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Abstract: In the current paper, ion transport parameters in poly (vinyl alcohol) (PVA) based solid
polymer electrolyte were examined using Trukhan model successfully. The desired amount of lithium
trifluoromethanesulfonate (LiCF3SO3) was dissolved in PVA host polymer to synthesis of solid
polymer electrolytes (SPEs). Ion transport parameters such as mobility (µ), diffusion coefficient
(D), and charge carrier number density (n) are investigated in detail using impedance spectroscopy.
The data results from impedance plots illustrated a decrement of bulk resistance with an increase
in temperature. Using electrical equivalent circuits (EEC), electrical impedance plots (ZivsZr) are
fitted at various temperatures. The results of impedance study demonstrated that the resistivity
of the sample decreases with increasing temperature. The decrease of resistance or impedance
with increasing temperature distinguished from Bode plots. The dielectric constant and dielectric
loss values increased with an increase in temperature. The loss tangent peaks shifted to higher
frequency region and the intensity increased with an increase in temperature. In this contribution,
ion transport as a complicated subject in polymer physics is studied. The conductivity versus
reciprocal of temperature was found to obey Arrhenius behavior type. The ion transport mechanism
is discussed from the tanδ spectra. The ion transport parameters at ambient temperature are found
to be 9 × 10−8 cm2/s, 0.8 × 1017 cm−3, and 3 × 10−6 cm2/Vs for D, n, andµ respectively. All these
parameters have shown increasing as temperature increased. The electric modulus parameters are
studied in an attempt to understand the relaxation dynamics and to clarify the relaxation process and
ion dynamics relationship.

Keywords: solid polymer electrolyte; electrical impedance study; electrical equivalent circuits; bode
plots; trukhan model; dielectric relaxation study; electric modulus study; ion transport mechanism

1. Introduction

Human life and earth planet have been threatened by current types of energy forms, so that
researchers required thinking about a promising alternative which can be seen in electrical energy
form [1]. In this regard, lithium-ion batteries are considered as one of popular source of electrical
energy sources. For these to be applicable in a large scale, it needs for proper electrolytes which can be
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seen in solid polymer electrolytes (SPEs) have long been of interest to a number of researcher groups [2].
For example, polyethylene oxide (PEO) based polymer electrolytes are the most intensively studied [3],
and found to be one of the most promising materials for Li-ion batteries [2,3]. Several properties
make them to be appropriate electrolytes, such as plausible mechanical flexibility, cheapness [4,5].
On the other hand, relatively low ionic conductivity is one of the obvious drawbacks of PEO based
polymer electrolytes [5]. Another example of polymer host of interest to many researcher groups is poly
(vinyl alcohol) (PVA) [6,7]. It owes inherent properties, for instance reasonable potential host polymer,
relatively high tensile strength, mechanical strength, thermal stability, dielectric constant and charge
storage capacity [3,8]. The PVA based polymer electrolytes have shown suitability for applications in a
many of electrochemical cells [9,10] and supercapacitors [11]. Dealing with the ionic conductivity of
polymer electrolytes is absolutely impressive because of structure dependent characters, thereby, one
can alter the structure of the material which in turn appropriate for specific task applications in an
attempt to improve both chemical and physical properties [12,13].

There are three outstanding factors that estimate ionic conductivity in polymer electrolytes, such
as ion mobility, concentration, and diffusion coefficient [14]. These are under intense exploration
in PEO and PVA based polymer electrolytes [15–19]. There are numerous methods that used in
measuring these quantities. The most recent and common one is ac impedance spectroscopy [6,20],
whereas NMR spectroscopy can also be used to investigate mobility and relaxation behavior in polymer
electrolytes [21]. The core concept for applying impedance spectroscopy has been employed to estimate
the important transport parameters in polymer electrolytes [22]. Munar et al., [23], investigated
a dielectric spectroscopy-based approach for determining the parameters, such as ionic mobility,
concentration, and diffusion coefficient in lithium salts doped to polymer electrolytes. It is obviously
realized that ion transport mechanism is not entirely comprehended in polymer physics and the
numerous of information about ion conductivity motivates researchers to tackle with ion conducting
polymer electrolytes [24–28]. The knowledge of the physical and chemical properties of polymeric
materials from the molecular level to solid-state chemistry enables researchers to understand organic,
coordination, and solid-state chemistry, catalysis, physics, materials science, and solid state chemistry
and also to analyze electrical and mechanical properties of certain materials [27,29].

In this contribution, ion transport parameters for PVA:LiCF3SO3 solid electrolyte has been explored
using the Trukhan model. In this model, it is allowed to use the values related with fmax and tan(δ)max

in loss tangent plots and to calculate the ion transport parameters, such as mobility (µ), diffusion
coefficient (D), and charge carrier number density (n). Once the values of the diffusion coefficient
are attained, it is also easy to calculate mobility (µ) and charge carrier number density (n) from both
diffusion coefficients and DC conductivity at various temperatures.

2. Experimental Method

2.1. Materials and Sample Preparation

Sigma Aldrich (Kuala Lumpur, Malaysia) supplied the Poly (vinyl alcohol) (PVA)
(averageMw85,000–124,000,87%–89%) powder material. In the present work, solid polymer electrolytes
based on PVA were synthesised by a facile conventional solution cast technique. The procedure
includes dissolution of one gram of PVA in 50 mL of distilled water at 90 ◦C. The solution was stirred
continuously with aid of magnetic stirrer for several hours until the PVA powder was completely
dissolved, to obtain homogeneous viscous solution. Afterwards, the PVA solution was left to cool
down to room temperature. Subsequently, 10 wt.% of lithium trifluoromethanesulfonate (LiCF3SO3)
(Sigma-Aldrich, Kuala Lumpur, Malaysia) [CAS Number 33454-82-9, Molecular Weight = 156.01 g/mol]
was added to the solution to make it alkaline solution of PVA:LiCF3SO3 polymer electrolyte. Then, the
mixture was stirred continuously until a homogeneous solution was obtained. Ultimately, after casting
in Petri dish (90 mm × 15 mm, Sigma-Aldrich, Kuala Lumpur, Malaysia), the solution was left to dry to
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form a film at room temperature. The films produced were then put into desiccators for extra drying
and moisture elimination.

2.2. Impedance Measurement

The impedance spectra of the films was measured using HIOKI 3531 Z Hi-tester (No. 1036555,
Hioki, Nagano, Japan) in the frequency range of 50 Hz to 1000 kHz and at various temperature ranging
from 303 K to 353 K. The tester was connected to a computer and software recorded both the real and
imaginary parts of impedance spectra. The SPE films were cut into small discs of 2 cm in diameter and
placed between two stainless steel electrodes under spring pressure. From the analysis of the real (Zr)
and imaginary (Zi) parts of complex impedance (Z*) spectra, complex permittivity (ε*) and complex
electric modulus (M*) can be extracted.

3. Results and Discussion

3.1. Complex Impedance Analysis

Complex impedance spectroscopy (CIS) is a powerful technique applied to study the mechanism
of both ion transport and charge transfer in electrolytes and at electrodes, respectively at
various frequencies. The technique is relatively straightforward and informative in the studying
electrochemical behavior of electrodes and ion transport of ion conducting materials including polymer
electrolytes [30,31]. Herein, the technique is also used in analyzing electrical impedance plots (ZivsZr)
for all the samples at various temperatures as shown in Figure 1a–d. One can see a characteristic small
arc, with a center that is well below the real axis, at the high frequencies, and a linear tail at the low
frequencies. The plot can be modeled by an equivalent circuit consisting of a capacitor and a resistor
corresponds to immobile polymer chains and movement of ions, respectively as can be seen in later
sections [32]. The spike at the low frequency region was resulted from electric double layer (EDL)
capacitances formation by the free charge accumulation at the interfacial region of the solid electrolyte
and electrode surface [33]. In fact, the migration of ions and the surface heterogeneity of the blocking
electrodes are responsible for the inclination of data points at the low frequency [34]. The semi-circles
shrinking with an increase in temperature, indicating low resistance of the sample since the bulk
resistance (Rb) is reflected in intercept of the arc with the Zraxis. This increase in conductivity is posed
by an increase of both charge carrier mobility and carrier density. The nearly disappearance of the arc
in the final plot (Figure 1d) means dominating ionic conduction of the whole conductivity [35]. The
intercept of the arc with the real axis (Zr) at the low frequency (end) made the bulk (ionic) resistance
(Rb) within the materials [36].
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Figure 1. Complex impedance plot of PVA:LiFC3SO3 (ZivsZr) solid electrolyte at (a) 303 K, (b) 323 K 
(c) 343 K, and (d) 353 K. The insets indicate the corresponding bulk resistance Rb. Clearly from 303 K 
to 353 K the diameter of the semicircles in impedance plots decreases and the spike regions were 
increased. 
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Figure 1. Complex impedance plot of PVA:LiFC3SO3 (ZivsZr) solid electrolyte at (a) 303 K, (b) 323 K
(c) 343 K, and (d) 353 K. The insets indicate the corresponding bulk resistance Rb. Clearly from 303 K to
353 K the diameter of the semicircles in impedance plots decreases and the spike regions were increased.
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For the sake of clarity, the impedance plots in Figure 1 are simulated with electrical equivalent
circuits (EECs). Generally, modeling and investigation of the spectra of impedance are facilitated with
an equivalent circuit, which stemmed from the fact that it is an easy and provides the mechanism of the
system [37]. Figure 2a–d illustrates the experimental impedance plots with EECs for selected samples.
The EEC model is essential to grasp the electrical properties of polymer based solid electrolytes. It is
feasible to represent experimental impedance plots using a three-component EEC. More precisely, the
three chief components are ZCPE1, a constant phase element; ZCPE2, another constant phase element;
and a bulk resistance (Rb) for the SPE. Rb and ZCPE1 are reflected in the high frequency region, while
the low frequency spike region is linked to ZCPE2. This is indicative to the double layer capacitance
emerging at the electrodes and the SPEs interface [38]. The common equation for constant phase
element (CPE) is as follows [39–41]:

ZCPE =
1

Cωp

[
cos

(πp
2

)
− i sin

(πp
2

)]
(1)

where p is related the deviation of the plot from the axis while Zi and Zr are indicators of imaginary
and real parts of the impedance, respectively. C is the capacitance for the CPE and angular frequency is
denoted asω. In particular, CPE is acronym generally applied in place of capacitor in the context of a
modeled EEC. This is due to the fact that the behavior of SPEs is different from the behavior of an ideal
or pure capacitor. This denotes an ideal semi-circular pattern [38], which it is not likely to identify in
existing experimental impedance plots. In this case, it is probable to express the real (Zr) and imaginary
(Zi) complex impedance (Z*) values in the EECs for semicircle regions in the following way:

Zr =
RbCωp cos

(
πp
2

)
+ Rb

2RbCωp cos
(
πp
2

)
+ Rb

2C2ω2p + 1
(2)

Zi =
Rb

2Cωp cos
(
πp
2

)
RbCωp cos

(
πp
2

)
+ Rb

2C2ω2p + 1
(3)

here Rb is the bulk resistance which are obtained from the intersects of Figure 1. Based on Equations
(2) and (3), Figure 2a,b is simulated and little data at low frequency are neglected. Schematically the
EEC corresponding to Figure 2a,b is shown in Figure 3. However, for Figure 2c,d many data at low
frequencies can be distinguished and thus the low frequency regions cannot further be neglected. The
equations for impedance plots consists of semicircle (high frequency region) and spike (low frequency
tail) areas follows:

Zr =
RbC1ωp1 cos

(
πp1

2

)
+ Rb

2RbC1ωp cos
(
πp
2

)
+ Rb

2C2ω2p + 1
+

cos
(
πp2

2

)
C2ωp2 (4)

Zi =
RbC1ωp1 sin

(
πp1

2

)
2RbC1ωp cos

(
πp
2

)
+ Rb

2C2ω2p + 1
+

sin
(
πp2

2

)
C2ωp2 (5)

Based on Equations (4) and (5) the experimental impedance plots at high temperatures are well
simulated. It is clear that the diameter of the semicircle shrunk at the high frequency region under an
increasing of temperature. Figure 2c,d shows that the incomplete semicircle corresponds to a parallel
combination of Rb with CPE element and in series with another CPE corresponding to low frequency
tail as shown schematically in Figure 4. Table 1 tabulates all the parameters accomplished by fit for the
plots of impedance with equivalent circuits.
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Table 1. The parameters of the circuit elements of the poly (vinyl alcohol) (PVA):LiFC3SO3 solid
electrolyte at various temperatures.

Temperature (K) p1 (rad) p2 (rad) k1 (F−1) k2 (F−1) C1 (F) C2 (F)

303 0.84 - 5.60 × 108 - 1.79 × 10−9 -
323 0.83 - 5.50 × 108 - 1.82 × 10−9 -
343 0.75 0.85 8.00 × 107 6.50 × 105 1.25 × 10−8 1.56 × 10−6

353 0.74 0.80 5.50 × 10−7 2.50 × 105 1.82 × 10−8 4.00 × 10−6
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Moreover, the above elucidation and proposed semicircles for Nyquist plots are further supported
by investigating Bode plots. Figure 5 shows the Bode plots for the electrolyte samples at room
temperature. It has been demonstrated from the earlier studies that the Bode plots should exhibit three
discriminated regions: capacitive (plateau at low frequency), diffusion (inclined region), and charge
transfer regions (high frequency) [42,43]. Clearly three regions can be seen in the Bode plot. The plateau
region at low frequency is ascribed to capacitive behavior while, the intermediate frequency region
attributed to the diffusion and charge transfer regions is appeared at high frequency plateau region.
As demonstrated in impedance plots (see Figure 1), the semicircle is associated to transport of ions in
amorphous phase of electrolytes and the tails are referred to diffusion contribution. Obviously, with
rising temperature, the diffusion contribution is raised and the resistance declined, due to the increase
of mobility of ions and concentration of carriers at elevated temperatures as can be observed in later
sections. Normally, the spikes at low frequency regions are signified by CPE, which are in series with
equivalent circuit elements. Other researchers have also used EECs to illustrate the Bode and impedance
plots [44,45]. Clearly with rising temperature as shown in Figure 5 the charge transfer resistance
dropped. The low frequency dispersion region in the Bode plots is attributed to the phenomena of
ion diffusion while the high frequency region is ascribed to the charge transfer resistance [46]. Hence,
the Bode plots also supported the results obtained from the impedance plots. From the viewpoint
of physics it is important to provide polymer electrolytes with high DC conductivity and from the
viewpoint of chemistry it is essential for the samples to have the low charge transfer resistance.Polymers 2019, 11, x FOR PEER REVIEW 10 of 25 
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3.2. Dielectric Properties

To examine the ionic conductivity of polymer electrolyte, it is obeyed that the dielectric properties
has to be measured. In an attempt to improve conductivity, the number of free mobile ions in the
polymer electrolyte is increased [47]. These properties provide an insight into both the conductivity and
the crystallinity of polymers [48]. For this to perform, the dielectric spectroscopic technique allows one
to investigate the various dynamic mechanisms in electrolytes. Its principle is based on perturbation
by applying an alternating field into the electrolyte at different frequencies, and recording the response
that reflected in dielectric constant (ε) measurement. The two parts of complex dielectric function
(ε*) are the real (ε′) and the imaginary (ε”) which correspond to energy stored in the material, and
dissipated energy, respectively. Figures 6 and 7 show ε′ and ε” as a function of frequency at various
temperatures. From these two graphs, one can notice two obvious regions. One region is located at the
low frequency where the permittivity is very relatively quite large, as a result of the accumulation
of charge at the electrode-electrolyte interface which is called the electrode polarization (EP). The
second region is appeared at the high frequency where molecular dipoles cannot stay constant with
the rapidly changing field. One more observation is at the tail end of graph, the ε′ and ε” graph
become independent of frequency, i.e., remain constant. It can be interpreted on the basis of that
there is a lack of excess ion diffusion parallel to the field when the change in polarity of the field
met fast enough, i.e., when the frequency is relatively very high [49]. A general trend observed in
both figures is an increase in permittivity with increases in temperature. This is resulted from the
fact as the temperature increased; it helps facilitation of dipole orientation. It also reinforces charge
carrier density as a consequence of increasing salt dissociation and dissolution. These behaviors
are common to occur in some polymer electrolytes as documented in the literature [49–51]. To look
at this phenomenon in deep, there is the existence of forces in polymer materials which generally
classified into primary (intra-chain) and secondary (inter-chain) forces which in turn stabilize the
polymer structure [52]. The primary forces arise from the covalent bond formation (2.2–8.6 eV) to
bind the chains of backbone atoms together. However, there are four different secondary forces in
polymers, which are dipole-dipole bonding (0.43–0.87 eV), hydrogen bonding (0.13–0.30 eV), induced
interaction (0.07–0.13 eV) and dispersion interaction (0.002–0.09 eV). These forces possess relatively low
dissociation energies; thereby, these forces are susceptible to temperature change than their primary
counterpart. This behavior of temperature dependency of these forces causes the nature and extent
of molecular motions in polymer is flexible, which in turn, impact their dielectric behavior, charge
transport and charge storage properties. It is self-evident as temperature increases, the degree of salt
dissociation and re-dissociation of salts increase, showing an increase in the number of free ions or
charge carrier density [53].

It is well-defined that both dielectric constant (ε′) and number density of charge carriers (ni) are
strongly are interrelated through relation,ni = no exp (−U/ε′KBT), where U is the dissociation energy,
T is the absolute temperature, n0 is a pre-exponential constant, and KB is the Boltzmann’s constant.
Likewise, an increase in dielectric constant means the increase in DC conductivity. It is self-evident
that the DC ionic conductivity of polymer ion-conducting electrolytes depends upon both the charge
density (ni) and the mobility (µi) (σ= Σ qniµi), where q is the charge on ion carriers [24,25,28]. Therefore,
examining the dielectric constant can be an informative parameter and leading to a deep understanding
the electrical properties of polymer electrolytes and consequently predicting the conductivity behaviors
of the samples. From the Figure 7, one can observe that the dielectric loss is relatively large compared
to the dielectric constant (see Figure 6) at the lower frequencies, this may result from a huge difference
in the free charge motion in the material [35]. It was also found that dielectric relaxation primarily
resulted from reorientation process of dipoles in the polymer chains, and as a consequence it shows a
peak in the ε” spectra. However, the ion cooperative motions cause the relaxation peaks to be hidden
in the ε” spectra [54].
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Figure 6. Constant(ε′) as a function of the logarithm of frequency (f ) at different temperatures. It is
obvious that the dielectric constant increases with increasing temperature at low frequency region due
to electrode polarization effect.
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Figure 7. Dielectric loss (ε”) as a function of the logarithm of frequency (f ) at different temperatures.
The dispersion in dielectric loss spectra rises with rising temperature.

3.3. Electric Modulus Analysis

From electric modulus analysis, one can deliver insights into relaxation processes. This is
owing to the inverse of the permittivity is considered in electric modulus and hence the great
value of the permittivity because of electrode polarization (EP) effects at the low frequency can be
suppressed [55]. The main difficulties can be overcome which prevented analysis comprehensively
and descriptively relaxation in permittivity such as electrode nature, space charge phenomena and
conduction effects [56–61]. Recently, a number of studies revealed that conductivity and relaxation
dynamic of polymer electrolytes depend mainly upon the frequency and they are also strongly
susceptible to the motion of charge species and dipoles of the polymers [58–61]. Implementation of
electric modulus formalism enables investigation and analysis of the dielectric relaxation [57]. It is
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applicable to use the real (Zr) and imaginary (Zi) parts of complex impedance (Z*) in computing the
real and imaginary parts of complex electric modulus (M*), using the following formulae [57–59]:

M′ =
ε′

(ε ′2+ε
′′2

) = ωCoZ′′ (6)

M′′ =
ε′′

(ε ′2+ε
′′2

) = ωCoZ′ (7)

whereω is the angular frequency, Co is the capacitance of dielectric cell without the sample, Zr is the
real part of impedance and Zi is the imaginary part of the impedance. Figures 8 and 9 exhibit both
the real and the imaginary part of the electric modulus, M′ and M”, respectively. On the one hand,
it can be observed that both M′ and M” have a low value at the low frequency region, confirming the
suppression of the EP effect. On the other hand, at the higher frequencies, both parts of the electric
modulus increase and peaks can be noticed clearly in some of the M” lines while some others tend to
go beyond the experimental capabilities. All these are considered the conduction relaxation peaks.
Below the peak frequencies (fmax)the charge carries are mobile over a long distance [55].

The study of effect of temperature has showed as temperature increases, decrease M′ and a shift
of the M” peaks to the higher frequencies occurred. This is because at the higher temperatures, the
charge carriers are more mobile [62]. At low frequencies, there is an inclination of M′ values that
can be attributed to the large capacitance associated with solid electrolytes. Figure 8 shows that M′

also decreases with temperature increasing as a consequence of an increase in the mobility of the
polymer segments and charge carriers, in contrast, the permittivity (ε′) increases. Accordingly, both
Zr and Zi decrease while conductivity of polymer electrolyte noticeably grows, indicating a strong
coupling between ionic movement and the polymer segmental motion exhibited obvious peak in the
M” spectra [63] and no corresponding characteristics in the ε” spectra (see Figure 7). These peaks’
appearance came from the charge carriers that confined within potential wells and being mobile
over a short distance at the higher frequencies, in the other words, the peaks could be regarded as
two extremes from the transition regions from long-range ionic mobility (translation) to short-range
mobility (dipolar) [64]. Moreover, huge peak appearance is associated with the M” spectra shifting
forward with temperature, suggesting that as temperature increases, the conductivity relaxation time
decreases simultaneously.

It is noting that there are no features associated with Debye type behavior confirming that the
total conductivity may result from the migration of free ions together with both viscoelastic and
dipolar relaxations [65]. Two features; broadness and asymmetry of the shapes of electric modulus
(M”) in these plots are generally represented by the extended exponential decay function of the electric
field [66] as shown in Equation (8)

ϕ = exp
[(
−

t
τ

)β]
, 0 < β < 1, (8)

The stretching parameter β is equivalent to 1.14/w, where w is full-width at half-maximum
(FWHM) and it is 1.14 for Debye relaxation. In order to realize the relaxation dynamic mechanism in
polymer electrolyte via viscoelastic relaxation or ionic conductivity relaxation, it is necessary to look at
the Argand plots at various temperatures [66]. The Argand plot is presented in Figure 10 at selected
temperatures. It is clear that the semicircles are incomplete and the diameter well below the real axis
which indicates the distribution of relaxation times.
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Figure 8. Realpart of the electric modulus (M′) as a function of the logarithm of frequency (f ) at
different temperatures. It is obvious that M′ decreases with increasing temperature at high frequency
region while it has a low value at the low frequency region due to the suppression of the electrode
polarization effect.
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Figure 9. Imaginary part of the electric modulus (M”) as a function of the logarithm of frequency
(f ) at different temperatures. It is obvious that M” decreases with increasing temperature at high
frequency region while it has a low value at the low frequency region due to the suppression of the
electrode polarization.
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Figure 10. Argand plot at selected temperatures for PVA:LiFC3SO3solid electrolyte. The incomplete
semicircles indicate the distribution of relaxation times.

3.4. DC Conductivity Analysis

Temperature study of DC conductivity (σdc) has shown impressive information about the
Arrhenius-like behavior of the polymer electrolyte. From the impedance plots, the bulk resistance (Rb)
was determined at various temperatures. The thickness of the sample (l) and its effective area (A) were
used to calculate the DC conductivity at various temperatures (σdc = l/RbA). Figure 11 shows plot of
the log σdc as a function of 103 T−1. From the graph, it seems that the conductivity behaves linearly
when plotted against the inverse of temperature. Arrhenius conductivity is given by:

σdc = σoe
−Ea
KBT (9)

where Ea is the activation energy, KB is the Boltzmann constant and σo is pre-exponential factor.Thus, it
is confirmed that the polymer electrolyte behaves in good agreement with the Arrhenius equation. This
behavior is in accordance with the ones obtained from literature [18,67,68]. This segmental motion of
the polymer chain causes this increase in conductivity with the temperature elevation. To pinpoint this,
there is a mechanistic effect of ionic motion free volume of the whole system, allowing hoping of ions
through sites, in the other words, it provides pathways for ions to move through quickly. More clearly,
it means that the ionic motion is translational and mediated by the segmental motion. Interestingly,
temperature elevation makes the polymer more amorphous (disordered), allowing for faster internal
modes in the polymer chain, the bond rotations in these modes produce segmental motion that favors
intra- and inter-chain ion hopping, as a consequence, conductivity increased [6,69].
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Figure 11. Logarithm of DC conductivity (σdc) as a function of the inverse of temperature (1000/T).
The linear behavior of DC conductivity versus the reciprocal of temperature reveals that ion transport
follows the Arrhenius model.

3.5. Loss Tangent Analysis and Ion Transport Parameters

3.5.1. Loss Tangent Analysis

Herein, there is a chance to extract more information about the relaxation dynamics from
tan δ plots against frequency at various temperatures. The ionic conduction mechanism in the SPE
materials is still not fully understood because of the coexistence of both crystalline and amorphous
phases. In a complementary study, it is therefore important to understand the mechanism of ion
transport deeply accompanying with the processes of polymer segmental relaxation in polymer
electrolytes [24,25,58,70–72]. The mechanism of ion transport is still controversial among many
researcher groups that work in this area.

Dielectric loss tangent is expressed as the ratio of ε” to ε′ (tan(δ) = ε′′

ε′ ). Figure 12 shows the
loss tangent against the logarithm of frequency for PVA:LiCF3SO3 at various temperatures. The loss
tangent increases with frequency up till a peak is maximized; afterwards, it decreases with an increase
in frequency. This is largely understood from how the resistive (ε”) and the capacitive (ε′) elements of
the electrolyte respond to this alteration in frequency. At the lower frequency, the capacitive element
is modeled as an open circuit, so the resistive element contributes increasingly, whereas at the high
frequency, the capacitive element dominates remarkably [49]. From Figure 12, it seems that the position
and the height of the peak as well increase with an increase in temperature. This is explained in terms
of the fact that the higher temperature enables charge carrier movement to be easier and thus capable
of reaching relaxation at the higher frequency [19]. This finding is of significant importance in which
these tangent loss peaks and shifts with the temperature provide insight into the dielectric relaxation
process that is thermally activated in the samples [73,74]. Comparably, the ion hopping from one site
to another is as in crystalline ionic materials.

Meaningful view, in polymer electrolytes with plausible electrical conductivity, dielectric relaxation
peaks owing to permanent or induced dipoles may be prohibited by the relaxation from polarization of
mobile charged species exists in the material. The low frequency relaxation peaks disappeared in the
current work is related to the coupling of relaxation peaks with carrier motions [75]. The tan δ shape
in Figure 12 can be interpreted in terms of model of Koops phenomenology [76]. Accordingly, loss
tangent increases with an increase in the frequency, showing a maximum at a particular frequency at
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various temperatures. This belongs to the ohmic component of current increases more rapidly than
its capacitive component part. It is apparent that the capacitive component (Zi = 1/2πfC) is relatively
very small at the high frequency region. The fitting of impedance plots with EECs exactly supports
our interpretation to tan δ plot. In contrast, at the higher frequency region, the loss tangent decreases
with an increase in the frequency because the ohmic component of current is virtually frequency
independent. As a result, the large value of the frequency (f) makes the capacitive component to be
increased in proportion to frequency [77,78]. The broadness feature of the loss tangent peak emphasizes
that the relaxation process is non-Debye relaxation and confirmed from the electric modulus analysis
as well.

Paramount importance finding is the increase in height of tan δ with temperature could be
correlated to a decrease in resistivity of the whole sample [79]. Recent advance made in the study
of loss tangent peaks at various temperatures are powerful to probe the relaxation peaks such as α,
β and γ relaxations. These are attributed to dipole rotation in crystalline phase, dipole orientation
in amorphous regions correspond to the movement of side groups or end-groups in the amorphous
phase, respectively [60]. In this contribution, it is understood that the shape and intensity of tan δ peaks
at various temperatures are completely dependent on the ion mobility and diffusivity. The values of
tan (δ)max and frequency can be used to plot mobility (µ), carrier density (n) and diffusivity (D) as a
function of temperature, which will be at the top of discussion in the next sections.
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Figure 12. Tanδ as a function of the logarithm of frequency (f) at different temperatures. Tanδ increases
with increasing frequency till reaching a maximum value at different temperatures and followed by it
decreases with an increase in frequency.

3.5.2. Diffusion Coefficient Analysis

It is well assumed to say that ion conducting electrolyte is heart of all electrochemical devices.
Prior to use in electrochemical applications, such as battery and supercapacitor, the electrical properties
electrolyte have to be characterized. Among these properties, DC conductivity has to be well
analyzed [39]. From analysis of loss tangent, the tan δ plots are correlated to both the capacitive and
resistive component of the solid electrolytes. Furthermore, it is explained that this shift of tan δ peaks
towards the high frequency region is associated to the ions that thermally activated as well as the DC
conductivity pattern versus 1000/T supported this interpretation for tan δ peak shifts. In an attempt,
to calculate three properties, such as the number density, mobility and diffusion coefficient of the
charge carriers, the Trukhan model has been employed to the loss tangent data results. In this model,
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diffusion coefficient of cations and anions are supposed to be the same, so a simple expression can be
used to calculate the diffusion coefficient from the peaks appeared in the plots of loss tangent versus
frequency. The expression is as follows:

D =
2 π fmax L2

32 tan3(δ)max
(10)

where L is the sample thickness [23]. Figure 13 shows a graph between the diffusion coefficient and the
temperature. It can be clearly seen that the diffusion increases with the temperature non-linearly. This
randomness of the data points might be mainly due to that diffusion is facilitated by segmental motion
rather than pure ionic motion [80], and partly the increase in temperature allowed for more favorable
modes of segmental motion. One more interesting observation is that the diffusion parameter measured
to be 9 × 10−8 cm2/s and 9.2 × 10−7 cm2/s at the room temperature and 353 K, respectively which
by one order of magnitude. The value of diffusion coefficient obtained in the present work is quite
comparable to that reported for PEO based ion conducting polymer electrolytes using Nernst−Einstein
equation [81]. From Nernst−Einstein, one can convert the conductivity into a diffusion coefficient and
vice versa, i.e., the charge diffusivity Dσ can be expressed as:

Dσ =
KBT

Csalte2σdc (11)

where all parameters except Csalt in the relation have usual meanings. It is remarkable that Equation
(11) contains the known salt concentration Csalt (number density of molecules) in place of the unknown
concentration of free (dissociated) ions. In a comparison, the Trukhan is easy to be applied than the
Nernst−Einstein because it is too complicate to predict the number of free ions and ion aggregates
in polymer electrolytes. As far as we know, free ions, ion pair, ion multiple and ion aggregates exist
in polymer electrolytes [82]. Arya and Sharma, recently studied the electrical conductivity value of
particular SPEs films and they found that the conductivity depends on the number of free charge carriers.
In their study, the obtained diffusion coefficient of about (≈10−18 cm2/s) for SPEs based on PEO-PVP
complexed with NaPF6 [83] which is very low compared to the values obtained in the current work and
that reported by other researchers [81]. Moreover, Sun et al., [84], computed the diffusion coefficient of
almost (≈10−10 cm2/s) for poly (trimethylene carbonate) based Li ion conducting electrolyte.
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Figure 13. Diffusion coefficient (D) as a function of temperature (T). It is obvious that diffusion
coefficient of ions increases nonlinearly with temperature.
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3.5.3. Carrier Density Study

Another important parameter is the number of density of mobile ions that correlated to the
conductivity. The number density of mobile ions (n) can be estimated from the well-known Einstein
relation as shown below:

n =
σdcKBT

De2 (12)

where σdc is DC conductivity, KB is the Boltzmann constant, T is the absolute temperature, D is the
diffusion coefficient and e is the elementary charge. Figure 14 exhibits number density of mobile ions
(n) as a function of the temperature. It is noticeable that there is a slight increase in n as temperature
increases, which remains less than an order of magnitude. The logical explanation of influence of the
temperature may be by considering the ions bound in the crystalline parts of the polymer matrix are
released as a result of making the polymer more amorphous [23]. From the literature, a number of
different models were reported in calculating the number density (n) of ions in polymer electrolytes.
Among them, the Rice and Roth model [85] states that conductivity can be expressed as:

σ =
1
3

 (Ze)2

KBT

nvl exp
(
−

Ea

KBT

)
(13)

It is seen from the above equation, to obtain the jump distance, l, between the transit sites or the
distance between two coordinating sites must be known. And v is the velocity of the ionic carrier given
by the following equation:

v =

√
2Ea

M
(14)

where M is the mass of the ion and Ea is the activation energy. The value of n for the polymer-salt
system has been calculated by some researchers [86–88]. Maurya et al. [86] calculated n for the
PEO-NH4CIO4 electrolyte system using transient ionic current technique and the n values were in
the range of 106 to 1017 cm−3. Winie et al. [89] computed the number density of mobile ions (1017 to
1019 cm−3) using the Rice and Roth equation for plasticized hexanoyl chitosan-lithium salt polymer
electrolyte, and Majid and Arof [87], obtained the value of number density (n) in the range 1018 to
1019cm−3. Chandra et al. [88] documented the value of number density (n) in the range of 1016 to
1018 cm−3 for PEO:PVP:AgNO3 based SPEs. Agrawal et. al. [90] also reported the mobile of ion
concentration in the range 1015 to 1016 cm−3 for hot press PEO:AgNO3:SiO2nano-composite system.
It is also reported that the conductivity obtained is dependent on both the number of mobile ions
and mobility [90]. In this contribution, the carrier density of 0.8 × 1017 cm−3 is comparable to those
reported for polymer based solid electrolytes in the literature [86–90].

The present study aims at pinpointing that the Trukhan model is relatively an accurate method to
calculate the transport parameters associated with the ion movements in polymer electrolytes. In a
comparison, both Rice and Roth and Trukhan models are two important models, where it is clearly
seen that the Rice and Roth model is a complicated model that depends upon several parameters which
are difficult to estimate correctly, for instance, the jump distance (l) and activation energy (Ea). Hence
the Trukhan model has showed a deeper understanding in terms of number density and mobility of
ions on variation of the conductivity than the other model.

3.5.4. Ion Mobility Analysis

Ion mobility can be calculated from the following equation:

µ =
σDC

en
(15)

where µ is the ionic mobility. Figure 15 shows the temperature and ion mobility relationship. It is seen
that the temperature dependence of µ is comparable to that in diffusivity. Indeed, an increase in the
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mobility resulted from an increase in the temperature, but it is not linear. At a first glance, this increases
in the mobility caused by the free volume formation, in which the temperature enhanced free volume
in the amorphous phase [77]. The ion mobility was 3 × 10−6 cm2 V−1 s−1 at ambient temperature
whereas about 3 × 10−5 cm2 V−1 s−1 at 353 K. Winie et al. [89] confirmed observation of the ion mobility
improvement with an increase in temperature. On the one hand, Majid and Arof [87], obtained the
value of mobility (µ) in the range 10−8 to 10−6 cm2 V−1s−1. Agrawal et al. [90] however, reported 10−6

cm2 V−1 s−1 for ionic mobility. On the other hand, Arya and Sharma [83], documented the ion mobility
(µ) in the range 10−10 to 10−12 cm2 V−1 s−1. Recently, Patla et al. [91] reported the ion mobility (µ) in
the range 1.8 × 10−4 to 9.5 × 10−11 cm2 V−1 s−1 for PVDF based polymer nano-composites incorporated
with ammonium iodide (NH4I) salt.

Polymers 2019, 11, x FOR PEER REVIEW 19 of 25 

 

in polymer electrolytes. Among them, the Rice and Roth model [85] states that conductivity can be 
expressed as: 

2
a

B B

1 ( )σ exp
3

EZe nvl
K T K T

   
= −  

   
 (13) 

It is seen from the above equation, to obtain the jump distance, l, between the transit sites or 
the distance between two coordinating sites must be known. And 𝑣 is the velocity of the ionic 
carrier given by the following equation: 

a2Ev
M

=  (14) 

where 𝑀  is the mass of the ion and 𝐸  is the activation energy. The value of 𝑛  for the 
polymer-salt system has been calculated by some researchers [86,87,88]. Maurya et al .[86] 
calculated 𝑛 for the PEO-NH4CIO4 electrolyte system using transient ionic current technique and 
the 𝑛 values were in the range of 106 to 1017 cm−3. Winie et al. [89] computed the number density of 
mobile ions (1017 to 1019 cm−3) using the Rice and Roth equation for plasticized hexanoyl 
chitosan-lithium salt polymer electrolyte, and Majid and Arof [87], obtained the value of number 
density (n) in the range 1018 to 1019cm−3. Chandra et al. [88] documented the value of number density 
(n) in the range of 1016 to 1018 cm−3 for PEO:PVP:AgNO3 based SPEs. Agrawal et. al. [90] also 
reported the mobile of ion concentration in the range 1015 to 1016 cm−3 for hot press 
PEO:AgNO3:SiO2nano-composite system. It is also reported that the conductivity obtained is 
dependent on both the number of mobile ions and mobility [90]. In this contribution, the carrier 
density of 0.8 × 1017 cm−3 is comparable to those reported for polymer based solid electrolytes in the 
literature [86–90].  

The present study aims at pinpointing that the Trukhan model is relatively an accurate method 
to calculate the transport parameters associated with the ion movements in polymer electrolytes. In a 
comparison, both Rice and Roth and Trukhan models are two important models, where it is clearly 
seen that the Rice and Roth model is a complicated model that depends upon several parameters 
which are difficult to estimate correctly, for instance, the jump distance (l) and activation energy 
(Ea).Hence the Trukhan model has showed a deeper understanding in terms of number density and 
mobility of ions on variation of the conductivity than the other model. 

 

Figure 14. Carrier number density as a function of temperature. It is clear that the number density of 
ions slightly increases with increasing temperature. 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

298 308 318 328 338 348 358

T (K)

n 
(c

m
-3

) x
 1

0 
 17

Figure 14. Carrier number density as a function of temperature. It is clear that the number density of
ions slightly increases with increasing temperature.

Polymers 2019, 11, x FOR PEER REVIEW 20 of 25 

 

3.5.4. Ion Mobility Analysis 

Ion mobility can be calculated from the following equation: 

DCσμ
en

=  (15) 

where μ is the ionic mobility. Figure 15 shows the temperature and ion mobility relationship. It is 
seen that the temperature dependence of μ is comparable to that in diffusivity. Indeed, an increase 
in the mobility resulted from an increase in the temperature, but it is not linear. At a first glance, 
this increases in the mobility caused by the free volume formation, in which the temperature 
enhanced free volume in the amorphous phase [77]. The ion mobility was 3 × 10−6 cm2 V−1 s−1 at 
ambient temperature whereas about 3 × 10−5 cm2 V−1 s−1at 353 K. Winie et al. [89] confirmed 
observation of the ion mobility improvement with an increase in temperature. On the one hand, 
Majid and Arof [87], obtained the value of mobility (μ) in the range 10−8 to 10−6 cm2 V−1s−1. Agrawal et 
al. [90] however, reported 10−6 cm2 V−1 s−1 for ionic mobility. On the other hand, Arya and Sharma 
[83], documented the ion mobility (μ) in the range 10−10 to 10−12 cm2 V−1s−1. Recently, Patla et al. [91] 
reported the ion mobility (μ) in the range 1.8 × 10−4 to 9.5 × 10−11 cm2 V−1 s−1 for PVDF based polymer 
nano-composites incorporated with ammonium iodide (NH4I) salt. 

 

Figure 15. Ion mobility μ as a function of temperature (T). It is obvious that the mobility of ions 
increases nonlinearly with temperature. 

4. Conclusions 

In conclusions, Trukhan model has been verified as a promising method for study diffusion 
coefficient, charge carrier number density and mobility in PVA:LiCF3SO3 SPE. In this method, peaks 
in loss tangent spectra were used in the calculations. Using electrical equivalent circuits (EEC), 
electrical impedance plots (Zi vs. Zr) are fitted at various temperatures. The results of impedance 
study demonstrated that the resistivity of the sample decreases with increasing temperature. The 
decrease of resistance or impedance with increasing temperature distinguished from Bode plots. It 
has been found that temperature increases lead to lower bulk resistance and increased permittivity. 
The Argand plots reveal that ion relaxation follows non-Debye model. The position and height of the 
loss tangent versus frequency plots also change with temperature, with higher temperatures 
resulting in a positive shift in position and height of the peaks. The dc conductivity showed an 
Arrhenius type dependence on temperature, so increasing temperature has led to an increase in 
conductivity; this increase has been explained by the increase in the amorphous phase of the 

0

5

10

15

20

25

30

35

298 308 318 328 338 348 358

T (K)

μ 
(c

m
2  v

-1
 s-1

) x
 1

0 
 -6

Figure 15. Ion mobility µ as a function of temperature (T). It is obvious that the mobility of ions
increases nonlinearly with temperature.
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4. Conclusions

In conclusions, Trukhan model has been verified as a promising method for study diffusion
coefficient, charge carrier number density and mobility in PVA:LiCF3SO3 SPE. In this method, peaks in
loss tangent spectra were used in the calculations. Using electrical equivalent circuits (EEC), electrical
impedance plots (Zi vs. Zr) are fitted at various temperatures. The results of impedance study
demonstrated that the resistivity of the sample decreases with increasing temperature. The decrease
of resistance or impedance with increasing temperature distinguished from Bode plots. It has been
found that temperature increases lead to lower bulk resistance and increased permittivity. The Argand
plots reveal that ion relaxation follows non-Debye model. The position and height of the loss tangent
versus frequency plots also change with temperature, with higher temperatures resulting in a positive
shift in position and height of the peaks. The dc conductivity showed an Arrhenius type dependence
on temperature, so increasing temperature has led to an increase in conductivity; this increase has
been explained by the increase in the amorphous phase of the polymer. The diffusion coefficient,
obtained from loss tangent plot, also showed a non-linear dependence on temperature, with increases
in temperature resulting in an increase in diffusion coefficient. Charge carrier density showed a similar
behavior, but the increase with temperature was not very large. Finally, the relation between the
mobility and the temperature was seen to be very similar to the one between the diffusion coefficient
and the temperature. This shows that the Trukhan model is successful in utilizing complex impedance
spectroscopy to analyze ion transport parameters in SPEs.
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