “aging” were retrieved and filtered fo
from the Human Protein Atlas.

GenAge DB Human genes were extracted from the GenAge DB and filtered for those b
Human Protein Atlas.

Digital Ageing
DB

Human genes associated with renal aging were retrieved from the Digital

TX-RODWELL Genes associated with renal aging in the published transcriptomics datase
the publication.

TX-MELK Genes associated with renal aging in the published transcriptomics datase
publication.

Overview and brief description of datasets used for generating the RAAG signature in the pres
EGF is linked to the largest number of the 33 significantly enriched
molecular pathways based on the signature of 634 RAAGs. Next to the
ErbB signaling pathway itself, also PI3K-Akt signaling and Jak-STAT sig-
naling play a crucial role, which has also been shown for focal adhesion,
prominently represented by MMP7, FOXO, or RAS.
#
Genes

Ref

blications found with the query: (aging OR ageing OR replicative 49 [15]

r those being expressed in either tubules or glomeruli based on data 196 [16]

eing expressed in either tubules or glomeruli based on data from the 229 [17]

Ageing DB. 32 [19]

t by Rodwell et al. were extracted from the supplementary datasets of 95 [20]

t by Melk et al. were extracted from the supplementary datasets of the 155 [21]

ent study.



Fig. 2. Renal age-associated gene (RAAG) protein abundance in renal tissue. Overview of
protein abundance in renal tubules and glomeruli for the 634 RAAGs based on data from
the Human Protein Atlas. The number of RAAGs in each of the different categories is
indicated by segment sizes of the outer ring. Color-coding of the outer ring indicates
high protein abundance (red), medium protein abundance (orange), or low protein
abundance (yellow) in tubular and glomerular tissue respectively. The fraction of RAAGs
being not detectable (ND) on the protein level are given in light grey. No
immunohistochemistry information was available for 52 RAAGs in the Human Protein
Atlas (GLOM_NA and TUB_NA), displayed in dark grey. Connecting line segments are
color coded based on tubular protein abundance levels.

Table 2
Patient characteristics of the CKD cohort.

Cohort
(N = 63)

Progressive
(N = 24)

Stable
(N = 39)

p-value

Age [years]
Min 17.06 20.00 17.06
Max 74.00 74.00 73.85
Mean (sd) 47.22 ±

17.49
56.19 ±
13.90

41.70 ±
17.32

0.00057

Creatinine [mg/dL]
Min 0.44 0.44 0.49
Max 6.21 6.21 4.18
Mean (sd) 1.55 ± 0.95 1.96 ± 1.13 1.31 ± 0.73 0.01624

eGFR [ml/min/1.73 m2]
Min 9.46 9.46 16.24
Max 153.68 153.68 150.58
Mean (sd) 63.28 ±

35.20
49.54 ±
32.74

71.73 ±
34.36

0.01335

UPCR [g/g]
Min 0.22 0.72 0.22
Max 12.77 11.23 12.77
Mean (sd) 4.36 ± 3.37 4.22 ± 2.80 4.45 ± 3.71 0.78860

Follow-up time [years]
Min 0.52 0.52 1.22
Max 17.08 11.34 17.08
Mean (sd) 7.01 ± 4.30 4.7 ± 3.24 8.44 ± 4.28 0.00024

Gender
Female 27 (43%) 5 (21%) 22 (56%)
Male 36 (57%) 19 (79%) 17 (44%) 0.01418

Medication at baseline [n
(%)]
RAAS blockade 29 (46) 13 (54) 16 (41)
Antidiabetics 5 (8) 3 (13) 2 (5)
Statins 13 (21) 6 (25) 7 (18)
Steroids 12 (19) 3 (13) 9 (23)
NSAIDs 2 (3) 0 (0) 2 (5)
NA 10 (16) 6 (25) 4 (10) 0.33380

Histological diagnoses [n
(%)]
DN 5 (8) 5 (21) 0 (0)
FSGS 7 (11) 3 (13) 4 (10)
GN 1 (2) 1 (4) 0 (0)
HTN 7 (11) 4 (17) 3 (8)
IGAN 4 (6) 3 (13) 1 (3)
LN 11 (17) 1 (4) 10 (26)
MCD 10 (16) 0 (0) 10 (26)
MN 10 (16) 4 (17) 6 (15)
MPGN 2 (3) 2 (8) 0 (0)
VASC 5 (8) 1 (4) 4 (10)
Other 1 (2) 0 (0) 1 (3) 0.56460

Clinical parameters are given for the CKD cohort [n= 63] as well as for the subsets of pa-
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A number of other RAAGs found to be significantly associated with
CKD progression could be assigned to the broader context of cell adhe-
sion and extracellular matrix remodeling including VCAN, MMP7,
ITGB2, CLDN1, TSPAN1, TPBG, or CGNL1 based on information from
GO terms and scientific literature. RAAGs involved in immune response
and inflammation furthermore included complement C3 (C3), IL7R,
CD52, UBD, CLU, ANXA1, and CXCL6.
tientswith a stable [n=39] and progressive [n=24] course of disease. eGFR=estimated
glomerular filtration rate; UPCR= urine protein to creatinine ratio; RAAS = renin angio-
tensin aldosterone system; NSAIDs = non-steroidal anti-inflammatory drugs; DN= dia-
betic nephropathy; FSGS = focal segmental glomerulosclerosis; GN =
glomerulonephritis; HTN = hypertensive nephropathy; IGAN= IgA glomerulonephritis;
LN= lupus nephritis;MCD=minimal change disease;MN=membranousnephropathy;
MPGN= membranoproliferative glomerulonephritis; VASC = vasculitis.
3.5. Compounds Reversing the RAAG/CKD Profile

The set of 23 RAAGs showing concordant expression patterns in CKD
and renal aging was used as input for in-silico drug screening using the
L1000 Characteristic Direction Signature Search Engine. The 50 top-
ranked compounds reversing the input RAAG signature were evaluated
in detail with respect to the impact on individual RAAG expression
levels. The heatmap in Fig. 5 displays those 18RAAGs as columnheaders
being affected by at least one of the top-ranked compounds. The com-
pounds are sorted based on the resulting drug score from the L1000
Search from top to bottom.

Among the set of identified compounds were four drugs being al-
ready used in the clinical setting in the context of diabetes and kid-
ney disease, namely atorvastatin, valsartan, rosiglitazone, and
captopril. Next to these four compounds there was a set of com-
pounds from the class of histone deacetylase (HDAC) inhibitors in
the list such as vorinostat, trichostatin A, apicidin, or I-BET151. The
majority of the remaining identified compounds were investiga-
tional drugs. A detailed list of the top-ranked compounds with infor-
mation on the underlying cell-line, dose, and time is available in
Supplementary Table S3.
3.6. Impact of Identified Compounds on CKD Associated RAAGs in Human
Renal Proximal Tubular Cells

To validate the findings from our in-silico prediction workflow, we
tested the impact of four compounds (atorvastatin, valsartan,
rosiglitazone, and captopril) on gene expression levels in human renal
proximal tubular cells of selected RAAGs that were also associated
with CKDprogression.We selected RAAGs forwhich either literature in-
formation was available on the impact for at least one of the four drugs
or that should be affected by at least three of the four drugs based on the
in-silico predictions. The selected genes were EGF, TNF receptor super-
family member 11b (TNFRSF11B), MMP7, complement factor B (CFB),
CD52, LTF, and C3. No valid relative concentrations could be determined
for CD52 via qPCR and CD52 was therefore excluded from further
analyses.



Table 3
RAAGs associated with CKD progression.

Symbol Gene name Aging evidence Protein
abundance
in glomeruli

Protein
abundance in
tubules

Fold-change
CKD

p-Value FDR
(%)

C3 Complement C3 TX-RODWELL Not detected Not detected 2.69 2.41E-05 b 1%
LTF Lactotransferrin Digital Aging DB; TX-RODWELL Not detected Not detected 2.61 3.47E-05 b 1%
IL7R Interleukin 7 receptor GenAge DB Not detected Medium 2.22 3.09E-04 b 1%
NNMT Nicotinamide N-Methyltransferase Digital Aging DB; TX-RODWELL Not detected High 2.19 2.39E-04 b 1%
CD52 CD52 Molecule TX-MELK NA NA 2.10 3.48E-04 b 1%
UBD Ubiquitin D TX-RODWELL NA NA 1.82 1.43E-03 b 1%
APBB1IP Amyloid beta precursor Protein binding family B

Member 1 interacting protein
Digital Aging DB Not detected Not detected 1.73 1.79E-05 b 1%

CFB Complement factor B TX-RODWELL Not detected Not detected 1.73 5.96E-03 b 1%
MMP7 Matrix metallopeptidase 7 PubMed; GO; Digital Aging DB;

TX-RODWELL; TX-MELK
Not detected Low 1.63 2.22E-03 b 1%

VCAN Versican TX-MELK Low Low 1.57 2.91E-04 b 1%
CLDN1 Claudin 1 GO Not detected Medium 1.57 3.77E-05 b 1%
ITGB2 Integrin subunit beta 2 GO Not detected Not detected 1.57 1.37E-02 b 3%
MICALL2 MICAL-like 2 TX-RODWELL Not detected Low 1.56 3.37E-05 b 1%
INPP5D Inositol polyphosphate-5-phosphatase D GO Not detected High 1.54 1.06E-04 b 1%
CLU Clusterin GenAge DB Not detected Not detected 1.49 8.61E-03 b 2%
ITPR3 Inositol 1,4,5-trisphosphate receptor type 3 TX-RODWELL Not detected Low 1.46 6.41E-06 b 1%
TMPRSS4 Transmembrane serine protease 4 TX-RODWELL Low Low 1.41 5.11E-04 b 1%
WFDC2 WAP four-disulfide core domain 2 TX-RODWELL Not detected Low 1.40 1.23E-02 b 2%
CDH6 Cadherin 6 TX-RODWELL Low High 1.40 5.76E-03 b 1%
TSPAN1 Tetraspanin 1 TX-RODWELL Not detected High 1.38 1.18E-02 b 2%
ANXA1 Annexin A1 TX-RODWELL Medium Not detected 1.36 4.01E-03 b 1%
GLS Glutaminase TX-MELK Not detected High 1.32 1.78E-03 b 1%
TNFRSF11B TNF receptor superfamily member 11b TX-RODWELL Not detected High 1.32 1.57E-03 b 1%
CXCL6 C-X-C motif chemokine ligand 6 TX-RODWELL NA NA 1.28 1.01E-03 b 1%
TPBG Trophoblast glycoprotein TX-RODWELL Medium High 1.27 6.49E-05 b 1%
NOS3 Nitric oxide synthase 3 PubMed Low Not detected −1.27 3.32E-04 b 1%
CGNL1 CINGULIN like 1 TX-MELK Medium High −1.27 1.30E-03 b 2%
STARD8 StAR related lipid transfer domain containing 8 Digital Aging DB Low High −1.34 2.54E-04 b 1%
CDKN2A CYCLIN dependent kinase inhibitor 2A PubMed; GO; GenAge DB Medium Medium −1.38 4.08E-04 b 1%
LPL Lipoprotein lipase Digital Aging DB; TX-RODWELL NA NA −1.79 1.34E-03 b 1%
EGF Epidermal growth factor GenAge DB; Digital Aging DB;

TX-RODWELL; TX-MELK
NA NA −2.06 2.11E-04 b 1%

Listing of RAAGs being significantly associatedwith CKD progression based on the comparison of 24 progressive and 39 stable CKD patients. Next to the Gene Symbol and the gene name,
we provide information on the aging data sets aswell as protein abundance levels in tubules and glomeruli. In addition fold-change values in progressive CKD alongwith p-values and FDR
(%) are provided. RAAGs are sorted based on fold-change values in descending order.
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Expression of C3 and TNFRSF11Bwas upregulated 1.37 and 1.38-fold
by H2O2 stimulus as compared with untreated HK2 controls.
Rosiglitazone and captopril had the strongest impact on gene expres-
sion levels significantly counterbalancing expression levels of five and
four of the selected genes, respectively (Fig. 6). Valsartan and atorva-
statin both significantly reduced expression of two RAAGs. In particular
the two RAAGs linked to the complement and coagulation cascade C3
and CFB were affected by the selected compounds, with CFB being sig-
nificantly downregulated by all four compounds and C3 being signifi-
cantly downregulated by three of the four tested compounds.

4. Discussion

In this study, we established and applied an in-silico analysis ap-
proach to identify compounds reversing a set of RAAGs also being signif-
icantly associated with CKD progression. We (i) consolidated a set of
634 RAAGs based on six different data sets, (ii) determined protein
abundance in renal compartments, (iii) analysed enriched molecular
pathways based on the RAAG signature, (iv) generated a set of RAAGs
being also significantly associated with CKD progression in an indepen-
dent transcriptomics dataset, (v) identified a set of compoundswith the
potential of reversing the expression signature of renal age-associated
CKD prognosis genes, and (vi) validated the impact of selected drugs
on RAAG expression in a cell culture model system of renal aging.

A number of studies on renal aging is available in scientific literature,
but to the best of our knowledge no data drivenmeta-analysis has been
conducted so far. With three literature-based data sets and three gene
expression data sets, we generated a unique set of 634 genes being
associated with renal aging. Interestingly the overlap between genes
from the six different data sets was sparse with the largest overlap
found between the two literature-based data sets from GO and the
GenAgeDB. Over one third of RAAGs from theDigital AgingDBhowever
were also part of one of the two transcriptomics datasets TX-RODWELL
or TX-MELK. The remaining datasets seemed to provide complementary
findings.

Among the set of 33 identified enriched molecular pathways based
on the signature of 634 RAAGs are key age-related mechanisms such
as themTOR pathway, the p53 signaling cascade, or cell cycle regulation
but alsomechanisms like focal adhesion or insulin resistance.mTOR sig-
naling modulates aging and age-related diseases [30] while insulin re-
sistance amplifies chronic inflammation leading to accelerated aging
[31]. Unresolved inflammatory processes in renal transplants trigger de-
layed graft function involving aging pathways suggesting a dominant
role of inflammation in the process of renal aging [32]. Cell cycle regula-
tion has been discussed widely as major factor in the process of cellular
aging also in the field of nephrology [33,34], whereas the p53 family is
involved in DNA repair interacting with cellular aging [35].

The hunt for compounds with a positive impact on molecular pro-
cesses of aging is an intriguing area of research. A couple of substances
have already been identified such as compounds reducing the effect of
reactive oxygen species or compounds targeting the mTOR complex
with different hypotheses to expand life span including specific transla-
tion of mRNAs, improving stem cell maintenance or anti-inflammatory
mechanisms [30,36,37]. Using the set of 23 RAAGs showing concordant
regulation in aging and CKD progressionwe identified compounds with
the potential to reverse the RAAG/CKDexpression signature. Drugs used



Fig. 3. Renal age-associated gene (RAAGs) associated with CKD progression. Barplot of RAAG fold changes when comparing expression data from progressive CKD patients with CKD
patients showing a stable course of disease. Upregulated and downregulated genes in progressive CKD patients are indicated by red and green bars respectively. Genes showing
concordant regulation of expression in CKD and renal aging are indicated by colored labels. Grey labels are used for genes showing discordant regulation of expression in CKD and
renal aging.
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to treat diabetes, hypertension, or hypercholesteremia (rosiglitazone,
captopril, valsartan, and atorvastatin) showed up in this list, all directly
affecting renal function [38,39].

We investigated the impact of these four drugs on RAAG expression
levels in a cell culturemodel system of aging, namely treatment of renal
proximal tubular HK2 cells with H2O2 [40]. All four investigated drugs
showed significant beneficial impact on RAAG gene expression with
the antidiabetic drug rosiglitazone having the strongest impact
targeting five of the six selected genes. There is also evidence for the im-
pact of rosiglitazone on LTF, MMP7, and TNFRSF11B supporting our
findings [41], [42]. The two complement and coagulation factors C3
and CFB were affected by all compounds in our in-vitro model system.
Activation of the alternative pathway of the complement system has
been discussed as a link between obesity and metabolic disorders.
Rosiglitazone leads to a significant reduction of CFB, which is positively
correlated to a number of obesity associated parameters [43]. Statins
also showed beneficial impact on the level of components of the com-
plement and coagulation cascade in a cohort of patients with systemic
sclerosis [44].

Next to these in-vitro tested compounds, epigenetic regulators such
as the HDAC inhibitors vorinostat, trichostatin A, or apicidin along with
the bromodomain and extra-terminal motif (BET) inhibitor I-BET151
scored high in our in-silico ranking. Histone deacetylases are
enzymes regulating the modification of chromatin arrangement, tran-
scriptional activity, and are involved in enabling epigenetic integrity.
Renoprotective effects of HDAC inhibitors have been described in com-
binationwith inhibitors of the RAAS [45]. This group of compounds was
also found to have a positive impact in the context of aging in the
human brain [14]. Epigenetic regulation as therapeutic option in kidney
disease however seems to be a two-edged swordwhere the therapeutic
benefit has to beweighed against the nephrotoxic potential as reviewed
recently [46].

We compared our results to a list of potential anti-aging compounds,
whichwas consolidatedbyDönertaş and colleagues basedon the results
of twelve different studies [47]. The twoHDAC inhibitors vorinostat and
trichostatin A were part of the consolidated list being among the few
compounds with at least three supporting studies. The ACE inhibitors
captopril and enalapril were also listed next to pravastatin, a member
of the drug class of statins like atorvastatin, which was identified in
our study. The relevance to human aging and disease however needs
to be established, as the evidence for the link to aging for the ACE inhib-
itors as well as pravastatin was based on studies in rotifers [48].



Fig. 4. Pathwaymap based on renal age-associated gene (RAAGs). Enriched molecular pathways based on the set of 634 RAAGs are displayed. Pathway color-coding indicates number of
assigned RAAGs. Inter-pathway links indicate pathways sharing a common set of genes. RAAGs showing concordant regulation in CKD progression that could be assigned to at least one of
the enriched pathways are displayed in addition with the color-coding indicating fold-changes in the CKD transcriptomics dataset.
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Those RAAGs being associated with CKD progression and being
affected by one of the compounds in clinical use for diabetes and/
or kidney disease might help in this task and might all be consid-
ered as potential predictive marker candidates for the respective
drugs. CKD patients with elevated levels of certain RAAGs might
for example have a larger benefit from therapeutic intervention
than patients with normal RAAG expression levels. Assessment of
these proteins as predictive markers was however beyond the
scope of the present work but will be the focus of future follow-
up studies.

Findings of the present study are also of relevance to all future
nephrological biomarker studies. As soon as one of the RAAGs is inves-
tigated as biomarker candidate in the context of kidney disease, adjust-
ment for age is probably even more important in order to draw correct
conclusions from the respective biomarker study. It might turn out, that
the value of the biomarker is merely due to its association with chrono-
logical age, which still is the strongest single predictor of overall mortal-
ity [49].

This exploratory study has its limitations. Despite the fact that we
applied quite stringent criteria on the underlying age-related data sets
there is a chance that a certain amount of genes in the RAAG set is of
minor relevance to renal aging and has therefore to be considered as
false positives. In particular the initial gene sets extracted from GO
and the GenAgeDB needed another curation step, as neither of the
two sources specifically focused on renal aging alone. To reduce the
number of false positives we therefore applied a filter using data from
the Human Protein Atlas on gene and protein abundance values in
renal tissue. After the pathway enrichment analysis, we however felt
very positive about the generated set of RAAGs, as a number of aging
and kidney disease related molecular pathways showed up on top of
the list.

5. Conclusions

In summary, we consolidated a set of RAAGs based on six in-
dependent data sources. RAAGs being significantly associated
with CKD progression in an independent transcriptomics dataset
were used to screen for compounds reversing the RAAG/CKD sig-
nature. Atorvastatin, valsartan, rosiglitazone, and captopril – all
drugs being widely used in clinical routine to treat hypertension



Fig. 5.Heatmap of compound–renal age-associated gene (RAAG) interactions. The impact of the 50 top-ranked compounds on RAAG expression is indicated in this heatmap. Compounds
in part reversing the RAAG/CKD signature are ranked from top to bottom on the right hand side. Affected RAAGs are ranked from left to right in the top panel. Red squares in the heatmap
indicate genes being upregulated by a specific drug, whereas green squares indicate genes being downregulated by a particular drug. Compounds in use in the context of diabetes and
kidney disease are highlighted in green. Compounds targeting epigenetic mechanisms and in particular histone deacetylase inhibitors are highlighted in yellow. Compounds showing
up multiple times in the list have been found to be of relevance in different cell lines and/or different concentrations. Details on experimental conditions in the drug profiling
experiments are provided in Supplementary Table S3.
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and diabetes, two conditions causing up to 50% of all cases of
end-stage renal disease – were among the top-ranked com-
pounds. In particular rosiglitazone and captopril had a significant
beneficial impact on RAAG expression levels in human renal
proximal tubular cells. In addition, compounds targeting
epigenetic regulatory mechanisms were identified impacting
renal age-related mechanisms.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.csbj.2019.06.019.

https://doi.org/10.1016/j.csbj.2019.06.019
https://doi.org/10.1016/j.csbj.2019.06.019


Fig. 6.Drug impact on renal age-associated gene (RAAG) expression inHK2 cells. The impact of atorvastatin, valsartan, rosiglitazone, and captopril on RAAG gene expression inHK2 cells is
displayed. Data represent expression fold changes as comparedwith untreated HK2 controls after normalization to expression levels of the housekeeping gene GAPDH. T-test was used to
assess significance between H2O2 stimulated cells and those treated with the respective drugs on top of H2O2 stimulation. p-value coding: * b 0.05; ** b 0.01; *** b 0.001; **** b 0.0001.
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