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The combination of short days and long cold winter nights, in temperate
regions, presents a major challenge for small diurnal birds. Small birds reg-
ularly employ heterothermy and enter rest-phase hypothermia during
winter nights to conserve energy. However, we know little about how
environmental conditions, such as food availability, shape these strategies.
We experimentally manipulated food availability in winter to free-living
great tits Parus major. A ‘predictable’ and constant food supply was provided
to birds in one area of a forest, while birds in another area did not have
access to a reliable supplementary food source. We found that predictability
of food affected the extent of nocturnal hypothermia, but the response dif-
fered between the sexes. Whereas male nocturnal body temperature was
similar regardless of food availability, females exposed to a naturally ‘unpre-
dictable” food supply entered deeper hypothermia at night, compared with
females that had access to predictable food and compared with males in both
treatment groups. We suggest that this response is likely a consequence of
dominance, and subdominant females subject to unpredictable food
resources cannot maintain sufficient energy intake, resulting in a higher
demand for energy conservation at night.

Energy is the currency of life, and animals must obtain sufficient resources to meet
their metabolic demands. Challenging environmental conditions, such as those
experienced during winter in cold temperate regions, may place constraints on
an organism’s ability to acquire sufficient energy resources for survival [1].
Winter in cold regions is especially challenging for small, diurnal birds. Small
birds demand high energy intake to fuel a high metabolic rate, in part resulting
from a high rate of heat loss owing to a large surface-area-to-volume-ratio
[2-4]. This becomes especially critical during the nocturnal roosting period,
when individuals require sufficient energy resources to survive the long winter
night, but a combination of low food availability, low ambient temperatures
(T,), inclement weather and short days can impose energetic constraints.

Small passerine birds can reduce their body temperature (T},) and enter rest-
phase hypothermia to conserve energy reserves while roosting at mid to high
latitudes [5,6]. By reducing the temperature gradient between the body and
external air, hypothermia can significantly reduce heat loss and energy expen-
diture. The use of nocturnal hypothermia by small diurnal birds could reduce
metabolic demands by as much as 50% [7] and increase winter survival by up
to 58% [8]. However, birds do not consistently use a heterothermic strategy,
suggesting that a regulated reduction in Ty, carries costs, such as increased pre-
dation risk [9,10], altered sleep patterns [11] and reduced efficiency of cellular
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processes and immune function [12]. It is therefore important
to understand both the determinants and costs of nocturnal
hypothermia in birds.

The extent of hypothermia is strongly associated with T,,
hormone levels and breeding cycle [5,6]. Studies in captivity
suggest that the ability to obtain sufficient energy reserves is
critical in the control of the extent of nocturnal hypothermia.
Green pigeons (Treron calvus) exposed to restricted food in avi-
aries reduced nocturnal Ty, to a greater extent than those fed
ad libitum [13], and fasting induced deeper nocturnal hypother-
mia in domestic pigeons (Columba livia domestica) [14]. Similarly,
when exposed to food ad libitum in outside aviaries, wintering
blue tits (Cyanistes caeruleus) did not enter nocturnal hypother-
mia, which contrasted with those in the wild that did reduce
Ty, at night [15]. While food availability has been shown to
influence thermoregulatory strategies of birds, our limited
knowledge comes from captive studies and, to the best of our
knowledge, no study has experimentally tested the effect of
food supply on nocturnal T, regulation in the wild (but see
[16]). In the present study, we manipulated predictability of
food supply in the wild throughout winter and quantified the
effects on nocturnal hypothermia in free-living great tits Parus
major. We predicted that great tits with access to a predictable
food supply would maintain a higher Ty, at night, compared
with birds with a naturally unpredictable food supply, owing
to expected variation in the ability to acquire energy resources.

2. Material and methods

The study was carried out in a continuous tract of mixed conifer-
ous/deciduous forest in southern Sweden (55°39'07.7"N,
13°34'14.0"E). Great tits use nest-boxes for nocturnal roosting in
winter, facilitating capture of birds during winter nights. Eleven
feeding stations, spaced 200-380 m apart, were regularly main-
tained, throughout October 2016-March 2017, to provide a
predictable and constant supply of food (approx. 50:50 sunflower
seeds:peanuts) to birds. From here on, we refer to this as the ‘pre-
dictable’ treatment area. The average distance between a nest-box
and a feeder in the predictable area was 0.12 +0.07 km (mean +
s.d.). Another area within the same forest received no food sup-
plementation, and thus birds wintering in this area were reliant
on natural food resources, which are typically unpredictable in
winter and certainly less predictable than permanent feeding
stations. From here-on, we refer to this as the ‘unpredictable’ treat-
ment area. Nest-boxes in the unpredictable area were situated
within 1.37 + 0.27 km (mean + s.d.) from a feeder in the predictable
area. This distance is considerably larger than the typical winter
home range of a great tit (0.05 km? [17]). Neither abiotic nor biotic
factors are likely to vary markedly between the areas. There were
no significant differences in T, between the predictable (mean +
s.e.: 1.09+0.06°C) and unpredictable (mean +s.e.: 1.05+0.06°C)
areas during the study period (p =0.31; measured with iButtons
(DS 1922 L, Maxim integrated, USA) attached to nest-boxes).
Between 1 January and 12 February 2017, 82 (predictable =
44; unpredictable = 38) great tits were captured while roosting
in nest-boxes at night. A temperature-sensitive passive integrated
transponder (BioTherm13, Biomark, USA) was implanted subcu-
taneously in the neck. Sex and biometrics (body mass and wing
length) were recorded, and all birds were marked with a
uniquely numbered metal ring. Birds were aged as either juven-
ile (in their first winter, 1) or adult (in their second winter or
older, 2+). Following the procedure, birds were returned to the
nest-box, and the entire handling time was less than 10 min.
Between 13 February and 13 March, 152 ‘snapshot’ measure-
ments of T, (i.e. a single measurement per individual per
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Figure 1. Nocturnal T, of wild female and male great tits exposed to a pre-
dictable and unpredictable supply of food in winter. Fitted means =+ s.e. from
a minimum adequate linear mixed model controlling for age, time, T, and
individual identity. Numbers indicate sample sizes.

night) were collected from 57 tagged individuals (predictable =
26; unpredictable = 31), while roosting at night, using a portable
radio frequency identification reader (Biomark HDR Plus with
racket antenna). By briefly holding the antenna close to the
base of a nest-box, identity and current Ty, of a roosting bird
were instantaneously recorded, without disturbance. Measure-
ments were collected between 18:00 and 23:20. No birds were
‘recaptured’ outside the treatment area in which they were
originally captured and marked.

(a) Statistical analyses

For each measurement of Ty, we derived numerous variables relat-
ing to T,: mean, minimum and maximum relating to (i) present
night, (i) present day, (iii) previous 24 h, (iv) previous night, (v)
previous day, (vi) previous 72 h and (vii) previous 168 h. Day
and night periods were classified as 0700-1700 and 1700-0700,
respectively, and 24 h periods as 0700 to 0700. Linear mixed
models with normal error structures were fitted to data on Ty,
using ImerTest in R 3.2.4 [18]. A saturated model included the
two-level factors of treatment (predictable/unpredictable),
sex (female/male) and age (1/2+), the covariates of body mass,
wing length, date and time, and the interaction between treatment
and sex. A random effect of individual identity was included. We
first independently tested each of the variables relating to T, to
identify the variable that explained most variation in Ty,. Model
selection then proceeded using the full model above plus mini-
mum T, from the previous 72 h; terms were eliminated if p > 0.1
when comparing a reduced model (dropping one term at a time)
to the original model in a likelihood ratio test. Significance levels
were estimated using conditional F-tests based on Satterthwaite
approximation for the denominator degrees of freedom. Post-hoc
tests were carried out using difflsmeans().

3. Results

A significant interaction between treatment and sex
revealed that Ty, responses to the level of food predictability
differed between males and females (figure 1; treatment:
seX: PBunpredictable:mate = 0.957 +£0.319, Fi45,=8.97, p=0.004).
Post-hoc tests confirmed that males showed a similar nocturnal
Ty, when exposed to either a predictable or unpredictable
food supply (p = 0.9); by contrast, females exposed to an unpre-
dictable food supply exhibited a lower T}, compared with
females exposed to a predictable food supply (p <0.001) and
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compared with males in both treatment groups (p=0.009).
Adult birds displayed lower Ty, than juvenile birds (B,gui =
—0.361 £0.162, F;455=4.93, p=0.03). There was a tendency
for Ty, to be lower later in the evening (8=-0.114 +0.0614,
F1,1207 =342, p=0.07) and when mean T, during the previous
72h was lower (8=0.0361+0.0193, F;1346=348, p=0.06).
There was no significant effect of date, body mass or wing
length (all p>0.6) on Tp.

To the best of our knowledge, this is the first study to quantify
nocturnal thermoregulatory activities of birds in response to a
manipulation of food availability in the wild (but see [16]).
While food deprivation has been shown to induce reductions
in nocturnal Ty, in birds, studies have been performed in captiv-
ity and imposed a more extreme scenario of reduced food
availability [13,14]. Employing a similar manipulation of food
availability in the wild, Cornelius Ruhs et al. [16] found no
effect of winter food supply on the change in T}, following an
immune challenge, but they did not report the nocturnal
hypothermic response. We demonstrated that females exposed
to an unpredictable food supply entered deeper nocturnal
hypothermia, compared with males in both treatments and
females that have access to a predictable and constant supply
of food at nearby feeding stations. Conversely, males maintained
the same nocturnal T, regardless of food availability.

If birds are exposed to a limited food supply, a reduction in
Ty, at night is expected to reduce energy demands, improve con-
servation of energy resources and, subsequently, increase the
chances of survival to the following morning [8]. Despite this
expectation, male great tits were able to maintain the same
thermoregulatory strategy independent of food supply. While
dominance is unlikely to directly affect thermoregulatory
capacity [19], dominant individuals are likely to have priority
at food resources even when they are naturally unpredictable.
It has been shown that adult male great tits have priority
access to food and consequently higher predictability of fora-
ging success in winter, which means that they do not increase
winter fat reserves as much as subordinates—juveniles and
females [20]. Even if natural food supply is not as predictable
as that provided by a permanent feeding station, our results
suggest that the ability of males to dominate access to natural
food resources enables them to maintain sufficient energy
intake to avoid the need to enter deeper hypothermia at night.
By contrast, subordinate females exposed to a limited food
supply are likely to experience lower foraging success and
need to achieve greater reductions in nocturnal Ty, to offset the
increased risk of over-night starvation. Conversely, juvenile
birds, which are also subordinate, demonstrate a consistently
higher T, than older birds, irrespective of the predictability of
food supply. A similar age-related difference was shown by
Andreasson et al. [10] and could reflect a lack of experience in
young birds, making them deploy a sub-optimal strategy.
Indeed, since this is the first winter experienced by juvenile
birds, their strategy of maintaining a higher T}, has not been
proven successful, and selective disappearance of birds demon-
strating this strategy could create the apparent age-related
variation. However, we did not see any evidence for selective
disappearance of juveniles over the course of the experiment.

When exposed to an environmental temperature of 0°C,
the mountain chickadee (Poecile gambeli)—a closely related
species to the great tit—can reduce its energy expenditure by

approximately 12% by entering nocturnal hypothermia [7]. [ 3 |

According to the equation M =C'(T,—T,) (where M =meta-
bolic rate and C’ = thermal conductance, e.g. [21]), females in
the unpredictable group would have experienced an energy
saving of approximately 2.7% per night at the temperatures to
which they were exposed in this study. Over the course of the
winter, this would likely amount to a considerable energetic
benefit. Despite the large energy savings of nocturnal hypother-
mia, not all of our individuals reduced their Ty, to the same
extent, providing evidence for a cost-benefit trade-off. Theoreti-
cal and empirical evidence suggests that predation risk has a
strong effect on a bird’s decision to enter nocturnal hypothermia
[10,22]. Even in a state of rather shallow hypothermia, great tits
are unable to detect predator scent [23].

Another potential cost associated with nocturnal hypother-
mia is a reduced capacity or efficiency of cellular repair and
maintenance systems, possibly coupled with elevated release
of free radicals (though there is evidence for both increases
and decreases in production of reactive oxygen species in
hypothermic animals [24,25]). Research has so far focused on
hibernating mammals, which undergo large and extended
reductions in Ty,. Hibernating mammals show elevated levels
of lipid peroxides [26], yet commonly also have increased
levels of antioxidants [27,28]. However, a study on rats
showed that an acute cold exposure can increase lipid peroxi-
dation and reduce antioxidant enzymes in vivo [24]. Although
altered redox homeostasis appears to be common among
hibernating mammals, the underlying mechanisms and conse-
quences of such changes are likely to be very different,
compared with the smaller daily modulations in Ty, exhibited
by small birds.

Irrespective of the potential costs of nocturnal hypother-
mia, this experimental study clearly demonstrates the
importance of energy availability and foraging constraints
in regulating nocturnal hypothermia in small birds in
winter. Undergoing large reductions in nocturnal T}, can pro-
vide an insurance strategy when energy resources are limited.
Entering hypothermia is likely to be adaptive, even if it incurs
ecological and physiological costs. Understanding the under-
lying costs of short-term hypothermia is fundamental to fully
understand the nature of the trade-offs governing nocturnal
hypothermia, and future studies should seek to obtain a hol-
istic understanding of how small wintering birds manage
their energy budgets in relation to food availability.

The study was approved by the Malmo-Lund Ethics Committee
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