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Abstract

Prostate and breast cancer are the two cancers with the highest incidence in men and 

women, respectively. Here, we focus on the known biology of acquired resistance to 

antihormone therapy of prostate and breast cancer and compare laboratory and clinical 

similarities in the evolution of the disease. Laboratory studies and clinical observations 

in prostate and breast cancer demonstrate that cell selection pathways occur during 

acquired resistance to antihormonal therapy. Following sex steroid deprivation, both 

prostate and breast cancer models show an initial increased acquired sensitivity to the 

growth potential of sex steroids. Subsequently, prostate and breast cancer cells either 

become dependent upon the antihormone treatment or grow spontaneously in the 

absence of hormones. Paradoxically, the physiologic sex steroids now kill a proportion of 

selected, but vulnerable, resistant tumor cells. The sex steroid receptor complex triggers 

apoptosis. We draw parallels between acquired resistance in prostate and breast cancer 

to sex steroid deprivation. Clinical observations and patient trials confirm the veracity 

of the laboratory studies. We consider therapeutic strategies to increase response rates 

in clinical trials of metastatic disease that can subsequently be applied as a preemptive 

salvage adjuvant therapy. The goal of future advances is to enhance response rates and 

deploy a safe strategy earlier in the treatment plan to save lives. The introduction of a 

simple evidence-based enhanced adjuvant therapy as a global healthcare strategy has 

the potential to control recurrence, reduce hospitalization, reduce healthcare costs and 

maintain a healthier population that contributes to society.

Introduction

Despite advances in understanding the molecular 
biology of prostate and breast cancers, they are still the 
most frequently diagnosed cancers in men and women, 
in the United States. There is no completely effective 
preventative for either prostate or breast cancer. Advances 
in the chemoprevention of prostate cancer remain 
controversial (Bosland 2016) and none are approved by 
the Food and Drug Administration (FDA). As a result, 

there were 220,800 new cases of prostate cancer reported 
with 27,540 deaths (Siegel et al. 2015) in men. Advances 
in chemoprevention have been made in breast cancer 
(Jordan 2014b, 2016, 2017a, Cuzick 2015, Cuzick et  al. 
2016), but the task of implementation is not trivial 
(Kaplan et al. 2005, Owens et al. 2011, Smith et al. 2016). 
There were 231,840 new breast cancer cases reported in 
2015, accounting for almost 29% of the total estimated 
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female cancers (Siegel et al. 2015). Approximately, 40,290 
deaths from breast cancer occurred in 2015 accounting 
for 14% of total deaths from cancers in women (Siegel 
et  al. 2015). These figures present a major challenge in 
clinical research and for healthcare systems worldwide. 
Indeed, it is estimated that the incidence of breast 
cancer will increase by 50% from the level in 2011 for 
the combination of Indolent Lesion of Epithelial Origin 
(IDLE) and invasive disease by 2050 (Anderson et  al. 
2011). The increased survival of an aging population is 
the cause of the relentless rise in cancer. The goal of a 
cure remains. However, in practical terms, new affordable 
strategies are required for individuals affected by prostate 

or breast cancers to remain productive members of their 
families and society.

The sex steroid hormones i.e. androgens in men and 
estrogens in women play critical roles in the development 
and progression of prostate and breast cancers. Prostate 
cancer development relies on the androgen receptor (AR), 
whereas breast cancer development primarily relies on the 
estrogen receptor (ER). The majority of prostate and breast 
cancers are hormone dependent (Fig.  1). Antihormone 
therapies have had a profound impact in reducing the 
burden from breast cancer, worldwide (Jordan 2003, 
Santen et  al. 2009a, Sledge et  al. 2014). Here, we will 
address whether the lessons learned in breast cancer can 

Figure 1
A schematic representation of the androgen and estrogen deprivation therapy in prostate cancer and pre- and postmenopausal women with breast 
cancer. (A) The hypothalamic–pituitary–gonadal and adrenal axis in prostate cancer with their therapeutic targets. The hypothalamus produces 
gonadotropin-releasing hormone (GnRH), which stimulates the adenohypophysis of the pituitary to produce adrenocorticotropic hormone (ACTH). This 
in turn, stimulates the adrenal gland cortex to produce androgens: dehydroepiandrosterone sulfate (DHEA-S) predominately, DHEA and 
androstenedione (AD) into the circulation. These androgens (A), alongside testosterone (T) from the testes, are converted in the prostate to their potent 
form, dihydrotestosterone (DHT). Dihydrotestosterone stimulates the growth of prostate cancer cells and exerts a negative feedback loop onwards to 
the hypothalamus and pituitary. Both, GnRH agonists/antagonists suppress LH production and cause a subsequent decline in serum testosterone to 
castrate levels. However, GnRH agonists (with chronic use) lead to the downregulation of GnRH receptors, whereas, GnRH antagonists usually cause an 
immediate blockade to the receptor. At the adrenal level, abiraterone inhibits adrenal androgen de novo steroidogenesis. At the prostate level, 
androgen receptor (AR) inhibitors are used and they have different mechanisms of action. For example, enzalutamide competitively inhibits the AR 
binding to DHT, inhibits nuclear translocation, and DNA and cofactor binding. Whereas, Bicalutamide is a highly selective, competitive and silent 
antagonist to the AR, which was also found to accelerate AR degradation. (B) The hypothalamic–pituitary–gonadal axis in premenopausal women with 
breast cancer and their therapeutic targets. The hypothalamus produces gonadotropin-releasing hormone (GnRH), which stimulates the 
adenohypophysis of the pituitary to produce luteinizing hormone (LH) and follicle-stimulating hormone (FSH). This in turn, stimulates the granulosa cells 
in the ovarian follicles to produce estrogen. However, FSH in particular stimulates the granulosa cells to produce inhibin, which suppresses FSH in a 
feedback loop and activin, a peripherally produced hormone that stimulates GnRH cells. Estrogen stimulates the growth of breast cancer cells, and 
exerts a negative feedback loop onwards to the hypothalamus and pituitary. Ovarian suppression can be achieved with LHRH superagonists such as 
goserelin, which is an analogue of LHRH, and a GnRH or LHRH agonist. Goserelin initiates a flare of LH production and ultimately leads to receptor 
downregulation. Antiestrogens can be estrogen receptor (ER) competitive blockers such as the Selective ER Modulators (SERMs, i.e. tamoxifen), or pure 
antiestrogens or what is known as a Selective ER Downregulators (SERDs, i.e. fulvestrant). Third-generation aromatase inhibitors (i.e. anastrozole, 
letrozole, exemestane) selectively block the aromatase enzyme system at the breast cancer level and therefore suppress estrogen synthesis. (C) The 
hypothalamic–pituitary–gonadal axis in postmenopausal women with breast cancer and their therapeutic targets. The differences from premenopausal 
women is that the ovarian follicles are depleted, therefore there is no active production of estrogen and progesterone. This leads to a dramatic increase 
in GnRH, an increase in FSH serum level relatively to that of LH through the feedback loops. Ovarian suppression is not used as a treatment option.
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be applied to prostate cancer therapy. Whether treatment 
strategies are the same or not for both diseases, resistance 
to antihormone treatments occurs in both prostate and 
breast cancers.

Currently, resistance to antihormone therapies in 
prostate and breast cancers are categorized as acquired 
resistance and de novo (intrinsic) resistance. It is considered 
that de novo resistance has the same mechanisms as the 
acquired resistance (Hoimes & Kelly 2010, Miller 2013), 
for the exception that these mechanisms are in place 
before the antihormone therapy is applied. We will focus 
on acquired resistance. In this review, we summarize the 
development of treatment approaches, the antihormonal 
agents used for the control of both diseases and the 
current understanding of the evolution of resistance to 
antihormonal therapies. We bring together these two 
major sex steroid-related diseases to define similarities 
and differences and compare and contrast treatments 
based on acquired antihormone resistance. We discuss the 
similarities of the phenomenon of sex steroid-induced 
apoptosis in both types of cancers after acquisition of 
antihormone resistance and explore the possibility that 
this new knowledge will have clinical applications. An 
innovative treatment approach that delivers affordable 
healthcare will save lives globally.

Hormonal therapies for prostate and 
breast cancer

A diagnosis of advanced prostate cancer or breast cancer 
was a death sentence before 1940s, with patients dying 
within 1–2  years after diagnosis. Today, these same 
patients will have an earlier diagnosis, better care, but will 
still die within 3  years of diagnosis of stage IV disease. 
The number of patients with advanced prostate cancer 
has declined in the past 70 years, as early detection and 
diagnosis with proper treatment and monitoring has 
increased the 5-year survival rate up to 80–90% (Kirby 
et  al. 2011). The change in the approach to treatment 
started when Professor Charles Huggins reported the 
response of metastatic prostate cancer (MPC) to androgen 
deprivation therapy (ADT), using surgical castration or 
high-dose synthetic estrogen therapy (Huggins & Hodges 
1941). Diethylstilbestrol (DES) became a standard of care. 
Huggins won the Noble Prize in 1966 for developing a 
logical treatment strategy for prostate cancer with the 
ADT. Since then, ADT has been used as the gold standard 
for the treatment of MPC.

Earlier, but parallel, advances were reported for 
the treatment of advanced breast cancer in women.  

The initial experiment of oophorectomy (Beatson 1896) 
was proven to be effective in 30% of premenopausal breast 
cancer patients with metastatic breast cancer (MBC) (Boyd 
1900). This was followed by a number of surgical ablation 
strategies and additive hormonal therapies for MBC 
(Kennedy 1965).

In the mid-1940s, Alexander Haddow (Haddow 
et  al. 1944) was the first to discover that high doses of 
synthetic estrogens, including DES, could be used to treat 
postmenopausal women with MBC with a 30% response 
rate. Haddow’s (Haddow et al. 1944) clinical trial showed 
that only breast and prostate cancers were responsive, 
whereas all other types were not. Nevertheless, at that 
time, the mechanism of action was not understood 
(Haddow 1970). However, one important clinical fact 
did emerge. High-dose estrogen was only effective as an 
antitumor agent in MBC if used 5  years or more after 
menopause. High-dose estrogen therapy became the gold 
standard for the treatment of women with MBC until the 
introduction of tamoxifen 30  years later (Jordan 2003). 
The biologic mechanisms and therapeutic significance of 
estrogen therapy was, at that time, obscure. However, the 
development of models to discover mechanisms of what 
became the new biology of estrogen-induced apoptosis 
(Jordan 2008, 2015a) is now the central theme of this 
position paper.

The discovery of the AR in the late 1960s by three 
independent groups of Liao (Anderson & Liao 1968), 
Bruchovsky (Bruchovsky & Wilson 1968) and Mainwaring 
(1969), was an important breakthrough, as it triggered the 
search for androgen antagonists. Similar advances were 
made with the discovery of the ER in the early 1960s. 
Jensen first described the binding of radiolabeled estradiol 
in rat estrogen target tissues (Jensen & Jacobson 1962), and 
three years, later in 1966 Toft and Gorski identified the 
actual ER protein (Toft & Gorski 1966). Nevertheless, the 
therapeutic breakthrough of non-steroidal antiestrogens 
was focused on the modulation of fertility in rodents and 
women during the 1960s before the discovery of the ER 
(Jordan 1984, Lerner & Jordan 1990).

In the early 1970s, the first non-steroidal antiandrogen 
flutamide was discovered (Neri et  al. 1972) and was 
approved in 1989 by the FDA for the treatment of prostate 
cancer. This discovery was followed by other non-steroidal 
antiandrogens including nilutamide (Raynaud et  al. 
1979) and bicalutamide (Furr et  al. 1987), which were 
compared to castration in MPC patients in randomized 
trials. Results showed that antiandrogen drugs were better 
tolerated than castration (Chodak et al. 1995, Seidenfeld 
et al. 2000). However, they are inferior therapies in regard 
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to overall survival (OS) and progression-free survival (PFS) 
(Chodak et al. 1995, Seidenfeld et al. 2000).

In 1971, an advance in physiology was made when 
Schally discovered the structure of the hypothalamic 
hormone known as the luteinizing hormone (LH)-
releasing hormone (LHRH; called the gonadotropin-
releasing hormone GnRH) (Schally et al. 1971). This led 
to an understanding of the sex steroid feedback control 
mechanisms orchestrated by the hypothalamo-pituitary 
axis (Fig.  1). Advanced prostate cancer patients who 
were treated with daily doses of the LHRH agonists had 
a 75% decrease in serum testosterone levels, a decrease 
or normalization of plasma acid phosphatase levels, and 
a significant decrease in cancer-associated bone pain 
(Tolis et  al. 1982). In 1977, Schally received the Nobel 
Prize in Physiology and Medicine for discovering peptide 
hormone production in the brain. Many synthetic 
LHRH superagonists were subsequently developed for 
clinical use (Schally et  al. 2000), such as buserelin, 
goserelin, leuprolide and nafarelin. Additionally, many 
LHRH antagonists have been developed and tested for 
the treatment of men with advanced prostate cancer 
such as orgalutran, cetrorelix and abarelix (Schally et al. 
2000). An antagonist was considered to be necessary as 
the superagonists first stimulate gonadotropin release 
(which causes an androgen burst) before a desensitized 
and refractory state occurs. Estrogen has been used to 
treat prostate cancer by lowering gonadotropin levels 
and as a result androgen levels. Estrogen was evaluated 
successfully to block the stimulatory rise in gonadotropin 
caused by LHRH superagonists (Ahmann et al. 1987).

Fernand Labrie (Labrie et  al. 1986) was one of the 
pioneers who developed the idea of a complete androgen 
blockade using combination antiandrogen therapy with 
flutamide and LHRH agonists or surgical castration in 
patients with MPC increasing the PFS and OS. Crawford 
and colleagues (Crawford et al. 1989) demonstrated that 
the combination of flutamide and leuprolide resulted 
in a slightly longer PFS. As a result, many physicians in 
the United States shifted toward combined androgen 
blockade as initial therapy for advanced prostate cancer. 
The signaling pathways of the AR and mechanism of 
action of different antiandrogens is depicted in Fig. 2.

In contrast, breast cancer treatment strategies followed 
a separate path with an early move from the treatment 
of MBC to adjuvant therapy following breast surgery. A 
key factor in the differences in the treatment strategies 
of prostate and breast cancer is the fact that the majority 
of breast cancer occurs after menopause when there is 
no hypothalamo–pituitary–ovarian communication to 

alter estrogen levels (Fig.  1). By contrast, a recognized 
menopause does not occur in men and, as a result, 
hormonal communication from the pituitary to the 
testicular target remains. Currently clinical strategies 
are being defined and refined to address breast cancer 
treatment in the premenopausal patients (Abderrahman 
& Jordan 2016, Rossi & Pagani 2017).

The ER became the target for tamoxifen to treat breast 
cancer (Jordan & Koerner 1975) based on the National 
Cancer Institute consensus conference in Bethesda in 
1974 on ERs in human breast cancer (McGuire et al. 1975). 
Treatment strategies in the 1970s for breast cancer proposed, 
long-term adjuvant antihormone therapy (Jordan 1978, 
2014b) and the possibility of chemoprevention (Jordan 
1976). These treatment strategies were proposed before 
tamoxifen was approved for the treatment of MBC in the 
United States (December 29th, 1977).

The actual development of tamoxifen was not 
initially a major priority by the pharmaceutical industry, 
but dependent upon chance and the investment in young 
scientists (Jordan 2006, 2015b). Tamoxifen’s withdrawal 
from clinical development and resurrection in the 1970s 
with a clear strategic plan for the development of the 
medicine was the key to success (Jordan 2006, 2014b). 
Tamoxifen became the standard for antihormonal 
therapy of ER+ MBC (Furr & Jordan 1984, Jordan 2003, 
2006). Five years of adjuvant treatment with tamoxifen 
improved clinical outcome compared to shorter adjuvant 
therapy (EBCTCG 1998), and for more than a decade, 
5  years of adjuvant tamoxifen (Davies et  al. 2011) (or 
aromatase inhibitors, AIs) was the standard of care for ER+ 
breast cancer. Tamoxifen was the first medicine, in a new 
group of medicines called the selective estrogen receptor 
modulators (SERMs) (Maximov et  al. 2013). Ultimately, 
tamoxifen was the first antiestrogen to be approved by 
the FDA for the prevention of breast cancer in women 
(Jordan 2003).

Another approach to treat breast cancer inhibits the 
aromatase enzyme system (CYP19) that catalyzes estrogen 
biosynthesis in postmenopausal women. This group 
of medicines is called the AIs, and these are currently 
used for the treatment of postmenopausal breast cancer 
patients. Aminoglutethimide was the first Al introduced, 
which has an efficacy in MBC patients (Lipton & Santen 
1974). Nevertheless, all the AIs used in the early 1970s 
were not specific for CYP19 and showed side effects 
with depression of adrenal function. Glucocorticoids 
needed to be used to compensate (Santen et al. 1981). As 
a result, the first-generation AIs (aminoglutethimide and 
testololactone) were not suitable for adjuvant treatment 
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Figure 2
A schematic representation of the signal transduction pathways in ER-positive breast cancer cells and prostate cancer cells. (A) At the adrenal level, 
adrenal androgen de novo steroidogenesis occurs. Cholesterol is produced and converted to Pregnenolone with the aid of CYP11A1 enzyme. 
Pregnenolone is converted to dehydroepiandrosterone (DHEA) with the aid of CYP17A1. Finally, DHEA is converted to androstenedione (AD) with the 
aid of 3-β hydroxysteroid dehydrogenase enzyme. Then, AD is converted to testosterone via 17-β hydroxysteroid dehydrogenase. At the adipose tissue 
level, Both androstenedione and testosterone are converted with the aid of the aromatase enzyme system to estrone (predominant in postmenopausal 
women), and estradiol (predominant in premenopausal women), sequentially. Estrogen normally binds to the ER in the cytoplasm, the estrogen:ER 
complex translocates to the nucleus, gets phosphorylated, and binds to estrogen responsive elements (EREs) with the recruitment of coactivators. This 
creates a transcription complex (TC). This in turn, will initiate a cascade of protein synthesis and subsequent tumor proliferation through the activation 
of estrogen-sensitive genes. Whereas, SERMs:ER follows a similar pattern but recruits corepressors and inhibits protein synthesis; causing tumor 
regression. For SERDs, they bind to the ER causing an alien conformation. This leads to the destruction of the ER through the ubiquitin proteasome 
system; subsequently tumor regression. (B) At the adrenal level, adrenal androgen de novo steroidogenesis occurs. Cholesterol is produced and 
converted to Pregnenolone with the aid of CYP11A1 enzyme. Pregnenolone is converted to dehydroepiandrosterone with the aid of CYP17A1. Finally, 
DHEA is converted to DHEA-S with the aid of following enzymes: steryl-sulfatase (STS) and bile salt sulfotransferase. At the prostae level, DHEA-S in 
Leydig cells is converted back to DHEA via STS and then DHEA is converted to AD via enzyme 3β-HSD. Then, AD is converted to testosterone via enzyme 
AKR1C3, and finally to DHT via steroid 5α-reductase. Dihydrotestosterone normally binds to the AR in the cytoplasm, the DHT:ER complex translocates to 
the nucleus, gets phosphorylated, binds to androgen responsive elements (AREs) with the recruitment of coactivators. This creates a transcription 
complex (TC). This in turn, will initiate a cascade of protein synthesis and subsequent tumor proliferation through the activation of androgen-sensitive 
genes. Whereas, AR inhibitors:AR complex follows a similar pattern but recruits corepressors and inhibits protein synthesis; causing tumor regression. For 
SARDs, they bind to the AR causing the degradation of the receptor; subsequently tumor regression. Androgen receptor inhibitors vary in their 
mechanisms of action. For example, enzalutamide competitively inhibits the AR binding to DHT, inhibits nuclear translocation of AR, and DNA and 
cofactor binding. Whereas, bicalutamide is a highly selective, competitive and silent antagonist to the AR, which was also found to accelerate AR 
degradation. Abiraterone inhibits CYP17A1 and subsequently adrenal androgen de novo steroidogenesis. Dutasteride is a 5α-reductase inhibitor that 
blocks testosterone conversion into DHT.
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(Cocconi 1994). The breakthrough occurred in the late 
1970s with the discovery of the first specific inhibitor of 
the aromatase system, 4-hydroxy androstenedione (Brodie 
et al. 1977, 1979). This compound, known as formestane, 
demonstrated clinical efficacy in MBC (Coombes et  al. 
1984, Goss et  al. 1986, Dowsett et  al. 1987). Again, 
regrettably, the medicine was unsuitable for adjuvant 
trials of ER+ breast cancer, because it was an injectable. 
Soon after the development of the third generation 
of Als, (anastrozole, letrozole and exemestane) with 
lower toxicity, the Als became the adjuvant endocrine 
treatment of choice for the ER+ postmenopausal breast 
cancer patients (Dowsett et  al. 2010). The signaling 
pathways of the ER and mechanism of action of different 
antiandrogens are depicted in Fig. 2.

Current treatment strategies for prostate  
and breast cancers

Various parameters, such as the tumor volume and the 
pathological grade, have been correlated with prostate 
cancer malignancy (Bostwick et  al. 2000). A strong 
correlation with an excellent prognosis was evident in 
prostate cancer presenting with a high percentage of 
AR-positive cells (Barboro et al. 2014). Prostate cancer that 
is AR negative is very rare; therefore, little attention has 
been given to this subtype. The aggressiveness of prostate 
cancer is based on the Gleason score, a system based on 
pathological grade. In prostate cancer, the lowest Gleason 
score sum found in a tumor biopsy is 6, which are low 
grade or well differentiated, less aggressive with slow 
growth and limited invasion and metastasis. The Gleason 
score sum of 8–10 are found in high-grade tumors, poorly 
differentiated, tending to be aggressive and quickly grow 
and spread. Gleason score sum of 7 is called intermediate 
grade and is found in moderately differentiated tumors.

Since prostate cancer is an indolent disease, the 
majority of men diagnosed will not be treated with any 
type of therapy. It was found that the majority of men 
with prostate cancer have lower prostate cancer-specific 
mortality rates and are more likely to die from age-related 
comorbidities (Lu-Yao et al. 2009, Albertsen et al. 2011). 
However, if prostate cancer is graded as aggressive, then 
surgery and sometimes adjuvant radiotherapy are the 
therapies of choice. Radical prostatectomy alone in men 
with localized prostate cancer has a 7-year recurrence-
free survival (RFS) of approximately 70% (Kattan et  al. 
1999) and the biochemical PFS of approximately 50% 
(Bolla et  al. 2005). However, application of immediate 
adjuvant radiotherapy can further significantly increase 

clinical PFS (Bolla et al. 2005). If the disease has progressed 
in spite of primary therapies, has metastasized or is an 
advanced poor prognosis or/and high-grade tumor only 
then is hormonal therapy applied. Recurrent tumors 
that are nonmetastatic or for locally advanced tumors 
(tumors that have spread to nearby tissue or local lymph 
nodes) are sometimes treated with adjuvant hormonal 
therapy concomitantly with adjuvant radiotherapy. This 
can further increase PFS and OS, especially if applied at 
earlier time points (Fleshner et al. 2008, Payne & Mason 
2011, Omrcen et  al. 2015, Shipley et  al. 2017). Current 
treatments strategies for prostate cancer are summarized 
in Fig. 3.

By contrast, breast cancer is a highly heterogeneous 
tumor with different malignant subtypes. Prat and 
Perou (2011) used gene expression profiling to classify 
breast cancer into subtypes based on the expression of 
the main receptors, ER, progesterone receptor (PR) the 
erythroblastosis oncogene (ErBB2, HER2/neu) and the AR: 
Luminal A (ER+, PR+, HER2− and low Ki-67, low grade), 
Luminal B (ER+, PR+, HER2+/−, high Ki-67 and high 
grade), human epidermal growth factor receptor 2 (ER−, 
PR− and HER2+), basal-like or triple-negative (TNBC) 
(ER−, PR− and HER2−), claudin-low (often TNBC with low 
expression of cell-to-cell contact proteins and E-cadherin, 
in particular, with infiltration of lymphocytes), Luminal 
ER−/AR+ (AR+ and respond to antihormonal therapy 
with antiandrogens (Gucalp & Traina 2016)) and normal-
like (ER+, PR+, HER−, low Ki-67 and normal like) breast 
cancers. Patients with ER+ early-stage breast cancer 
account for about 75% of breast cancer cases (Harvey 
et al. 1999). Though the primary therapies for early-stage 
breast cancers, regardless of their subtype are surgery and 
radiotherapy, long-term hormonal adjuvant therapy is 
used in most cases with ER+ breast cancers. The first FDA-
approved antiestrogen tamoxifen is usually prescribed 
to premenopausal patients as they have a very low risk 
of developing endometrial cancer as a side effect from 
long-term tamoxifen treatment. The Early Breast Cancer 
Trialists’ Collaborative Group in 2011 confirmed that five 
years of using tamoxifen as adjuvant treatment reduced 
the risk of death and reduced the 15-year recurrence risk 
by 40% (Davies et al. 2011). The benefits of the 10-year 
extended therapy with tamoxifen were presented in two 
studies in 2013 with the 15-year follow-up of the Adjuvant 
Tamoxifen: Longer Against Shorter (ATLAS) trial (Davies 
et al. 2013) and the Adjuvant Tamoxifen To Offer More 
(aTTom) (Gray et al. 2013) trial. The outcome of the ATLAS 
trial is that, ER-positive patients with extended tamoxifen 
therapy reduced the risk of breast cancer recurrence, 
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mortality and reduced overall mortality (Davies et al. 2013). 
The outcome of the aTTom trial was similar to the ATLAS 
trial confirming that, continuing tamoxifen treatment in 
ER-positive breast cancer patients for 10 years rather than 
just 5 years leads to further reductions in recurrence and 
subsequent decrease in mortality. The documentation for 
the clinical characteristics of high-risk patients eligible for 
extended tamoxifen therapy (>5 years) have recently been 
published (Pan et al. 2016).

For postmenopausal women with thromboembolic 
or no osteoporotic comorbidities, AIs are usually 
prescribed. Anastrozole was the first of the third-
generation AIs used in a clinical trial called the Tamoxifen 
Alone or Combination (ATAC) trial (Baum et  al. 2002). 
Anastrozole has some advantages over tamoxifen as a 
first-line adjuvant treatment for early breast cancer in 
postmenopausal patients. Results for the combination 
treatment are the same as tamoxifen alone (Baum et al. 
2002, Cuzick et al. 2010). This was to be expected. A rule 
of pharmacology is that a partial agonist (tamoxifen) that 
binds to a receptor when combined with a therapy that 
removes the ligand from the body produces a response 
of the partial agonist alone. In 2010, a meta-analysis 
(Dowsett et  al. 2010) was performed and demonstrated 

the superiority of 2–3 years of tamoxifen followed by an 
AI for 2–3 years over 5 years of tamoxifen alone. Other 
clinical trials, referred to as the Breast International Group 
(BIG 1–98) (Breast International Group 2005) and the 
adjuvant tamoxifen and exemestane in early breast cancer 
(TEAM-trial) (van de Velde et al. 2011), were designed to 
address the question whether AIs would be superior to 
tamoxifen or not after 2–3  years of tamoxifen followed 
by switching to an AI for five years, showed no significant 
decrease in disease-free survival (DFS) or the RFS. A meta-
analysis of individual data from postmenopausal patients 
with early-stage ER-positive breast cancers comparing 
5 years of AIs against 5 years of tamoxifen or switching to 
an AI up to year 5 after 2–3 years of tamoxifen compared 
to 5  years of tamoxifen or an AI alone has shown that 
AIs have a significantly more favorable recurrence rates 
(RR) than tamoxifen by 30% (Early Breast Cancer Trialists’ 
Collaborative Group 2015). AIs also caused more bone 
fractures, but fewer cases of endometrial cancers than 
tamoxifen (Early Breast Cancer Trialists’ Collaborative 
Group 2015).

Currently, the period of adjuvant tamoxifen/AI 
treatment is extended up to 10 years based on the National 
Cancer Institute of Canada Clinical Trials Group (NCIC 

Figure 3
A schematic representation of the treatment paradigms used clinically for breast and prostate cancers. (A) Early-stage prostate cancer (PC) is usually 
approached with active surveillance, local treatments such as: surgery and radiation therapy. Hormone therapy can be given for early-stage PC men if 
they were at high-risk, or if they cannot undergo surgery or radiation therapy. The newer treatments for early-stage PC are: Intensity-Modulated 
Radiation Therapy, Proton beam therapy, and Cryosurgery. If early-stage PC progresses to metastatic PC (MPC) or what is known as castration-sensitive 
PC (CSPC), it will be treated with androgen deprivation therapy (ADT) using GnRH agonists, or complete androgen blockade (CAB) using a GnRH agonist 
plus flutamide for example, or secondary hormone therapy (SHT) using abiraterone, or enzalutamide as examples. If CSPC progresses to castration-
resistant PC (CRPC), it will be treated with ADT or SHT. About 60% of PC is diagnosed in men >65, with 97% in men age >=50. The median age at the 
time of diagnosis in the U.S. is about 66. (B) Early-stage BC can be treated with local treatments such as: surgery and radiotherapy or systemic treatments 
such as: hormone therapy. What sets early-stage BC treatment apart from prostate cancer is adjuvant therapy with tamoxifen or AIs for 5–10 years. If 
early-stage BC progresses to metastatic BC (MBC), one therapeutic option is fulvestrant. Breast cancer rates increase after age 40 and are highest in 
women >70. The median age of diagnosis of BC for women in the U.S. is 62.
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CTG MA17), which showed the superiority of 5 years of 
tamoxifen followed by five years of letrozole compared 
to 5 years of tamoxifen alone (Goss et al. 2003). Recently, 
Goss and colleagues found in the MA17 extension using 
an additional 5 years of AI for a 10 years total significantly 
increases the rates of DFS and decreases the incidence 
of contralateral breast cancer but the rate of OS was not 
increased (Goss et al. 2016). It should be noted, however, 
that in the ATLAS trial (Davies et  al. 2013) and the 
combined analysis of ATLAS and aTTom trials mortality 
did not decrease significantly during extended adjuvant 
therapy but only a decade after extended therapy. 
As tamoxifen is a competitive inhibitor of estrogen 
action at the ER (Jordan 1984), and is not cytotoxic, it 
is suggested that decreases in mortality occur by cell 
selection and subsequent estrogen-induced apoptosis 
from the woman’s own estrogen (Jordan 2014a, 2015a). 
Breast cancer remains the only cancer with an option of 
long-term adjuvant antihormone therapy proven to save 
lives. Current treatment strategies for breast cancer are 
summarized in Fig. 3.

The application of antihormone therapy is crucial in 
ER+ breast cancer as it is able to reduce the recurrence of 
breast cancer at least by half, and, unlike prostate cancer, 
which is an indolent disease, breast cancer will progress 
faster and recur without treatment. All prostate cancer 
patients and half of breast cancers develop acquired 
resistance to antiestrogen therapy.

Understanding acquired resistance to 
hormonal therapies in prostate cancer

 ADT is the primary therapy for prostate cancers that are 
classified as an aggressive type (high Gleasson score sum), 

advanced or locally advanced. The average duration of 
clinical responses to antiandrogen therapies in advanced 
prostate cancer is 12–18  months after which practically 
all patients evolve to castration-resistant prostate cancer 
(CRPC) tumor phenotype. CRPC is characterized by 
consistent elevation of prostate-specific antigen (PSA) 
despite ADT and/or metastases. It is estimated that 10–20% 
of all non-advanced prostate cancer patients will progress 
to CRPC after surgery or radiotherapy (Kirby et al. 2011).

Currently multiple examples exist for the molecular 
mechanisms of antihormone resistance in prostate cancer 
with an analogous classification for breast cancer. Each 
mechanism or their combinations may have clinical 
applications in individual cases. The mechanisms of 
acquired resistance to antihormone therapies for prostate 
cancer can be categorized based either on the dependence 
on the AR or dependence on the ligand (Table 1).

Ligand-dependent and receptor-dependent 
mechanisms of resistance

Mutations in the AR are found in almost 30% of 
metastatic CRPC (mCRPC) (Navarro et al. 2002, Waltering 
et  al. 2012). The majority of mutations in the AR are 
identified in the metastases, rather than in the primary 
tumors (Marcelli et  al. 2000) and may enable the AR 
to bind some antiandrogens, such as flutamide and 
bicalutamide, that act as AR agonists and fuel tumor 
cell growth (Buchanan et  al. 2001, Bohl et  al. 2005a,b). 
We have performed molecular dynamics modeling to 
demonstrate the difference in the conformations of the 
ligand-binding domains (LBD) of the wild-type (wt) AR 
bound with an agonist (DHT) and antagonist bound with 
wtAR and a mutant AR found in CRPC (Bohl et al. 2005a) 

Table 1  Mechanisms of resistance to antihomrone treatments are similar in both prostate and breast cancer cancers.

Category Mechanisms

Ligand-dependent, receptor-dependent •	 hypersensitivity of the receptor to the ligand due to point 
mutations 

•	 increased receptor expression 
•	 increased transcriptional activity of the receptor due to 

changes in coregulators and corepressors levels 
•	 increased levels of endogenous or circulating ligand

Ligand-independent, receptor-dependent •	 gain-of-function mutations in the receptor
•	 cross-talk mechanisms with other growth factor pathways

Bypass pathway (ligand-independent, receptor-independent) •	 deactivation of tumor suppressor pathways
•	 high expression of anti-apoptotic and low expression of  

pro-apoptotic molecules
•	 activation of cell proliferation survival pathways

Hormone receptor negative, ligand-independent •	 activation of growth factor receptor pathways
•	 employment of other types of hormone receptors

They have been categorized by their dependence on the hormone receptors or hormones themselves.
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(Fig. 4). The modeling results show that, when compared 
with the wtAR:DHT complex (Fig. 4A), the helix 12 of the 
mutantAR:bicalutamide complex closes over the LBD of 
the receptor, which provides agonist conformation of the 
AR and its subsequent activation ( Fig. 4C). It should be 
noted that the precise mechanism of antiandrogen action 
at the LBD of the AR remains unclear (Bisson et al. 2008, 
Duke et  al. 2011, Tan et  al. 2015). Activating mutations 
at the ER can explain the phenomenon of antiandrogen 
withdrawal syndrome, when the termination of therapy 
with antiandrogens is followed by regression of tumors 
(Hara et al. 2003).

Besides various mutations of the AR that contribute 
to the endocrine resistance in CRPC, a new role of 
membrane-associated AR isoforms in CRPC is emerging. 
Membrane-bound ARs have been identified in LNCaP 
cells and in hormone-insensitive DU145 cells and are 
associated with rapid non-genomic hormone responses 
in cells (Papakonstanti et  al. 2003, Papadopoulou 
et  al. 2008a,b). However, very little is known about the 

significance of the membrane-bound ARs in CRPC, but 
recent report identifies an AR splice variant called the AR8 
that is shown to be associated with castration resistance in 
prostate cancer (Yang et al. 2011). Overexpression of the 
AR8 isoform increases the association of the receptor with 
the EGFR in CRPC cells and promotes cell proliferation 
and survival (Yang et al. 2011).

The AR in CRPC cells can become hypersensitive to 
low doses of androgens. This hypersensitivity is associated 
with mutations in the AR itself, leading to an increased 
sensitivity of the receptor to low concentrations of 
circulating androgens (Gregory et al. 2001b). Additionally, 
overexpression of the AR can be another AR-dependent 
mechanism that creates hypersensitivity. Indeed, it 
was shown that 30% of CRPC tumors overexpress the 
AR at high levels in the cells and 80% of patients show 
an elevated gene copy number (Feldman & Feldman 
2001, Waltering et  al. 2012), which may be a result of 
selection of cell populations with high levels of the AR 
under androgen deprivation pressure (Rau et  al. 2005). 

Figure 4
Molecular modeling of the wild-type and mutant ER and AR bound with agonists and antagonists. (A) wtAR:DHT LBD complex (PDB ID: 3L3X); (B) the 
best docking pose of the wtAR:bicatulamide complex (PDB ID: 3RLJ), obtained via flexible docking (the experimental structure used for docking was 
selected based on the 3D similarity between bicatulamide and the available ligands co-crystalized with AR WT, thus the experimental structure 3RLJ was 
selected due high similarity between the native ligand, S-22 and bicatulamide). The major interactions are shown in dashed lines and colored as follows: 
hydrophobic interactions in lavender, pi-pi interactions in purple, water-mediated H-bonds are shown in blue, and classical H-bonds are depicted in 
green.; (C) T741L AR mutant:bicatulamide LDB complex (PDB ID: 1Z95), helix 12 is colored in green and the major interactions are shown in dashed lines 
and colored as follow: hydrophobic interactions in lavender, pi-pi interactions in purple, water-mediated H-bonds are shown in blue, and classical 
H-bonds are depicted in green; (D) wtER:E2 LBD complex (PDB ID: 1GWR); (E) wtER:endoxifen LBD complex; (F) Superposition of E2 D538G mutant with 
ERα D358G apo LBD structures (helix 12 is shown in red for apo conformation and pink in the E2 bound mutant structure). The major interactions are 
shown in dashed lines and colored as follow: hydrophobic interactions in lavender, pi-pi interactions in purple, water-mediated H-bonds are shown in 
blue, and classical H-bonds are depicted in green.
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An increase in the AR expression is associated with the 
amplification of the AR gene and in some cases attributed 
to polysomy of the X chromosome (Ropke et  al. 2004). 
However, androgen action is not dependent upon the 
AR alone but is modulated by coregulators. The levels of 
expression of these coactivators, particularly SRC1 and 
SRC2, are higher in poorly differentiated prostate tumors 
or in recurrent prostate cancers and provide cells with 
higher AR activity in a low-dose androgen environment 
(Fujimoto et  al. 2001, Gregory et  al. 2001a). Additional 
AR-specific coactivators of note have been identified: 
ARA70 increases the AR activity and even facilitates the 
binding of estradiol to the AR (Yeh et al. 1998), FKBP51 
stabilizes the AR with HSP90 heat-shock protein complex 
and facilitates the binding of androgens (Ni et al. 2010), 
and TRIM24 increases AR transcriptional activity (Groner 
et al. 2016).

Long-term antiandrogen therapy can affect the 
hypothalamo–pituitary axis as a negative feedback loop 
in men, leading to a compensatory increase of circulating 
androgens (Rau et al. 2005). This, by itself, can activate 
the AR by the law of mass action, but testosterone is not 
the physiologic ligand as it is required to be converted 
to dihydroxytestosterone (DHT) in the prostate cancer 
cell. Increased 5α-reductase enzyme activity contributes 
to the increase of endogenous androgens in the tumor. 
This results in the selection of CRPC cells able to convert 
androgen to endogenous DHT to produce a growth 
advantage (Navarro et al. 2002, Titus et al. 2005, Chang 
et al. 2014). A polymorphism in the 5α-reductase gene 
is noted in men of African-American descent, which is 
responsible for higher enzymatic activity in prostate 
cancer cells, as well as in prostate cancer cases with bad 
prognosis (Ruijter et al. 1999). In fact, the intratumoral 
levels of androgens can be as high as 40% above the 
baseline levels before ADT (Nishiyama et  al. 2004). 
Recently another polymorphism in HSD3B1, which 
encodes 3β-hydroxysteroid-dehydrogenase-1 has been 
identified in a retrospective study of CRPC as a factor 
that correlates with an increased DHT synthesis (Hearn 
et al. 2016).

Ligand-independent and receptor-dependent 
mechanisms of resistance

Most mutations are point gain-of-function mutations and 
are mostly located in the LBD of the AR and allow other 
sex steroids, such as glucocorticoids to bind to the AR and 
activate it (Zhao et al. 2000). Resistance to abiraterone was 
demonstrated in some mCRPC tumors with mutated AR 

(Cai et al. 2011, Chen et al. 2015). Additionally, alternative 
AR mRNA splice variants occur that generate constitutively 
active AR proteins (Dehm et al. 2008, Watson et al. 2010, 
Bubley & Balk 2017).

Increased expression of certain growth factors are 
associated with increased activity of the AR in mCRPC 
as well. The subversion of the AR transcriptional 
activity via growth factor receptor-mediated growth is 
called the cross-talk. Epidermal growth factor (EGF), 
keraticocyte growth factor (KGF) and insulin-like 
growth factor 1 (IGF-I) can activate the AR and can be 
reversed by antiandrogens (Culig et al. 1994). Tyrosine 
kinase receptors, such as HER2, which is highly 
expressed in CRPC cells, can also activate the AR via 
phosphorylation, through activation of the MAPK and 
the Akt pathways (Lin et  al. 2001). The growth factor 
IL-6 is responsible for the progression of CRPC. This 
occurs by increasing AR activity by 50% more than 
observed with DHT alone (Culig et al. 2002). Resistance 
to growth inhibition occurs through the MAPK and 
STAT3 pathways, induces autophosphorylation of HER2 
to activate the AR-mediated cascade independent of 
the ligand (Chen et  al. 2000, Culig et  al. 2002). High 
expression levels of the AR mRNA are maintained by 
NF-κB in CRPC cells, which sustains high AR protein 
levels (Zhang et al. 2009).

Bypass pathway

One of the mechanisms of resistance involves recruitment 
of cellular survival pathways in CRPC, but the tumors still 
express the AR. However, the tumor cells do not require 
active AR to proliferate and survive. This mechanism 
is called the bypass pathway. Over expression of the 
antiapoptotic genes like Bcl-2, Bcl-xL and NF-kB (Gleave 
et  al. 1999) are characteristic of the bypass pathway. 
Activation of other cell survival signaling pathways like 
PI3K/Akt has also been examined and linked with CRPC 
progression (Taylor et  al. 2010). Mutations in tumor 
suppressor genes, like PTEN, also play a role in hormone 
resistance and allow the cells to rapidly progress though 
the cell cycles (Li et  al. 1997, Mulholland et  al. 2011, 
Edlind & Hsieh 2014). Mutated BRCA1 and BRCA2 
tumor suppressor genes that are strongly associated with 
breast cancer incidence and progression have also been 
shown to be present in CRPC cells and associated with 
progression of prostate cancer cells to a CRPC phenotype 
(Rosen et al. 2001, Kote-Jarai et al. 2011, Leongamornlert 
et al. 2012, Robinson et al. 2015). Several other proteins 
have been identified that are associated with AR bypassing 
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and progression and survival of therapy-resistant CRPC, 
such as TWIST1, DKK3 and VAV3 (Marques et al. 2010).

Recently, other possible contributing factors to 
the progression of CRPC disease were identified. Some 
estrogens are synthesized in males and the ERα is expressed 
in CRPC cells. The activation of the ERα stimulates 
proliferation and migration of the tumor cells (Attia & 
Ederveen 2012, Mishra et al. 2015). The estrogen-related 
receptor (ERR) induces bone metastases and activation of 
VEGF-A, WNT5A and TGFβ1 in mCRPC cells (Fradet et al. 
2016). The glucocorticoid (GR) and the mineralocorticoid 
receptors (MR) have been associated with the progression 
of CRPC and being able to substitute and bypass the 
blocked AR (Arora et al. 2013). It appears that the GR and 
the AR have an array of common response genes due to 
homologous DNA-binding domains of the receptors (Sahu 
et al. 2013, Grindstad et al. 2015).

Ligand-independent mechanisms of resistance 
with the loss of the AR

Antiandrogen resistance in prostate cancer can also be 
ligand independent and AR negative. Loss of expression 
of the AR in CRPC has been recorded in 30% of cases 
(Suzuki et  al. 2003) due to hypermethylation of the AR 
gene (Jarrard et al. 1998). This epigenetic deregulation of 
the AR expression is much more common for the CRPC 
compared to only 10% of de novo hormone-resistant 
prostate cancers (Suzuki et al. 2003). Selected cells, with 
loss of the AR expression after antihormonal therapy, 
have adapted and ‘hijacked’ pathways enabling them to 
grow using other growth stimulatory pathways and even 
employ other hormone receptor pathways.

Understanding acquired resistance to 
hormonal therapies in breast cancer

The mechanisms of antihormone resistance in breast 
cancer cells are very similar to the mechanisms in CRPC 
(Table 1) (Rau et al. 2005, Risbridger et al. 2010).

Ligand-dependent and receptor-dependent 
mechanisms of resistance

The hypersensitivity of breast cancer cells to low doses 
of estrogens during estrogen ablation therapy has been 
associated with increased levels of ER expression. For 
instance, the ER protein levels were shown to be higher 
in long-term estrogen-deprived (LTED) MCF-7 cells by as 
high as 10-fold (Katzenellenbogen et al. 1987, Welshons & 

Jordan 1987). This can also happen in estrogen depletion 
with tamoxifen treatment (Berstein et  al. 2004). One 
of the possible pathways of such hypersensitivity to 
estrogens was explained by a non-genomic activity of the 
ER, when it phosphorylates Shc, which in turn binds to 
signaling proteins Grb-2 and Son of Sevenless (SoS). As 
a result, this activates MAPK/ERK via Ras and Raf and 
promotes the phosphorylation of the ER at the AF-1 
motif and activation of the receptor (Santen et al. 2003). 
The increased transcriptional activity of the ER can also 
be upregulated by overexpressed coactivators. Estrogen 
receptor coactivator SRC3 is the most important for 
breast cancer as its expression is restricted to only a few 
tissues, including the breast (Suen et  al. 1998). Clinical 
studies (Osborne et  al. 2003, Alkner et  al. 2016) noted 
that high levels of SRC3 coactivator were associated 
with worse outcomes in tamoxifen-treated breast cancer 
patients. Low corepressor expression has been described 
in tamoxifen-resistant tumors and has been reviewed 
elsewhere (Legare & Basik 2016). Asides from the levels of 
the ER protein and its activity modulating cofactors, high 
levels of circulating and intratumoral hormones can also 
provide antihormone resistance. As tamoxifen binds and 
blocks the ER in breast tumor cells, it can also bind to the 
ER in pituitary gland and hypothalamus and disrupt the 
negative feedback loop. Tamoxifen induced an elevation 
of the circulating levels of estrogens secreted from the 
ovaries by increasing gonadotropin-releasing hormone 
production. This mechanism has been used to explain 
the elevated levels of estrogens in tamoxifen-treated 
premenopausal patients (Ravdin et al. 1988, Jordan et al. 
1991). The aromatase enzyme, that converts androgens to 
estrogens, can also be elevated in estrogen-deprived cells 
adaptively in vitro (Yue et al. 2003) and can be stimulated 
through stromal cells that express prostaglandin E2, IL-6, 
11 and tumor necrosis factor α (TNFα) (Schrey & Patel 
1995). Indeed, it was shown that breast tumor tissues have 
higher levels of aromatase expression than peritumoral 
tissues (Bulun et al. 1996).

In recent years, antihormone resistance was also 
linked to the expression of membrane-associated ERs. 
The first membrane-associated ER that was identified 
was GPR30. It was demonstrated that the translocation 
of GPR30 to the cell surface significantly increased 
after estrogen treatment in tamoxifen-resistant breast 
cancer cells and its activity was mediated through the 
EGFR (Ignatov et al. 2010, Mo et al. 2013) and it is able 
to attenuate the inhibition of MAPK as well (Mo et  al. 
2013). It was also shown that GPR30 is able to upregulate 
aromatase expression in tamoxifen-resistant breast cancer 
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cells, which can be linked to the sensitivity to AIs in breast 
cancer patients with acquired or de novo resistance to 
tamoxifen (Catalano et al. 2014). Another novel variant 
of ER that was recently identified is the membrane-bound 
ER-α36 that is associated with tamoxifen resistance in vitro 
(Wang & Yin 2015, Gu et al. 2017). However, the clinical 
roles these findings are yet to be determined.

Ligand-independent and receptor-dependent 
mechanisms of resistance

Just like in the case with CRPC, one of the ligand-
independent receptor-positive mechanisms of resistance 
in breast cancer could the activating mutations of the ER. 
Mutations of the ESR1 gene, that encodes the ER, have been 
identified in the LBD of the receptor in 14–54% of clinical 
samples from metastatic breast cancer patients and have 
also been linked to antihormone resistance (Robinson 
et  al. 2013, Jeselsohn et  al. 2014). These mutations are 
found most often in the metastases rather than in the 
primary tumors. Most mutations occur in positions Y537 
and D538 and are described as gain-of-function mutations, 
which lead to constitutive ligand-independent activation 
of the ER (Robinson et al. 2013, Toy et al. 2013). Amino 
acid residues 537 and 538 are positioned in the AF-2 
motif of the ER LBD so that mutations of these residues 
can induce a ligand-independent agonistic conformation 
of H12, closing the unoccupied LBD by interacting with 
residue at position 351 (Jordan et al. 2015). The ligand-
free ER then recruits coactivators and activates the ER, 
even with the binding of tamoxifen (ligand dependent) 
(Nettles et al. 2008, Jordan et al. 2015, Fanning et al. 2016). 
We have also performed molecular dynamics modeling to 
demonstrate the conformational perturbation of the ER 
LBD with D538 mutation (Fanning et al. 2016) (Fig. 4).

ER-positive resistance in breast cancer is also 
attributed to the activation of growth factor pathways, 
such as HER2, IGF-1R and FGFR and stress-related 
kinases, such as AKT, JNK, MAPKs, c-SRC and others, that 
regulate posttranslational modifications of the ER and 
its coactivators that increase the receptor activity (Schiff 
et al. 2004, Shou et al. 2004, Santen et al. 2009b, Theoret 
et  al. 2011). There is clinical evidence that proves that 
differential expression of various growth factor receptors 
in tamoxifen-resistant tumors are associated with 
resistance to tamoxifen and can play a role of a predictive 
clinical marker for therapy efficacy (Busch et  al. 2015, 
Tomiguchi et  al. 2016). Interestingly, these mechanisms 
can increase the membrane-associated ER activity with 
17β-estradiol (E2) or even tamoxifen, also contributing to 

resistance in breast cancer. Increased levels of NF-κB and 
AP-1 can tether more ER to certain gene promoters and 
promote hormonal resistance (Zhou et al. 2007).

Bypass pathway

Ligand and ER-independent mechanism depends upon 
MYC, Cyclin E1 and D1, p21 and p27 can promote 
progression through cell cycle despite tamoxifen therapy 
(Span et al. 2003, Butt et al. 2005, Perez-Tenorio et al. 2006, 
Chu et al. 2008). Antiapoptotic molecules, such as Bcl-xL, 
can be overexpressed to inhibit pro-apoptotic molecules 
and promote survival (Riggins et al. 2005).

Evolution of acquired resistance in 
prostate and breast cancers

Antihormonal therapy is standard for the treatment of 
recurrent and metastatic prostate cancer, however, up 
to 90% of these patients will ultimately fail and develop 
CRPC disease within 12–33  months after ADT. To 
understand this process of acquired resistance, numerous 
studies in vitro and in vivo were performed to simulate 
long-term ADT in prostate cancer cells to decipher the 
evolving mechanisms of acquired resistance (Kokontis 
et al. 1994, Umekita et al. 1996, Joly-Pharaboz et al. 2000) 
(Fig.  5). The studies to mimic long-term antiandrogen 
therapy in prostate cancer were performed using LNCaP 
cells, a popular AR-positive human cell line. Initial 
studies used various durations of steroid deprivation, 
with culture media containing charcoal-treated serum 
(Kokontis et  al. 1994). Continuous passaging of cells in 
androgen-deprived conditions led to the selection of 
clones hypersensitive to androgens. However, longer 
androgen starvation (2  years) of these clones let to the 
isolation of cells that grow independently from androgen, 
with an unanticipated vulnerability (Kokontis et al. 1994). 
Low doses of androgen reduced the number of viable 
cells after 6 days of treatment (Kokontis et al. 1994). The 
authors (Kokontis et al. 1994) also noted a high level of 
AR protein and mRNA in these resistant cells compared 
to wild-type LNCaP cells. Expression of PSA protein 
and mRNA increased when treated with an androgen. 
Experiments in vivo using the same cells showed that the 
wild-type LNCaP tumors grew well in mice with androgen 
treatment; however, the derived resistant cell line grew 
only in castrated mice and treatment with DHT caused 
regression of the tumors (Umekita et al. 1996). The authors 
(Umekita et al. 1996) used further androgen deprivation of 
resistant cells in their experiments in vitro to derive a cell 
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line that grew in androgen-deprived conditions as well 
as the wild-type cell line under testosterone stimulation. 
Interestingly, these resistant tumors were stimulated to 
grow with E2 and medroxyprogesterone acetate (MPA) 
and 5α-reductase inhibitor finasteride was able to partially 
reverse the tumoricidal actions of testosterone (Umekita 
et al. 1996).

Another group has performed similar in vitro and in 
vivo studies with long-term androgen-deprived LNCaP cells 
(Joly-Pharaboz et  al. 2000). Wild-type LNCaP cells were 
passaged in culture medium supplemented with charcoal-
treated serum for 1 year (Joly-Pharaboz et al. 2000). The 
resulting cell line grew independently from androgen, 
however, treatment with various androgens, and even E2 
resulted in retarded cell growth due to apoptosis (Joly-
Pharaboz et  al. 2000). Experiments in vivo showed that 
androgen induced apoptosis and tumor regression with 
this model (Joly-Pharaboz et al. 2000).

Liang and coworkers (Chuu et al. 2011b) used variants 
of LNCaP prostate cancer cell lines to demonstrate that 
antiandrogen-resistant LNCaP cell lines with an AR-rich 
phenotype have a G1 cell cycle blockade in the presence 
of androgens by regulating cMyc, Skp2 and p27kip via 
the AR. Additionally, they found that higher dosages of 
testosterone lead to more growth inhibition of relapsed 
tumors suggesting that the manipulation of androgen/AR 

signaling pathway may be a potential therapeutic target 
in AR-positive metastatic prostate cancer. Kawata and 
coworkers (Kawata et  al. 2010) reported that prolonged 
treatment of a bicalutamide-resistant subline (LNCaP-BC2) 
with bicalutamide induces AR overexpression and 
androgen hypersensitivity to low levels of androgen. 
The authors identified the phosphorylated AR (pAR210) 
overexpression and a possible mechanism for androgen 
hypersensitivity. However, after long-term androgen 
deprivation, LNCaP prostate cancer cells evolve to be a 
cell population vulnerable to androgen-induced apoptosis 
(Chuu et al. 2011a). Nevertheless, continuous treatment 
with androgens eventually selects for cells that will 
be resistant to the apoptotic actions of androgens and 
grow. The authors speculated that it would be possible 
to use intermittent androgen deprivation (IAD) to slow 
the progression of resistance and use androgen therapy 
during the relapse after the ADT cycle to further control 
the tumor progression (Chuu et al. 2011a).

Clinically, there is evidence to support androgen-
induced apoptosis in CRPC. Bruchovsky and coworkers 
(Akakura et  al. 1993, Bruchovsky et  al. 2000) used IAD 
to demonstrate that androgen action would inhibit 
growth of antiandrogen-resistant prostate cancer. There 
is evidence that IAD is able to prolong progression of 
resistant disease, and testosterone restoration between 

Figure 5
A schematic representation of the parallel cellular evolution of acquired hormone resistance to hormone deprivation in prostate and breast cancer cell 
models in vitro. (A) LNCaP cell line is an androgen-sensitive human prostate adenocarcinoma cell line. When LNCaP cells are cultured in an androgen 
depleted environment for 8–11 months in vitro, they become hypersensitive to androgen; and subsequently proliferate. With extended androgen 
depletion of 16–20 months, selection pressure occurs and LNCaP cells become vulnerable to androgens with death through apoptosis. Cells then exhibit 
the characteristic morphology of apoptosis with apoptotic membrane blebbing, followed by formation of membrane protrusions (apoptopodia, 
microtubule spikes, and beaded apoptopodia, beads-on-a-string appearance), ending with cellular fragmentation into apoptotic bodies. (B) MCF-7 cell 
line is an estrogen-sensitive human breast adenocarcinoma cell line. When MCF-7 cells are cultured in estrogen depleted environment for 6–12 months 
in vitro, they become hypersensitive to estrogen; and subsequently proliferate. With extended estrogen depletion of 12–18 months, selection pressure 
occurs and MCF-7 cells are now vulnerable to estrogens with death through apoptosis. Cells then exhibit the characteristic morphology of apoptosis.
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ablation therapy cycles can induce tumor regression in 
the laboratory in vivo (Sato et al. 1996) and in the clinic 
(Pether et al. 2003, Mathew 2008). In a recent viewpoint 
by Klotz and Higano (Klotz & Higano 2016), IAD was 
described as a viable alternative to the continuous 
androgen deprivation (CAD) in men with no underlying 
cardiovascular diseases. The IAD strategy was preferable 
with improved quality of life, cheaper health care costs, 
despite no observed advantage over CAD in terms of OS. 
Recently, Schweizer and coworkers (Schweizer et al. 2015) 
found a 50% response rate to androgen therapy when 
monitoring either PSA levels or radiologically identified 
CRPC disease.

Similar advances were made in studies of the 
antiestrogen resistance in breast cancer, and the evolution 
of breast cancer cells in the estrogen-free environment 
(Fig.  5). The evolution of MCF-7 breast cancer cells in 
estrogen deprivation conditions is similar to the evolution 
of LNCaP cells in response to androgen deprivation 
(Jordan et al. 2016).

Tamoxifen is a competitive inhibitor of estrogen action 
(Jordan 1984) and long-term adjuvant tamoxifen therapy 
was predicted to be essential to suppress breast tumor 
cell growth (Jordan 2014b). Early studies using MCF-7 
breast cancer cell line transplanted into oophorectomized 
athymic mice demonstrated that although tumors 
eventually developed despite tamoxifen therapy 
(Osborne et  al. 1987), the tumors, in fact, grew because 
of tamoxifen therapy (Gottardis & Jordan 1988, Gottardis 
et al. 1989a,b). Tamoxifen-stimulated tumors were growth 
stimulated by either tamoxifen or physiologic estradiol. 
As a result, no estrogen treatment or treatment with a 
pure antiestrogen (Gottardis et  al. 1989a,b) prevented 
tumor growth. Discovery of this biology of early acquired 
resistance to tamoxifen preceded the clinical finding that 
either an AI or the pure antiestrogen fulvestrant were 
appropriate second-line therapies after tamoxifen failure 
in MBC (Howell et  al. 2002, Osborne et  al. 2002). This 
unique form of acquired resistance has clinical relevance 
in SERM pharmacology with a withdrawal response in 
MBC to SERMs tamoxifen and raloxifene (Howell et  al. 
1992, Dosik & Kaufman 2004, Lemmo 2016). The recent 
development (Fan et  al. 2014a,b,c) of an in vitro model 
of acquired resistance to SERMs has provided important 
insight into how either tamoxifen (SERMs) or estrogen 
can stimulate tumor cell growth. Estrogen-stimulated 
growth in early acquired resistance to tamoxifen in 
vivo is via a genomic pathway, but with estrogen action 
at genomic sites blocked by tamoxifen. By contrast, 

tamoxifen stimulates tumor cell growth non-genomically 
by enhancing the IGFR1β pathway.

It is important to reemphasize that high-dose 
synthetic estrogen therapy was the first chemical therapy 
to treat any cancer (Haddow et  al. 1944). However, 
Haddow (1970) noted that high-dose synthetic estrogen 
therapy was only effective at producing a 30% response 
rate in MBC 5 years following menopause. If estrogen was 
administered therapeutically nearer to the menopause 
then MCB grew. The reasons for this clinical observation 
were unknown and mechanisms were not deciphered 
during the 1950s–1970s, when high-dose estrogen was 
the standard of care for postmenopausal MBC. In the 
1970s, tamoxifen, a non-steroidal antiestrogen (Jordan 
2003), became the standard of care for all stages of breast 
cancer until the introduction of AIs in the late 1990s. 
There was no interest in understanding how high-dose 
estrogen therapy killed breast cancer cells despite the 
fact that high-dose DES produced a survival advantage 
over tamoxifen in a small trial in MBC (Ingle et al. 1981, 
Peethambaram et al. 1999).

It is therefore ironic that the study of acquired 
resistance to tamoxifen treatment in breast cancer 
should expose a vulnerability of antihormone-resistant 
breast cancer i.e.: estrogen-induced apoptosis (Wolf &  
Jordan 1993, Yao et  al. 2000). Most importantly, the 
MCF-7 breast tumors developed acquired resistance to 
tamoxifen by cell selection over a 5-year period. Within 
two years, acquired resistance is evidenced by tamoxifen-
stimulated growth and estrogen-stimulated growth; the 
growth stimuli are interchangeable. However, between 3 
and 5 years of tamoxifen exposure, tamoxifen stimulates 
tumor growth but physiologic estrogen causes complete 
regression of small (<0.3 cm) tumors. The MCF-7 tumors 
rapidly regressed in response to E2. It was proposed (Yao 
et  al. 2000) that estrogen treatment of recurrent breast 
cancer following the failure of long-term tamoxifen 
treatment, will result in a tumor regression and breast 
cancer cells will regain their responsiveness to estrogen 
for growth. Tamoxifen causes a decrease in mortality and 
prevents disease recurrence after 5 years of stopping the 
therapy, i.e., does not cause a rebound effect anticipated 
for a competitive inhibitor of estrogen action. The 
reason suggested is that a woman’s own estrogen causes 
estrogen-induced apoptosis in populations of vulnerable 
micrometastases that has long-term acquired resistance 
(Yao et  al. 2000). This hypothesis in now supported by 
considerable clinical evidence reviewed elsewhere (Jordan 
2014a, 2015a).
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Song and coworkers (Song et al. 2001) reported that 
long-term estrogen deprivation leads to estrogen-induced 
apoptosis in LTED breast cancer cell population in vitro. 
Estrogen deprivation for a short time causes an elevation 
in the ER protein levels (Katzenellenbogen et  al. 1987, 
Welshons & Jordan 1987). After 8–11 months of estrogen 
deprivation, MCF-7 cells acquire adaptive hypersensitivity 
to estrogen (Masamura et  al. 1995), which is similar to 
LNCaP cells and hypersensitivity to androgen (Feldman 
& Feldman 2001). This may explain the early mechanism 
of AI resistance in breast cancer. Various cell models were 
developed over the years to study long-term estrogen 
deprivation in estrogen-free environment and using 
dilution cloning selection (Jiang et  al. 1992, Pink et  al. 
1995, Song et  al. 2001, Lewis et  al. 2005b). Two breast 
cancer cell lines were selected after long-term estrogen 
deprivation (2  years). MCF-7:5C and MCF-7:2A cell 
lines were at first characterized as ER positive and non-
responsive to estrogens or antiestrogens (Jiang et  al. 
1992, Pink et al. 1995); however, optimization of culture 
conditions dramatically altered these characteristics 
(Lewis et al. 2005b). The MCF-7:5C cells were shown to 
undergo low-concentration estrogen-induced apoptosis 
within a week of treatment in a concentration-dependent 
manner (Lewis et al. 2005b), and the intrinsic mechanism 
of estrogen-induced apoptosis was described (Lewis et al. 
2005a, Fan et al. 2012, 2015). The MCF-7:2A cells undergo 
slow apoptotic alterations that occur within two weeks 
of treatment with estrogen. Both of these cell lines were 
used to investigate genome-wide alterations in estrogen-
regulated gene expression profile involved in apoptosis 
(Ariazi et al. 2011).

Current therapies for hormone-resistant 
prostate and breast cancers

Resistance to antihormonal therapy occurs in prostate 
and breast cancers, as new cell populations are selected 
after long-term sex steroid deprivation. These cells are 
characterized by sex hormone-independent growth.

It is believed that the AR in CRPC is still functional 
and can be abrogated to stop disease progression. 
Cytotoxic chemotherapy was routinely utilized to treat 
aggressive disease in the absence of targeted alternatives 
for CRPC prostate cancer. De Bono and coworkers 
(De Bono et  al. 2010) compared cabazitaxel with the 
topoisomerase type II inhibitor mitoxantrone in mCRPC 
patients previously treated with docetaxel. Mortality 
was significantly decreased in the cabazitaxel group (De 
Bono et al. 2010). Smith and coworkers (Smith et al. 2013)  

evaluated cabozantinib (XL184), which is an orally 
bioavailable tyrosine kinase inhibitor that acts against 
MET and vascular endothelial growth factor receptor 2  
(VEGFR2), in CRPC patients. They concluded that 
cabozantinib has clinical efficacy in CRPC improving PFS 
with a decrease of soft tissue lesions, resolution of bone 
scans, decline of bone turnover markers, pain and use of 
narcotic painkillers. However, the major strategic advance 
for the treatment of CRPC is the realization that the AR is 
still functional in CRPC and, like in breast cancer, remains 
a potential target.

New antihormonal agents are improving the 
prognosis of CRPC. Abiraterone acetate (Barrie et al. 1994) 
is an inhibitor of cytochrome P450 (CYP17) (Fig. 1), which 
plays an essential role in de novo intratumoral androgen 
production from cholesterol in CRPC tumors (Locke et al. 
2008). This therapeutic approach to treat prostate cancer 
is analogous to the use of adjuvant therapy with AIs in 
postmenopausal breast cancer patients (Fig. 3). De Bono 
and coworkers (de Bono et al. 2011) evaluated abiraterone 
acetate in patients with mCRPC who have received 
chemotherapy and demonstrated that the inhibition of 
androgen biosynthesis by abiraterone prolonged the OS. 
Other approaches target the AR with new antiandrogens.

Scher and coworkers (Scher et al. 2010) evaluated the 
antitumor activity and safety of enzalutamide, which 
blocks AR activity in men with CRPC (Fig. 2). Increasing 
doses of enzalutamide reduced serum PSA and stabilized 
bone disease in 56% of patients (Scher et  al. 2010). 
Recently, Penson and coworkers (Penson et  al. 2016) 
compared the efficacy of enzalutamide and bicalutamide 
in CRPC. Enzalutamide decreased the mortality of patients 
by 76% with a median PFS of 19.4 months compared to 
bicalutamide with a median PFS of 5.7  months. There 
was a significant increase in PFS with enzalutamide in the 
proportion of patients with a ≥50% PSA response, time 
to PSA progression and radiographic PFS in metastatic 
patients. Advantages of enzalutamide were observed in 
both metastatic and nonmetastatic subgroups. However, 
evidence is emerging on acquired resistance to abiraterone 
and enzalutamide (Attard & Antonarakis 2016, Bubley & 
Balk 2017, Gupta et al. 2017).

Several new antiandrogens are in early clinical 
development. The antiandrogen ARN-509 developed by 
Janssen Research & Development is an example of a potent 
competitive pure antiandrogen that has been evaluated in 
phase I/II trials in CRPC patients. In phase I trial, ARN-509 
was well tolerated with fatigue being the most reported 
side effect (Rathkopf et  al. 2013). In the phase II study, 
ARN-509 demonstrated an 80–90% efficacy in patients 
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with naïve CRPC in both metastatic and nonmetastatic 
settings. There was a 29% response rate in mCRPC patients 
previously treated with abiraterone, reducing the PSA 
levels by more than 50% (Rathkopf et al. 2012). The novel 
small peptide EPI-001 targets the N-terminal domain of 
the AR containing the activating function-1 region (AF-1). 
This interrupts the AR’s interaction with other proteins 
and androgen response elements in the androgen-
responsive genes promoters. As a result, transcriptional 
activity is disrupted (Andersen et al. 2010). This peptide 
has not entered clinical trial, but showed promising results 
in the CRPC xenograft models (Andersen et al. 2010). A 
novel selective AR downregulating drug (SARD) AZD3514 
had limited tolerability in CRPC patients in a phase I trial 
with modest antitumor activity; however, it did show 
activity in 17–25% of patients reducing PSA by more than 
50% (Omlin et  al. 2015). The authors concluded that 
developing SARDs in the future for treatment of CRPC 
may hold merit (Omlin et al. 2015).

Despite the use of long-term antiestrogen adjuvant 
therapy for breast cancer, approximately 50% of patients 
have disease recurrence. The question we must ultimately 
address is how we improve response rates? Though 
tamoxifen was approved initially for treatment of MBC 
in both pre- and postmenopausal women, AIs became 
the first-line therapy for postmenopausal breast cancer 
patients who did not have any prior hormonal therapy 
or have recurred within 12  months after previous 
adjuvant AI therapy. However, if the tumors recur in 
less than 12 months after hormonal therapy with an AI, 
then tamoxifen is recommended or a pure antiestrogen 
fulvestrant as second-line therapies. Recently, Robertson 
and an international team of colleagues (Robertson et al. 
2016) in a phase III clinical trial have demonstrated 
superiority of fulvestrant over anastrazole as first-line 
therapy in postmenopausal patients with metastatic 
of locally advanced breast cancer. For premenopausal 
women, tamoxifen can be prescribed as first-line adjuvant 
hormonal therapy and AIs or fulvestrant can be used 
as second- and third-line therapies in case of cancer 
recurrence, but only with ovarian function suppression 
(Abderrahman & Jordan 2016). Antihormone resistance 
eventually occurs after exhaustive antihormone therapy 
fails. However, depending on the size and location of the 
metastasis cytotoxic chemotherapy is more likely to be 
used after a failed AI therapy rather than second or third-
line antihormone agents.

New strategies for the treatment of hormone-refractory 
breast cancer are evolving based on inhibition of aberrant 
pathways. Abnormalities in the CDK4/6 and the mTOR 

pathways play a crucial role in the pathogenesis of breast 
cancer. These pathways are therapeutic targets for the 
treatment of naïve MBC or antihormone-resistant breast 
cancer. In phase I/II clinical studies (Schwartz et al. 2011), 
palbociclib, which is a specific CDK4/6 inhibitor (O’Leary 
et  al. 2016), demonstrated an excellent bioavailability, 
mild to moderate adverse effects, and a well-tolerated 
toxicity. In phase III clinical study called PALbociclib 
Ongoing trials in the Management of breast cAncer-3 
(PALOMA-3) (Turner et  al. 2015) the combination of 
palbociclib with endocrine therapy significantly improves 
PFS. All these data resulted in palbociclib receiving an FDA 
approval in 2015 as a first-line treatment for advanced 
postmenopausal ER-positive/HER2-negative breast cancer 
in combination with letrozole.

Numeral studies with mTOR inhibitors (i.e. 
everolimus, temsirolimus, deforolimus) show promise in 
the ER-positive and/or HER2-positive breast cancer (Fasolo 
& Sessa 2008, Vicier et al. 2014, Baselga et al. 2017). The 
combination of everolimus with either an AI (Beck et al. 
2014, Finn et al. 2015) or fulvestrant (Beaver & Park 2012, 
Sun et al. 2016, Pritchard et al. 2017) demonstrated clinical 
efficacy. The Breast Cancer Trials of OraL EveROlimus-2 
(BOLERO-2) (Baselga et  al. 2012), combined everolimus 
and exemestane for women with advanced ER-positive/
HER2-negative breast cancer who previously failed AI 
therapy. In BOLERO-2, everolimus improved PFS in 
trastuzumab-resistant patients. Interestingly, in an early 
study with an mTOR inhibitor (deGraffenried et al. 2004) 
rapamycin ester (CCI-779) treatment restored tamoxifen 
response in tamoxifen-resistant breast carcinoma (Yu et al. 
2001).

Regrettably, combination therapies with CDK4/6 
inhibitors or mTOR inhibitors with an antihormonal 
therapy do not result in lives saved, although life extension 
is a positive benefit. The question now becomes: how can 
adjuvant endocrine therapy be advanced based on what 
we now know from current clinical trials? There is a linear 
progression from therapeutic success in MBC to trials of 
adjuvant therapy, but we suggest this may not be that 
simple with CDK4/6 inhibitors and mTOR inhibitors.

The high monthly cost for both CDK4/6 inhibitors 
and mTOR inhibitors (Carey & Perou 2015), and the 
toxicity profile of grade 3/4 side effects with palbociclib 
(Finn et  al. 2015) (i.e. neutropenia, leukopenia, and 
lymphopenia), and grade 1/2 side effects with everolimus 
(Baselga et  al. 2012) (i.e. fatigue, stomatitis, anorexia, 
diarrhea, noninfectious pneumonitis, metabolic disorders 
with hyperglycemia and hematologic disorders) hinder 
their utilization as a useful long-term adjuvant treatment. 
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These systemic side effects and financial costs will reduce 
patient compliance and the value of antihormone therapy 
will be lost. It is difficult to maintain compliance for 
current antihormonal agents for 5  years, so an increase 
in side effects will result in the failure to control disease 
recurrence. We suggest another path in the final sections 
of this review.

Consideration for implementing a pathway 
forward that saves lives following a 
diagnosis of prostate and breast cancer

Enormous progress has occurred in the last 40  years in 
the approach to treating prostate and breast cancer. In 
the period 1967–1977 there were no proactive detection 
programs, diagnosis was usually late stage disease and 
the word cancer was not used. Quite rightly, cancer had 
the reputation as a death sentence. Radical surgery and 
radiotherapy were the major weapons in the physicians 
armamentarium and chemical therapy (chemotherapy) 
was primitive. Medical oncology was an emerging 
specialty. High-dose estrogen therapy was effective in 30% 
of both metastatic breast and prostate cancers, but this was 
a paradox as both breast and prostate cancers were known 
to be sex steroid dependent. Mechanisms were unknown.

A significant step forward occurred in breast cancer 
treatment with the publication of a symposium at King’s 
College, Cambridge (28–29th September, 1977) in the 
October Supplement of Reviews in Endocrine-Related 
Cancer (Jordan 1978), the fore-runner of the current 
Society for Endocrinology journal Endocrine-Related 
Cancer. The conclusions, which hold true today, were: 
(1) treating animals with a large tumor burden cannot 
affect a cure; (2) the tumor ER is important to predict 
a response to tamoxifen; (3) treating with tamoxifen 
early in tumorigenesis: i.e. low tumor burden, produces 
some protection for animals; (4) longer treatment with 
tamoxifen is superior to short treatment in animals with 
microscopic disease.

This and subsequent publications (Jordan 1978, 
Jordan et al. 1979, 1980, Jordan & Allen 1980) triggered 
the move to long-term adjuvant antiestrogen therapy 
proven to save lives (Goss et al. 2005, Davies et al. 2013). 
As illustrated in this current review of prostate and breast 
cancer treatments, the diseases run different courses. 
Adjuvant therapy in prostate cancer is not implemented 
in the same way as is routine for breast cancer. In breast 
cancer, antihormone therapy is used to benefit patients 
in all stages of breast cancer, but the same is not true 
for prostate cancer. ADT is only used in MPC, locally 

advanced or recurring cases. Nevertheless, our review 
illustrates that the evolution of acquired resistance for 
both breast and prostate cancer is similar. Mechanisms of 
acquired resistance are broadly the same or the adaptions 
of alternate growth stimulating pathways are similar. The 
major risk factor for both prostate and breast cancer, is age. 
A primary consideration is to seek effective therapeutic 
solutions for our aging population. Resources are scarce 
and our goal of achieving chemoprevention of breast and 
prostate cancers has fallen short. We still do not know 
precisely who will develop breast or prostate cancer, and 
why. Treating large population to benefit a few, who do 
not know their disease was prevented, was an ineffective 
approach. Side effects from any chemopreventive 
intervention are unacceptable to any but the most 
committed high-risk woman who wishes to prevent breast 
cancer. A strategy to prevent prostate cancer using an 
inhibitor of 5α-reductase was scientifically sound (Homma 
et al. 1997, Andriole et al. 2004, Thorpe et al. 2007) but 
outcomes were controversial due to potential risks of 
high-grade prostate cancers and this advance in health 
care was abandoned (FDA 2011, Theoret et al. 2011). The 
chemoprevention solution has overwhelmed healthcare 
systems. There is neither physician time to address 
individual needs for chemoprevention (Smith et al. 2017) 
nor, it seems, physician knowledge about options (Smith 
et al. 2017). We must, therefore, do what can be done to 
aid patients with breast and prostate cancers. This strategy 
must be inexpensive, globally applicable and aim to keep 
as many individuals well who can continue to contribute 
effectively to the welfare of the family. This essential goal 
will impact on the welfare of countries as each family unit 
can contribute to the economy of that country. In the 
final section we will address what can be done, how and 
why the approach is feasible.

An approach to global health care 
maintenance in prostate and  
breast cancers

Tamoxifen has taught us the fundamental laws of clinical 
therapeutics. To this day, antihormone therapy of MBC 
plus/minus chemotherapy or precision medicines (to 
block cell replication or the survival pathways that subvert 
antihormone action away from the ER growth pathway) 
can delay but not prevent death (Abderrahman &  
Jordan 2016). The same medicine tamoxifen or now an 
AI (letrozole) applied as a long-term adjuvant therapy, 
can delay recurrence and decrease mortality. Laboratory 
studies of acquired resistance to antihormone therapies 
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(Wolf & Jordan 1993, Yao et  al. 2000, Song et  al. 2001) 
opened the door to understanding the ‘carry over’ effect 
of long-term adjuvant antiestrogen therapy that decreases 
mortality after adjuvant therapy is stopped (Fisher et al. 
2005, Cuzick et al. 2007, Powles et al. 2007).

The knowledge of mechanisms in adjuvant therapy 
in breast cancer can now be built upon to enhance 
survivorship and improve the quality of life during 
long-term adjuvant therapy. By contrast, the urologic 
community must decide whether select patients, destined 
to remain hormone responsive, could or should be treated 
with adjuvant ADT. An approach would be to correlate 
the genomics of indolent primary tumors with outcomes 
at recurrence that is antihormone responsive MPC. In 
this way, analysis of large data sets could save lives. The 
identification of those tumors that recur with MPC but 
subsequently respond to ADT would be candidates for 
adjuvant approaches in the future. Indeed, long drug 
holidays or androgen therapy may benefit patients with 
androgen-induced apoptosis of microscopic disease. Until 
that time, the strategy of long-term adjuvant control of 
prostate cancer cannot be considered.

For breast cancer, by contrast, the landscape holds 
numerous affordable possibilities. The AIs have reduced RR, 
with fewer serious side effects, but results of survivorship 
are less clear than with the SERM tamoxifen. However, the 
creation of the ‘estrogen-free’ woman for the remainder 
of her life, during adjuvant AI therapy, has concerns for 
general health. Osteoporosis is a concern, as is the less 
well-defined issues of coronary heart disease (CHD) and 
reduced mental capacity. This may include exacerbation 
of Alzheimer’s disease for our aging population. Clearly, 
large populations of patients with Alzheimer’s should 
be examined to determine whether breast cancer 
adjuvant treatment with either tamoxifen or AIs advance 
Alzheimer’s onset or exacerbates symptoms and severity.

The ‘SERMs Solution’ (Lerner & Jordan 1990) for 
the chemoprevention of breast cancer now has a role 
to improve long-term adjuvant therapy. The original 
proposal for SERM was:

‘Important clues have been garnered about the effects of 
tamoxifen on bone and lipids so it is possible that deriva-
tives could find targeted applications to retard osteopo-
rosis or atherosclerosis. The ubiquitous application of 
novel compounds to prevent diseases associated with the 
progressive changes after menopause may, as a side effect, 
significantly retard the development of breast cancer.’ 
(Lerner & Jordan 1990)

Following the success of the pioneering SERM 
tamoxifen, the medicinal chemistry community has 

advanced numerous safe and widely used new SERMs 
including raloxifene, bazedoxifene and ospemifene 
(Maximov et al. 2013). All are FDA approved for different 
indications in postmenopausal women’s health. Only 
raloxifene has a cancer indication; the chemoprevention 
of breast cancer in high-risk postmenopausal women. 
Lasofoxifene is not yet approved but promises not only to 
reduce fracture risk in osteoporosis, reduce breast cancer 
incidence, and reduce strokes, but is the only SERM proven 
to reduce CHD (Cummings et al. 2010). Turning around 
the ‘SERM solution’ for women’s health one more time, 
there is a strategic opportunity for medicinal chemists 
to solve one of the important molecular mechanisms of 
acquired AI resistance, i.e.: expansion and mutations of 
the ER. However, this must be achieved not with an orally 
active pure antiestrogen (Abderrahman & Jordan 2016), 
but a SERM that destroys the ER.

Orally active ‘pure antiestrogens’ are a current 
focus of medicinal chemistry with the goal of being 
effective therapies in MBC after the failure of AI therapy 
(Abderrahman & Jordan 2016). But this is not good 
enough. The oral pure antiestrogen solution as a future 
adjuvant therapy would still keep women estrogen free.

Medicinal chemists already know how to make a 
SERM that maintains bone density in ovarierectomized 
rats, but destroys the tumor cell ER (Willson et al. 1994, 
Bentrem et al. 2001). The compound GW-5638 (Etacstil), 
was reported 20  years ago! The acrylic ‘antiestrogenic’ 
side chain when attached to the triphenyethylene core, 
fits appropriately into the ER ligand-binding domain but 
causes perturbation of the ER complex, resulting in rapid 
destruction (Wu et al. 2005). This acrylic side chain is a 
recurrent feature of the ‘new pure antiestrogens’ under 
investigation (Abderrahman & Jordan 2016).

A new SERM that destroys tumor ER, used as an 
adjuvant therapy, would not only enhance survivorship 
by reducing recurrence noted with AIs, but also improve 
woman’s health. Current problems of compliance can 
be addressed and improved. Women struggle with poor 
quality of life with AIs. Even a 3  month trial of local 
estrogen (or testosterone) is currently being evaluated 
to eliminate vaginal atrophy (Melisko et al. 2017), but a 
SERM could also achieve the same result (Jordan 2017b). 
Quality of life and being well is an essential component 
of patient survival. Stopping long-term adjuvant therapy 
prematurely, because of a lack of compliance, is the same 
as deciding upon a couple of years of adjuvant therapy. To 
stop adjuvant therapy early is not recommended. Indeed, 
the value of more than 5 years of adjuvant therapy has 
been evaluated. Ten years of adjuvant tamoxifen is superior 
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to 5 years of adjuvant tamoxifen in lives saved, but only 
in the five years after completion of 10 years of adjuvant 
tamoxifen (Davies et al. 2013). This is the essential role of 
estrogen-induced apoptosis, but the value in lives saved 
with an adjuvant AI is less clear (Goss et al. 2016).

The Study of Letrozole Extension (SOLE) addressed 
the issue of 3  month drug holidays annually (Fig.  6) 
but now is an opportunity to advance a new adjuvant 
therapy strategy. The goal of the study was to establish 
that a woman’s own estrogen would benefit patients 
by triggering estrogen-induced apoptosis. Invoking 
a physiologic antitumor mechanism would reduce 
micrometastatic disease and decrease recurrence. The 
hypothesis was based on published laboratory evidence 
(Wolf & Jordan 1993, Yao et al. 2000, Song et al. 2001). 
Though recommended at the time, administration of 
low-dose estrogen was considered too dangerous for 
patients without clinical evidence of efficacy and safety. 
The clinical studies have now occurred (Ellis et al. 2009, 
Anderson et al. 2012) so the laboratory concept is sound. 
The SOLE study is now reported (Colleoni et al. 2017) but 

shows no benefit for intentional 3  month annual drug 
holidays for 4 consecutive years of letrozole adjuvant 
therapy. Nevertheless, the SOLE trial provides significant 
important new information for two further advances in 
women’s health.

Our goal here is to propose a long-term therapeutic 
strategy that not only builds on past clinical experience, 
but also introduces a new strategic concept for adjuvant 
therapy to improve patient care globally. The new 
information from the SOLE trial is a first step forward. 
Firstly, the fact that a patient can stop therapy for 3 months 
and then restart adjuvant therapy allows compliance 
issues, due to side effects, to be addressed. A vigilant breast 
team can now offer returning to continuous adjuvant AI 
therapy to patients in distress. Secondly, the 3  month 
adjuvant window can now be used to create an advance 
in adjuvant therapy to reduce the micrometastatic tumor 
burden for those patients known to be at high risk for 
recurrence and death if a second five years of adjuvant 
therapy is not enforced (Abderrahman & Jordan 2017). 
This is important, as a short-term intensive preemptive 

*Postmenopausal women (HR+, lymph node-positive BC)
*Prior adjuvant endocrine therapy: 19% SERM alone, 

43% AI alone, 38% both SERM and AI

5 years 
Continuous letrozole (2.5 mg/daily)

Randomization

5 years 
Intermittent letrozole (2.5 mg/daily)

6 12 18 24 30 36 42 48 54 60

5
Years

Months
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5 yrs

4-6
Years

0

Figure 6
A schematic representation of the Study of Letrozole Extension (SOLE) trial. SOLE is a phase III randomized clinical trial of continuous vs intermittent 
letrozole in postmenopausal women who had received 4–6 years of adjuvant endocrine therapy for hormone receptor (HR)- positive, lymph node- 
positive, early-stage breast cancer (BC). The rationale of SOLE trial was to test if 3-month treatment-free intervals during extended adjuvant endocrine 
therapy, would improve disease-free survival (DFS). The underpinning of this hypothesis is based on the theory that letrozole withdrawal for 3 months 
would allow a degree of estrogenic stimulation toward residual resistant disease, and subsequently the residual disease would become susceptible to 
letrozole reintroduction. The primary endpoint was DFS (randomization until invasive local, regional, distant recurrence or contralateral BC; 2nd 
malignancy; death). Postmenopausal women with prior 4–6 years of adjuvant endocrine therapy, were randomized into two arms: first arm is control 
which is continuous letrozole of 2.5 mg/daily for 5 years, and the second arm is intermittent letrozole of 2.5 mg/daily for 9 months in the first 1–4 years 
and fully at year 5. The trial concluded no difference in DFS among the two arms but for the first time pre-planned medication non-adherence is not 
harmful. This can provide a treatment-side effects and financial relief to many patients.
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salvage therapy (Fig.  7), because cost and toxic side 
effects for current precision medicines (palbociclib and 
everolimus) will make years of combination therapy with 
an innovative antiestrogen therapy impractical (Carey &  
Perou 2015). But how should the clinical community 
advance the new therapeutic innovations?

Firstly, there has to be clearly defined patient 
population that is at high risk of recurrence despite 
long-term adjuvant antihormone therapy. Recent data 
reported by the Early Breast Cancer Trialists Collaborative 
Group (EBCTCG) (Pan et  al. 2017) define that high-risk 
population that recurs following 5  years of adjuvant 

tamoxifen. Follow-up is for 15 years and, not surprisingly, 
RR depend upon the size of the original primary tumor 
and the number of axillary lymph nodes. Secondly, there 
needs to be a defined combination of physiologic estrogen 
plus a cocktail of precision medicines to reduce the burden 
of micrometastatic disease and avoid recurrence (Jordan 
et al. 2016). The goal is to kill micrometastatic disease not 
just hold cancer cell growth. Understandable concerns are 
raised still about the safety of low-dose estrogen (Reeder-
Hayes & Muss 2017) and this is appropriate, but medicinal 
chemists are already addressing the problem. Raloxifene 
derivatives that trigger apoptosis in LTED breast cancer, 

Preemptive Salvage Therapy  

Positive lymph nodes 

High-risk Patients

Large primary tumor

5 Year Adjuvant anti-
estrogenic Therapy

(new SERMs that destroy ER) 

3 m
onths

REPEAT
ER + BC 
patients 

after surgery  

5 Year Adjuvant anti-
estrogenic Therapy
(tamoxifen or AI)  

ER + BC 
patients 

after surgery  
REPEAT

3 m
onths

A cocktail of ShERPA in synergy 
with FDA approved breast 

cancer cell-survival inhibitors 

A

B

A cocktail of low-dose estrogen in 
synergy with FDA approved breast 

cancer cell-survival inhibitors 

Figure 7
A schematic representation of the proposed design (alongside a proposed optimized version) for the preemptive salvage therapy. (A) Breast cancer 
patients who are ER- positive after surgery and at high risk of recurrence (this includes large primary tumors and positive lymph nodes at diagnosis), can 
harness the benefits of long-term estrogen deprivation, with a preemptive salvage therapy, aiming at clearing occult micrometastases. After 5 years of 
adjuvant antihormonal therapy with either tamoxifen or AIs, breast cancer cell populations undergo selection pressure. The new long-term estrogen-
deprived (LTED) breast cancer cell populations are now vulnerable to a woman’s own estrogen through apoptosis (aka estrogen-independent). Whereas, 
they would normally grow with estrogen within 5 years past menopause (aka estrogen-dependent). The clinically observed response rate to low-dose 
estrogen therapy was 30% in metastatic breast cancer. Estrogen can act in synergy with other FDA approved breast cancer cell survival inhibitors or 
apoptosis promoters. This synergy can potentially increase the response rate above 30%. (B) Panel A can be optimized. Estrogen deprivation can be 
achieved with a new SERM that degrades the ER, preventing future drug resistance and receptor mutations. As one example, there is an orally active 
SERD, GW5638, which is metabolically hydroxylated to GW7604, in the same way, tamoxifen is metabolically activated to 4-hydroxytamoxifen. Unlike 
tamoxifen, GW7608 triggers the destruction of ER in BC cells, while retaining an estrogenic tickle at ER elsewhere (i.e. bones and serum lipids). Although 
GW7608 is a SERD for degrading the ER, it is also a SERM due to its agonistic and antagonistic mechanism of action at different tissue levels. A similar 
mechanistic SERM/SERD compound can improve estrogen deprivation (with an AI) by destroying the ER, while maintaining women’s health. In addition, 
estrogen in the proposed 3-month drug holiday can be replaced with selective human estrogen receptor partial agonist (ShERPA). These compounds 
mimic estrogen without causing significant uterine growth and were found to inhibit the growth of endocrine-independent tamoxifen-resistant breast 
cancer cell lines.
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have been reported (Xiong et al. 2016) and clinical trials 
are planned.

Secondly, studies using FDA approved low-dose 
estrogen (FDA approved!) and cocktails of precision 
survival inhibitors in LTED breast cancer can be confirmed 
to be effective in LTED MBC. The strategy would be in 
place for the evaluation of the best selective human 
estrogen receptor partial agonist (ShERPA) (Xiong et  al. 
2016) to then go into the adjuvant testing. Already liquid 
biopsies for breast cancer with low tumor burden are 
being advanced in clinical testing (Phallen et  al. 2017). 
This technical advance will support adjuvant monitoring 
of apoptotic success.

Breast cancer treatment must evolve to improve 
women’s health. The view that ‘this is good enough’ 
must not take hold. A new SERM for adjuvant therapy 
must be the best to improve women’s health and the 
best to prevent breast cancer recurrences. Knowledge 
now exists for the eventual implementation of a new 
preemptive salvage therapy (Fig.  7) strategies based 
on the planned drug holidays in SOLE, and the use 
of a new SERM with a positive health pharmacology 
to replace AIs. Together, a new adjuvant SERM that 
destroys the ER with a SOLE adjuvant design of 3 month 
therapeutic windows, using precision medicines that 
kill micrometastatic breast cancer, would be an optimal 
strategy for breast cancer therapy to achieve. This 
would be cheap once patenting of precision medicines 
lapses, easy to administer orally and would address all 
current issues with current AI therapy. Nevertheless, 
it will be said that the plan could take decades so it 
cannot (should not) be attempted.

Forty years ago (Jordan 1978), there was no long-
term adjuvant therapy, no understanding of dangerous 
side effects with tamoxifen, i.e. endometrial cancer, no 
AIs or SERMs for women’s health. The strategy of long-
term adjuvant therapy in breast cancer was considered 
‘mindless’ (Stoll 1991) at best and would not improve 
patient care, and dangerous at worst as it would 
encourage premature drug resistance. These medical 
opinions did not go unchallenged (Jordan 1991). Instead, 
the translational adjuvant strategies using antiestrogens 
conceived in the laboratory in the 1970/80s, gave 
patients fewer RR, unanticipated major decreases in 
mortality, fewer contralateral breast cancers, awareness 
of the link between tamoxifen and endometrial cancer, 
an understanding of the unique mechanisms of acquired 
resistance to antihormones that can be used to treat 
breast and prostate cancer and the new science of sex 
steroid-induced apoptosis. It is now prudent to plan for 

improvements in clinical care and build on past clinical 
advances.
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