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Exhaled volatile organic 
compounds for diagnosis 
of hepatocellular carcinoma
Thanikan Sukaram1, Rossarin Tansawat2,3, Terapap Apiparakoon4, 
Thodsawit Tiyarattanachai5, Sanparith Marukatat6, Rungsun Rerknimitr1,3 & 
Roongruedee Chaiteerakij1,3*

Volatile organic compounds (VOCs) profile for diagnosis and monitoring therapeutic response of 
hepatocellular carcinoma (HCC) has not been well studied. We determined VOCs profile in exhaled 
breath of 97 HCC patients and 111 controls using gas chromatography–mass spectrometry and 
Support Vector Machine algorithm. The combination of acetone, 1,4-pentadiene, methylene chloride, 
benzene, phenol and allyl methyl sulfide provided the highest accuracy of 79.6%, with 76.5% 
sensitivity and 82.7% specificity in the training set; and 55.4% accuracy, 44.0% sensitivity, and 75.0% 
specificity in the test set. This combination was correlated with the HCC stages demonstrating by 
the increased distance from the classification boundary when the stage advanced. For early HCC 
detection, d-limonene provided a 62.8% sensitivity, 51.8% specificity and 54.9% accuracy. The levels 
of acetone, butane and dimethyl sulfide were significantly altered after treatment. Patients with 
complete response had a greater decreased acetone level than those with remaining tumor post-
treatment (73.38 ± 56.76 vs. 17.11 ± 58.86 (×  106 AU, p = 0.006). Using a cutoff of 35.9 ×  106 AU, the 
reduction in acetone level predicted treatment response with 77.3% sensitivity, 83.3% specificity, 
79.4%, accuracy, and AUC of 0.784. This study demonstrates the feasibility of exhaled VOCs as a non-
invasive tool for diagnosis, monitoring of HCC progression and treatment response.

Hepatocellular carcinoma (HCC) is the second major cause of cancer death  worldwide1,2. It commonly occurs 
in individuals with cirrhosis and chronic liver diseases, particularly chronic viral hepatitis B and C (HBV and 
HCV) infection, alcoholic liver disease, and non-alcoholic steatohepatitis (NASH)3. Screening and surveillance 
for HCC is recommended in these at-risk individuals. Upper abdominal ultrasonography is the most commonly 
used surveillance tool, which has shown high specificity of 92%4. However, its performance is operator-dependent 
with limited sensitivity of 47% for detection of early-stage  HCC4,5. Serum tumor marker alpha-fetoprotein (AFP) 
is another tool widely used for HCC detection. Serum AFP at the cutoff value of ≥ 20 ng/mL was shown to yield a 
sensitivity and specificity of 52% and 94%, and 44% and 85%, for detecting any stage HCC and early stage HCC, 
 respectively6. Serum AFP used in combination with ultrasonography slightly improves the detection rate of early 
HCC, but performance remains low, with a sensitivity of 63%4. Radiologic imaging CT or MRI plays a critical 
role for assessing response to HCC  therapy7. However, these techniques are expensive and have some adverse 
effects. New methods for early detection and monitoring of therapeutic response of HCC are therefore needed.

The analysis of volatile organic compounds (VOCs) has gained attention as a novel method for diagnosis of 
several  diseases8. The VOCs profile mirrors biological processes typical of different pathologies because VOCs 
link directly to intracellular metabolic activities including cell death, oxidative stress, or inflammation. VOCs 
are released from cells into blood circulation and excreted through body fluids, including bile, urine, feces and 
 breath9. A number of VOCs were shown to be commonly present in several cancers including colon, lung, 
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pancreas, breast and  cholangiocarcinoma10–14. The role of VOCs as a diagnostic or screening tool for these can-
cers has been extensively studied with promising results, but its possible role as a tool for monitoring treatment 
response has yet been explored.

A number of VOCs were shown to be differentially expressed in HCC. An in vitro study found that HCC cell 
lines had higher levels of methane-sulfonyl chloride and acetic acid but lower levels of 2,3-di-hydro-benzofuran 
and ethanol than normal  hepatocytes15. Another study examining VOCs in HCC patients found that the level of 
3-hydroxy-2-butanone was significantly higher in exhaled breath of HCC patients than healthy  controls16. In a 
more recent study, the combination of the 3 exhaled VOCs including acetone, acetaldehyde and dimethyl sulfide 
differentiated HCC from cirrhosis with 72% accuracy, 73% sensitivity and 71%  specificity17. Although these find-
ings suggested a potential role of VOCs as biomarkers for HCC diagnosis, the number of studies remains sparse. 
Additionally, it is currently unknown whether the levels of VOCs are related with HCC stages and whether the 
levels of VOCs change after therapy.

Our study had three goals: 1) To identify the VOC profiles with potential as biomarkers for HCC screening 
and diagnosis, 2) To determine the correlation between VOC levels and HCC stages, and 3) To measure changes 
in VOC levels after HCC treatment to explore the feasibility of using VOCs for monitoring treatment response. 
VOCs in exhaled breath of HCC patients and controls were identified using Gas chromatography-Mass spec-
trometry (GC–MS). Combinations of VOCs differentiating HCC patients from controls and the correlation 
between VOC profiles and HCC stages were determined using the Support Vector Machine (SVM) algorithm. 
Levels of VOCs before and after HCC treatment were evaluated and VOCs levels of HCC patients responding 
to treatment were compared to those of patients not responding the treatment.

Methods
The method was performed in accordance with the relevant guidelines and regulations. The study was approved 
by Institutional Review Board of the Faculty of Medicine, Chulalongkorn University (IRB number. 701/62). The 
study was conducted in compliance with the International guidelines for human research protection as Declara-
tion of Helsinki, The Belmont Report, CIOMS Guideline and International Conference on Harmonization in 
Good Clinical Practice (ICH-GCP). All participants gave written informed consent prior to study enrollment.

Participants. We calculated sample size based on 80% sensitivity, 8% acceptable error and alpha 0.0518. 
Therefore, breath samples were collected from 97 HCC patients and 111 controls (33 healthy volunteers and 
78 cirrhosis). The participants were recruited through the Chula Excellence Center of Endoscopy, Division of 
Gastroenterology, Department of Medicine, Chulalongkorn University. Inclusion criteria for HCC cases were 
patients newly diagnosed with HCC prior to receiving any treatments. Those who had recurrent HCC or with 
history of other cancers were excluded. The diagnosis of HCC was made using the American Association for the 
Study of Liver Diseases criteria: histopathology or typical radiologic images in patients with cirrhosis or chronic 
HBV  infection19. The control group included healthy individuals or cirrhotic patients who did not have a history 
of cancer. Cirrhosis was diagnosed by histopathology or radiologic evidence, including nodular surface of liver, 
small right liver lobe, caudate lobe or left lobe hypertrophy, in combination with evidence of portal hypertension 
(varices, collateral vessels, splenomegaly and thrombocytopenia).

Of the 97 HCC patients, 34 were collected breath samples for follow-up on the changes of VOCs after HCC 
treatment. The breath samples were collected at 1 day before the patients received treatment and at the time of 
the imaging study for clinical follow-up visit at 1–2 months post-treatment. Workflow of the patient enrollment 
process is illustrated in Fig. 1.

Data collection. We abstracted patient demographics, clinical information including age, gender, smoking 
status, alcohol intake, underlying diseases (cirrhosis, chronic HBV/HCV infection, and diabetes), and current 
medications, and laboratory data including liver chemistries and AFP level from electronic medical records. The 
stages of HCC were classified according to the Barcelona-Clinic Liver Cancer (BCLC) staging system. The BCLC 
staging system considers 3 main factors including tumor burden, liver function and patient performance status, 
and classifies HCC into 5 stages: stage 0 (very early), A (early), B (intermediate), C (advanced) and D (termi-
nal)20. Tumor response after therapy was evaluated by imaging technique including CT and MRI.

Breath collection. We applied the protocol for breath collection previously published with some 
 modifications21,22. All patients were ceased smoking and alcohol drinking at least 1 day and fasted for a mini-
mum of 8 h before breath sampling to minimize contamination from oral cavity or the effects of exogenous 
confounders from dietary intakes, smoking and alcohol. The use of antibiotics and probiotics was avoided for 
3 weeks prior to the breath sample collection. After fasting for at least 8 h, participants stayed in a 25 °C dedi-
cated room for at least 10 min before breath collection. All participants exhaled their breath with the full expira-
tory vital capacity into a 1-L disposable Tedlar Bag via disposable mouthpiece (SKC, Inc., USA.) in a single 
exhalation. The bag was immediately transferred on ice to the Pharmaceutical Research Instrument Center, 
Faculty of Pharmaceutical Science, Chulalongkorn University. Breath samples were analyzed within an hour 
after collection. Atmospheric air in the room for breath collection and in the laboratory was also collected and 
profiled to identify the ambient VOCs which were further used to normalize the VOC values by subtracting the 
ambient VOCs from the measured VOCs in the breath of participants.

VOC measurements. The VOCs were profiled by an untargeted metabolomics approach on gas chromatog-
raphy-mass spectrometry (GC–MS) (Agilent 7000D GC–MS, Triple Quadrupoles system (7890B GC/5975 MS 
system), Agilent Technologies, Santa Clara, CA, USA), equipped with a CP-Porabond-Q (25 m × 0.25 m × 3 µm) 
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PLOT column (Agilent Technologies, CA, USA)23. The schematic diagram of the study is shown in Fig. 2. Breath 
samples were extracted from the Tedlar bag using Solid Phase Microextraction (SPME) fiber (Carboxen/PDMS 
fiber 75 µm, needle size 24G, Agilent Technologies, CA, USA) which was conditioned according to the manu-
facturer’s instructions before the first use and heated at 250 °C for 10 min before each use. For the extraction, 
the fiber was introduced into the Tedlar bag through the septum and exposed to breath for 15 min at 25 °C, 
then removed from the bag and immediately inserted into the injector port of GC–MS for desorption for 2 min. 
Helium (Ultrahigh Purity grade, Lab solution and Engineering Co. Ltd., Nonthaburi, Thailand) was used as a 
carrier gas at a flow rate of 1 ml/min. Tuning and calibration were performed to ensure that the mass spectrom-
eter was working properly.

The GC–MS analysis was performed using the modified method of Ligor et al.24. The splitless mode was 
used with an inlet temperature of 200 °C. The GC oven temperature program was set at 40 °C for 2 min at initial 
step, ramped to 140 °C at 10 °C/min, followed by an increase to 270 °C at 5 °C/min and held for 5 min. The 
temperature of the ion source and transfer line was 230 °C and 280 °C, respectively. The electron ionization (EI) 
was 70 eV. The full scan mode was carried out on MS analysis. The mass range was scanned from m/z 30–300.

For data pre-processing step, Agilent MassHunter software was used for spectral deconvolution and area 
under the curve (AUC) calculation. Peak picking and identification of VOCs were done by comparison of both 
mass spectra and retention index (RI) with compounds in the National Institute of Standards and Technol-
ogy (The NIST 14 mass spectrometry database, Gaithersburg, USA). The criteria acceptance for compound 

Figure 1.  Workflow of the study. GC–MS, Gas chromatography-Mass spectrometry; HCC, Hepatocellular 
carcinoma; PLAT, Percutaneous Local Ablative Therapy; SVM, Support Vector Machine; TACE, Transarterial 
Chemoembolization; VOC, Volatile organic compound.

Figure 2.  Breath sample was collected using a Tedlar Bag (A); Sample was extracted with solid-phase 
microextraction (SPME) technique (B); The compounds were identified using Gas chromatography-Mass 
spectrometry (GC–MS) (C); and Chromatogram was generated (D).
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identification was matching score of ≥ 80% (high spectral similarity) and RI value difference of ≤ 20 units between 
the calculated RI and the database values (Supplemental method).

Because this study used exhaled breath samples that were required to perform GC–MS analysis within the 
same day of sample collection, we were able to recruit only 3–5 participants per day. For this reason, we could 
not run all the 242 samples at one time. AUC of the identified compounds were subtracted by blank collected 
from the room for sample collection each time. Calculated AUC data of each subject were put into the excel file 
day-by-day. After collecting all the data, alignment was done by comparing AUC of each VOC identified from 
the NIST database.

Data analysis. Baseline characteristics of cases and controls were compared using the independent t-test 
and Pearson’s Chi-square test for continuous and categorical variables, respectively. Before analysis, the concen-
tration values of metabolites were normalized by  log2 transformation. Levels of VOCs between the 2 groups were 
compared using t-test.

A Support Vector Machine (SVM) algorithm was then applied to determine the number of VOCs in a com-
bination that provided the greatest  accuracy25. SVM algorithm created a classification boundary between cases 
and control groups using the VOCs features. Radial basis function (RBF) kernel was used to create a non-linear 
classifier. The RBF kernel reduces the chance of overfitting by dimensional reduction. Moreover, we also searched 
all possible combinations of VOCs to reduce the number of features in the combination to avoid overfitting.

Given the imbalanced numbers of cirrhotic patients and healthy volunteers in the control group, we applied 
a Synthetic Minority Oversampling Technique (SMOTE) for synthesizing samples in the minority class, which 
reduced the impact of an imbalanced number of the 2 groups of controls that would cause an inappropriate 
classification. Indeed, SMOTE creates synthetic samples from existing examples and their nearest neighbors. 
Thus, the new synthetic samples can overlap with majority class. We therefore used RBF kernel function. The 
RBF kernel implicitly maps data from input feature space into the Reproducing Kernel Hilbert Space (RKHS) 
whose dimension is usually much higher than that of the input space. The combination of high-dimensionality 
and non-linear mapping make that the data that are close to each other in input space may be very far from each 
other in RKHS. The SVM algorithm explores data in this RKHS in order to create proper class boundary even 
when classes are tightly overlapped in the input space.

The combination of VOCs that had good performance in isolating cases from controls were further identi-
fied. In this analysis, we included only the VOCs that were found in > 5% of the total samples (64 out of the 89 
VOCs). The entire patient cohort was divided into 2 independent sets (training n = 152, test n = 56). The training 
set (61 HCC, 68 cirrhosis, and 23 healthy controls) was used to generate the combinations of VOCs. A leave-
one-out cross-validation was performed in the training set. The combinations with the best accuracy, sensitivity 
and specificity were selected and evaluated for their performance using the test set (36 HCC, 10 cirrhosis and 
10 healthy controls).

Next, an association between VOCs profile and HCC stages was determined. The SVM algorithm formed a 
hyperplane which acted as a boundary between HCC and controls. We hypothesized that if a data point repre-
senting an HCC patient is farther away from the boundary, the patient might have a more advanced stage of HCC. 
To test this hypothesis, we subgrouped HCC patients in the training set by BCLC stages, and then calculated a 
mean distance of data points in each BCLC stage to the boundary.

We further investigated whether VOCs can be used for detection of early stage HCC. In this analysis, 43 
patients with early HCC (BCLC stages 0 and A) and 111 controls were included. Sensitivity, specificity, accuracy 
and a receiver operating characteristic (ROC) curve of VOCs were estimated. The performance of serum AFP at 
the cutoff of ≥ 20 ng/mL for detecting early HCC was also evaluated. Sensitivity and specificity of the VOCs and 
AFP were compared using McNemar test. A p value of < 0.05 was considered statistically significant.

Lastly, pre- and post-treatment VOCs levels of 34 HCC patients were compared using paired t test. Changes in 
VOC levels between treatment response and non-response groups were compared using Mann–Whitney U test.

Results
Baseline characteristics. Table 1 displays baseline characteristics of study groups. The number of HCC 
patients with BCLC stage 0, A, B, C and D were 12 (12.4%), 31 (32.0%), 23 (23.7%), 23 (23.7%) and 8 (8.3%), 
respectively. Age, gender, etiology of chronic liver diseases were not statistically different between cases and con-
trols (p > 0.05). Proportion of individuals with Child–Pugh class A, B and C cirrhosis were significantly different 
between the 2 groups. The HCC group had significantly higher levels of total bilirubin, aspartate aminotrans-
ferase, alkaline phosphatase, and AFP, but lower albumin levels than the control group. In the HCC group, only 
proportions of patients with underlying non-alcoholic fatty liver diseases were significantly different among 
patients with stages 0-D HCC, while other factors, including age, gender, smoking and alcohol status, propor-
tions of patients with chronic viral hepatitis B/C infection and diabetes were not statistically different among 
patients with different stages (Supplemental table 1).

Analysis of exhaled volatile organic compounds between cases and controls. According to the 
Metabolomics Standards Initiative  guidelines26, most of the VOCs identified in this study were MSI level 2 
(putative annotated compounds). Of the 64 VOCs included in the analysis (Supplemental Table 2), 18 had sig-
nificantly different levels between cases and controls (p < 0.05) (Supplemental Table 3).

Optimal combination of VOCs for classification. We determined the optimal number of VOCs that provided 
the best performance of the model for differentiating between cases and controls. We found that the accuracy, 
sensitivity and specificity of the model improved with an increased number of VOCs included in the model. 
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The accuracy and sensitivity reached its maximum value with 6 VOCs in the model, while specificity reached 
its highest level (87.6%) with 4 VOCs in the model. Since the specificity 6 VOCs model (82.7%) was relatively 
similar to the 4 VOCs combination, we selected the 6 VOCs model for all accuracy, sensitivity, and specificity 
combinations for classifying cases and controls (Fig. 3).

Performance of VOC combination for HCC diagnosis. To determine the best combination of 6 VOCs for diag-
nosis of HCC, the accuracy, sensitivity and specificity of each combination were estimated. The combination of 6 
VOCs including acetone, 1,4-pentadiene, methylene chloride, benzene, phenol and allyl methyl sulfide provided 
the highest accuracy of 79.6%, with a sensitivity and specificity of 76.5% and 82.7%, respectively in training set 
(Table 2). We also determined the combinations of VOCs that provided the highest sensitivity and highest speci-
ficity. The combination including acetic acid, methyl ester, methylene chloride, phenol, benzene, cyclopentane 
and pentane provided the highest sensitivity of 98% (Table 2), while the model including camphene, cyclopen-
tane, methyl, 2-pentanone, dimethyl sulfide, acetonitrile and cyclopentane,1,3-dimethyl provided the highest 
specificity of 100% (Table 2).

Further, we extracted the VOCs that were frequently present in the top 10 of VOCs combinations (Table 3). 
We observed that acetone, methylene chloride, phenol, 1,4-pentadiene and allyl methyl sulfide were commonly 
used in accuracy-based combinations. When the best accuracy-based model was tested in the test set, the model 
provided an accuracy of 55.4%, with a sensitivity and specificity of 44.0% and 75.0%, respectively.

Table 1.  Baseline characteristics and clinical data.

Variables Cases (n = 97) Controls (n = 111) P

Age (mean ± sd.) 61.2 ± 11.6 60.2 ± 10.7 0.52

Male, N (%) 72 (74.2%) 88 (79.3%) 0.39

Smoking, N (%) 27 (27.8%) 27 (24.3%) 0.57

Alcohol consumption, N (%) 41 (42.3%) 36 (32.4%) 0.14

Cirrhosis, N (%) 94 (96.9%) 78 (70.3%)

Child–Pugh class, N (%) 0.001

A 66/94 (70.2%) 72/78 (92.3%)

B 18/94 (19.1%) 6/78 (7.7%)

C 10/94 (10.6%) 0/78 (0.0%)

Chronic viral hepatitis B infection, N (%) 33 (34.0%) 28 (25.2%) 0.57

Chronic viral hepatitis C infection, N (%) 33 (34.0%) 37 (33.3%) 0.92

Non-alcoholic fatty liver disease (NAFLD), N (%) 13 (13.4%) 27(24.3%) 0.050

Diabetes mellitus, N (%) 23 (23.7%) 36 (32.4%) 0.23

Albumin (g/dL), mean ± SD 3.6 ± 0.8 3.6 ± 1.3 0.81

Total bilirubin (mg/dL), mean ± SD 1.6 ± 1.8 0.9 ± 0.6  < 0.001

Aspartate aminotransferase (U/L), mean ± SD 94.4 ± 110.6 45.8 ± 45.6  < 0.001

Alanine aminotransferase (U/L), mean ± SD 54.4 ± 52.7 42.2 ± 41.1 0.06

Alkaline phosphatase (U/L), mean ± SD 148.9 ± 138.5 96.8 ± 71.3 0.001

Alpha fetoprotein (ng/mL), median (IQR) 44.15 (1,514) 3.09 (4) 0.037

Figure 3.  Performance of the number of VOCs in combinations for HCC diagnosis.
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Performance of VOCs for diagnosis of early HCC. Among the VOCs studied, d-limonene provided the highest 
sensitivity of 62.8%. The sensitivity of d-limonene was significantly higher than 25.6% sensitivity of the AFP 
(p = 0.002). However, d-limonene had a significantly lower specificity than AFP (51.8% vs. 74.4%, p ≤ 0.001). The 
accuracies of d-limonene and AFP were 54.9% and 76.0%, with AUCs of 0.613 and 0.605, respectively.

Association between HCC stages and distances from SVM boundary. We subgrouped HCC 
patients by BCLC stages and then calculated a mean distance for each data point in each BCLC stage to the 
boundary. The boundary used in this analysis was formed by the SVM  model27 that incorporated the combi-
nation of 6 VOCs that yielded the highest accuracy, including acetone, 1,4-pentadiene, methylene chloride, 
benzene, phenol and allyl methyl sulfide. Results showed that the distance from the classification boundary 
increased as the stage of HCC advanced (Fig. 4). Mean ± SD distances from the boundary to the data points rep-

Table 2.  Top 10 accuracy, sensitivity and specificity -based combinations of VOCs.

Rank of 
accuracy 1 2 3 4 5 6 7 8 9 10

Accuracy 0.796 0.786 0.781 0.781 0.781 0.781 0.781 0.776 0.776 0.776

Sensitivity 0.765 0.714 0.694 0.724 0.724 0.714 0.714 0.714 0.653 0.653

Specificity 0.827 0.857 0.867 0.837 0.837 0.847 0.847 0.837 0.898 0.898

VOCs

Acetone Acetone Acetone Acetone Acetone Acetone Acetone Acetone Acetone Acetone

1,4-Pentadiene 1,4-Pentadiene 1,4-Pentadiene 1,4-Pentadiene 1,4-Pentadiene 1,4-Pentadiene 1,4-Pentadiene 1,4-Pentadiene n-Hexane n-Hexane

Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Dimethyl sulfide Dimethyl sulfide

Methylene chloride Methylene chloride Methylene chloride Methylene chloride Methylene chloride Methylene chloride Methylene chloride Methylene chloride 1-Propene 1-Propene

Allyl methyl sulfide Allyl methyl sulfide Allyl methyl sulfide Allyl methyl sulfide Allyl methyl sulfide Allyl methyl sulfide Allyl methyl sulfide Allyl methyl sulfide N,N-Dimethylacet-
amide

N,N-Dimethylacet-
amide

Benzene Camphene D-Limonene Cyclopentane, 
methyl Pentane Cyclopentane Cyclopentane,1,3-

dimethyl Camphor Camphor Camphor

Rank of 
sensitivity 1 2 3 4 5 6 7 8 9 10

Accuracy 0.520 0.520 0.520 0.520 0.520 0.520 0.520 0.520 0.515 0.515

Sensitivity 0.980 0.980 0.980 0.980 0.980 0.980 0.980 0.980 0.980 0.980

Specificity 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.051 0.051

VOCs

Acetic acid, methyl 
ester

Acetic acid, methyl 
ester

Acetic acid, methyl 
ester

Acetic acid, methyl 
ester

Acetic acid, methyl 
ester

Acetic acid, methyl 
ester

Acetic acid, methyl 
ester

Acetic acid, methyl 
ester

Acetic acid, methyl 
ester

Acetic acid, 
methyl ester

Methylene chloride Methylene chloride Methylene chloride Methylene chloride Methylene chloride Methylene chloride Methylene chloride Methylene chloride Methylene chloride Methylene 
chloride

Phenol Dimethyl sulfide Dimethyl sulfide Dimethyl sulfide Dimethyl sulfide Dimethyl sulfide Dimethyl sulfide 2-Pentanone Dimethyl sulfide Dimethyl sulfide

Benzene 1-Propene 1-Propene 1-Propene 1-Propene 1-Propene 1-Propene Camphor 1-Propene 1-Propene

Cyclopentane Benzene Cyclopentane 2-Pentanone Cyclopentane Pentane Cyclopentane Cyclopentane Pentane, 2-methyl- Cyclopentane

Pentane Pentane Pentane, 2-methyl- Pentane, 2-methyl- Pentane 2-Pentanone 2-Pentanone Cyclopentane,1,3-
dimethyl- 2-Butanone 2-Butanone

Rank of 
specificity 1 2 3 4 5 6 7 8 9 10

Accuracy 0.566 0.556 0.551 0.546 0.546 0.546 0.536 0.536 0.526 0.526

Sensitivity 0.133 0.112 0.102 0.092 0.092 0.092 0.071 0.071 0.051 0.051

Specificity 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

VOCs

Camphene Camphene Camphene Camphene Camphene Camphene Camphene Camphene Camphene Camphene

Cyclopentane, 
methyl

Cyclopentane, 
methyl

Cyclopentane, 
methyl

Cyclopentane, 
methyl

Cyclopentane, 
methyl

Cyclopentane, 
methyl

Cyclopentane, 
methyl Methylene chloride Benzene Acetonitrile

2-Pentanone 2-Butanone Acetonitrile Benzene 2-Pentanone 2-Pentanone 2-Pentanone 2-Pentanone 2-Pentanone 2-Pentanone

Dimethyl sulfide Dimethyl sulfide Dimethyl sulfide Methylene chloride Methylene chloride Cyclopentane Dimethyl sulfide Dimethyl sulfide Pentane Pentane

Acetonitrile Phenol Phenol Cyclopentane Benzene Acetic acid, methyl 
ester Phenol Cyclopentane Phenol Phenol

Cyclopentane,1,3-
dimethyl

Cyclopentane,1,3-
dimethyl n-Hexane Cyclopentane,1,3-

dimethyl
Cyclopentane,1,3-
dimethyl

Cyclopentane,1,3-
dimethyl n-Hexane n-Hexane Acetonitrile Cyclopentane

Table 3.  The frequency of VOCs commonly identified in the top 10 accuracy-, sensitivity- and specificity-
based combinations.

Accuracy Sensitivity Specificity

Rank VOC Count Rank VOC Count Rank VOC Count

1 Acetone 10 1 Acetic acid, methyl ester 10 1 Camphene 10

2 Methylene chloride 8 2 Methylene chloride 10 2 Cyclopentane, methyl- 7

3 Phenol 8 3 Dimethyl sulfide 8 3 2-Pentanone 7

4 1,4-Pentadiene 8 4 1-Propene 8 4 Dimethyl sulfide 5

5 Allyl methyl sulfide 8 5 Cyclopentane 6 5 Phenol 5
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resenting HCC patients with BCLC stage A, B, C and D were 0.55 ± 0.20, 0.87 ± 0.06, 1.11 ± 0.25 and 1.33 ± 0.39 
units, respectively.

Changes of VOCs after HCC treatment. Of the 34 HCC patients selected for examination of post-
treatment VOCs, 20 and 14 patients underwent transarterial chemoembolization (TACE), and percutaneous 
local ablative therapy (PLAT) with radiofrequency ablation or microwave ablation respectively. After treat-
ment, the level of acetone significantly decreased from 94.42 ± 58.00 to 40.90 ± 46.61 (×  106 arbitrary unit (AU)), 
p < 0.001, while the levels of dimethyl sulfide and butane significantly increased from 0.62 ± 1.56 to 1.84 ± 2.56 
and 0.08 ± 0.48 to 1.63 ± 4.27 (×  106 AU), p = 0.003 and 0.045, respectively.

After treatment, 22 (64.7%) patients (11 TACE, 11 PLAT) responded to treatment, while other 12 (35.3%) 
patients (9 TACE, 3 PLAT) had remaining viable tumors. The magnitude of reduction in acetone levels after 
treatment in the response group was significantly greater than that of the non-response group, i.e. 73.38 ± 56.76 
vs. 17.11 ± 58.86 (×  106 AU), p = 0.006. Using a cutoff of decreased level of acetone at 35.9 ×  106 AU, it provided a 
sensitivity, specificity and accuracy of 77.3%, 83.3% and 79.4%, with an AUC of 0.784, for differentiating between 
responders and non-responders.

Among 20 patients treated with TACE, there were 11 (55%) responder and 9 (45%) non-responders. The 
increased level of dimethyl sulfide was significantly greater in the response group, i.e. 2.2 ± 2.6 vs. 0.3 ± 0.9 (x  106 
AU), p = 0.046. Responders had a decreased level of acetone greater than non-responders but the difference did 
not reach statistical significance (61.1 ± 38.8 vs. 31.1 ± 53.1 AU, p = 0.175). Of the 14 patients who were treated 
with PLAT, 11 (79%) responded to the treatment while 3 (21%) did not respond. Those who responded to PLAT 
had decreased levels of acetone and allyl methyl sulfide while the non-responders had increased level of both 
VOCs after therapy. The altered levels of acetone and allyl methyl sulfide in the response and non-response group 
were significantly different i.e. 85.7 ± 70.2 vs. − 25.0 ± 65.0 (×  106 AU) and 3.7 ± 7.4 vs. − 6.7 ± 4.1 (×  106 AU), for 
acetone and allyl methyl sulfide, p = 0.011 and 0.038, respectively.

Discussion
In this study, we determined optimal combinations of VOCs for HCC diagnosis based on the highest accuracy, 
sensitivity and specificity using SVM classification. The accuracy-based combination is useful for diagnosis, 
while the sensitivity-based combination is useful to identify patients with high risk for HCC development. The 
specificity-based combination is useful for identifying individuals who are unlikely to have HCC in order to avoid 
further unnecessary investigation. The accuracy-based combination was correlated with the HCC stage. We iden-
tified a VOC for diagnosis of early HCC and the VOCs that had a better sensitivity than serum tumor marker AFP 
for diagnosis of early HCC. After treatment with TACE and PLAT, the levels of VOCs were significantly altered, 
and the decreased level of acetone predicted response to therapy with satisfactory performance. These findings 
suggest that VOCs had potential to be biomarkers for HCC diagnosis and for monitoring therapeutic response.

The VOCs identified in this study were consistent with those previously reported in other  cancers17,23,28–32 
VOCs are products of cellular metabolic activity. The energy metabolism of cancer cells differs from that of nor-
mal cells. The malignant cells have a propensity to produce adenosine triphosphate (ATP) via glycolysis rather 
than oxidative phosphorylation, so called aerobic glycolysis. The metabolic interactions between cancer cells and 
other components in microenvironment, particularly cancer-associate fibroblasts (CAFs), are also important 
for cancer cell proliferation and survival. Aerobic glycolysis is enhanced in CAFs, resulting in the production 
of lactate, ketone bodies and free fatty  acids33. These metabolites serve as nutrients for cancer cells and promote 
tumor growth and metastasis. Some VOCs identified in the current study are known to be metabolites from 
these aberrant metabolisms, for example, acetone—a main type of ketone bodies, and 1,4-pentadiene—a product 

Figure 4.  Schematic figure of correlation between HCC stages classified by the Barcelona-Clinic Liver Cancer 
(BCLC) staging system and distance from the support vector machine (SVM) classification boundary (4A). The 
relative distance from the SVM boundary of the HCC stages (4B).
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of free fatty acid. Acetone was identified as one of the most important features for classifying HCC cases from 
controls as well as for monitoring response to therapy. The level of acetone increased when HCC was developed 
and significantly decreased after the treatment.

One of the strength of our study is the use of a SVM algorithm to identify the best combination of VOCs for 
various clinical purposes. Since cancer cells are heterogeneous in each tumor and among patients, it is unlikely 
that a single biomarker can be a perfect biomarker for early detection, diagnosis and monitoring treatment 
response. The VOCs combination with the highest accuracy was correlated with the stage of disease. We found 
that the accuracy of VOCs in the test set was worse than that of the training set. The lower accuracy was likely 
driven by the differences in baseline characteristics between the 2 cohorts, particularly the stages of HCC. The 
test set had significantly more proportion of patients with early HCC (BCLC stages 0 and A) than the training 
set, i.e. 23/36 (63.9%) vs. 20/61 (32.8%), p = 0.021, (Supplemental Table 4). To improve the performance of the 
predictive model for early HCC, a further study with a larger number of patients with early stage HCC is needed. 
Most of our controls had underlying cirrhosis, one of the main risk factors for HCC, thus our control group was 
more representative of individuals who would be the target population in clinical practice. Because this study 
was conducted in a single center, validation of these findings with other independent cohorts is warranted before 
applying the exhaled VOCs in practice. Although the performance of VOCs observed in our study was not bet-
ter than ultrasound for HCC detection, its sensitivity was greater than the AFP, the main serum tumor marker 
used in clinical practice. It is interesting to further investigate the usefulness of VOCs as an adjunctive tool to 
improve the performance of ultrasound for HCC detection. Some exogenous confounding factors including 
diet, smoking, and alcohol drinking may potentially affect the VOC profiles. However, we tried to minimize the 
effect of these confounders by having the participants fasted, and stopped smoking and drinking before breath 
collection. The numbers of participants who smoked and drank alcohol were not significantly different between 
cases and controls. Thus, we believe that these confounders minimally impact the findings of the study. The non-
invasive nature of breath testing and high acceptance rate among patients does bode well for seamless clinical 
implementation if future studies continue to show high efficacy.

Conclusion
Exhaled VOCs profiles in HCC patients are different from individuals without HCC and may potentially be used 
as biomarkers for HCC diagnosis and treatment.
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