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ABSTRACT
Background: Randomized controlled trials (RCTs) are uncommon in precision 
oncology. We provide an introduction and illustrative example of matching meth-
ods for evaluating precision oncology in the absence of RCTs. We focus on British 
Columbia's Personalized OncoGenomics (POG) program, which applies whole-  
genome and transcriptome analysis (WGTA) to inform advanced cancer care.
Methods: Our cohort comprises 230 POG patients enrolled between 2014 and 2015 
and matched POG-naive controls. We generated our matched cohort using 1:1 pro-
pensity score matching (PSM) and genetic matching prior to exploring survival 
differences.
Results: We find that genetic matching outperformed PSM when balancing covari-
ates. In all cohorts, overall survival did not significantly differ across POG and POG-
naive patients (p  >  0.05). Stratification by WGTA-informed treatment indicated 
unmatched survival differences. Patients whose WGTA information led to treatment 
change were at a reduced hazard of death compared to POG-naive controls in all 
cohorts, with estimated hazard ratios ranging from 0.33 (95% CI: 0.13, 0.81) to 0.41 
(95% CI: 0.17, 0.98).
Conclusion: These results signal that clinical effectiveness of precision oncology ap-
proaches will depend on rates of genomics-informed treatment change. Our study will 
guide future evaluations of precision oncology and support reliable effect estimation 
when RCT data are unavailable.
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1 |  INTRODUCTION

Precision oncology promises to improve health outcomes by 
tailoring treatments to an individual's own genomic profile. 
To date, the available evidence for genomic testing focuses 
on clinical validity and feasibility rather than effectiveness 
(Burke et al., 2006; Khoury et al., 2007). The development 
of a robust evidence base supporting the idea of precision 
oncology has been limited by a lack of randomized controlled 
trials (RCTs; Schork, 2015).

RCTs are the “gold standard” in efficacy research 
(Silverman, 2009), but are uncommon in precision oncology 
primarily because the genomic-level heterogeneity shaping 
patients’ treatment responses is difficult to account for in trial 
designs (Schork, 2015). N-of-1 trials are a proposed solution 
but their validity strongly depends on the assumption of clin-
ical stability, which is often violated in oncology (Collette & 
Tombal, 2015). Combined, these challenges limit the avail-
ability of reliable counterfactuals. In the absence of RCT 
data, researchers are beginning to use administrative data to 
evaluate precision oncology (Weymann et al., 2018).

Owing to non-randomization, observational studies of 
precision oncology may be confounded by subjects’ char-
acteristics, introducing selection bias into effect estimates. 
Quasi-experimental matching methods combined with pop-
ulation-based administrative data can begin to meet the chal-
lenge of producing reliable estimates. Past research has found 
that well-designed observational studies produce similar re-
sults to RCTs and that matching is a valid tool for generat-
ing causal effectiveness estimates (Anglemyer et al., 2014; 
Benson & Hartz, 2000; Golder et al., 2011; Lonjon et al., 
2014; Stuart, 2010).

Our study provides an introduction to matching methods 
in the context of precision oncology. We outline two meth-
odological approaches and illustrate how matching can be 
used to mitigate selection bias when estimating the health 
impacts of omics-guided cancer care. Our study setting is the 
BC Cancer Personalized OncoGenomics (POG) program, a 

single-group research study using whole-genome and tran-
scriptome analysis (WGTA) to guide treatment planning for 
patients with advanced stage cancers (Laskin et al., 2015).

1.1 | Matching overview

Matching methods are used to minimize or eliminate selec-
tion bias resulting from confounding. While several methods 
exist, propensity score matching (PSM) is among the most 
common (Stuart, 2010). PSM estimates a patient's underly-
ing probability (or propensity score) of receiving treatment. 
Individuals in the treatment group are then matched with 
controls who have similar propensity scores (Rosenbaum & 
Rubin, 1983). Other methods to adjust for propensity scores 
are available, including stratification, weighting, and regres-
sion adjustment. Compared to these methods, matching per-
forms relatively well when balancing baseline covariates and 
generating effect estimates (Austin, 2009, 2013). Matching 
also allows for data reduction when treatment is rare, which 
is a common characteristic of precision oncology.

The application of PSM involves a series of steps and each 
step requires a series of considerations summarized in Table 
1. Steps include: (a) specifying the propensity score model; 
(b) determining the matching method and algorithm; (c) as-
sessing covariate balance; and (d) repeating steps 1 to 3 until 
balance on key covariates is achieved.

1.1.1 | Step 1 – Specifying the propensity 
score model

PSM begins with estimating a regression model for a binary 
dependent variable indicating treatment. When treatments 
are provided at more than one time point, researchers must 
assess whether a patient's probability of treatment is likely to 
change over time. In oncology, patients often begin first-line 
treatment soon after diagnosis and advance to new treatment 

Steps Relevant considerations

1. Specify propensity score model - Time constant vs. varying probability
- Model type (e.g., logistic)
- Covariate selection

2. Determine matching method and algorithm - Nearest neighbor vs. optimal matching
- Ratio matching
- Matching with ties and/or replacement
- Caliper widths

3. Assess covariate balance - Standardized differences <0.10
- 0.50 < variance ratios <2.00
- Empirical quantile–quantile plots
- Nonparametric hypothesis tests

4. Repeat steps 1 to 3 until balance on key covariates achieved

T A B L E  1  Steps and considerations for 
propensity score matching.



   | 3 of 13WEYMANN Et Al.

lines following disease progression, relapse, or toxicity, re-
sulting in different treatment initiation dates across patients. 
If the probability that patients begin a treatment is constant 
over time and unlikely to be affected by time-varying covari-
ates, a regression model that produces a time-constant pro-
pensity score should be estimated, the most common being 
logistic regression (Austin, 2011a). If this probability is 
likely to vary, a model that produces a time-varying score is 
more appropriate, such as a Cox proportional hazards model 
(Lu, 2005). Time-varying models may become increasingly 
relevant if precision oncology becomes widely applied and 
the probability of accessing omics-guided treatment changes 
over time.

Following the decision on type of regression model, re-
searchers determine which covariates to include in the model. 
PSM critically assumes there are no unobserved differences 
across treated and control patients conditional on the propen-
sity score, termed “ignorability.” To meet this assumption, all 
covariates that correlate with both the probability of treatment 
and the final outcome probability must be modeled (Rubin & 
Thomas, 1996). After fitting the propensity score model and 
assessing model fit, researchers estimate propensity scores 
for each individual and assess overlap of scores across treat-
ment and control groups. Overlap refers to the area of com-
mon support across propensity score distributions.

1.1.2 | Step 2 – Determining the matching 
method and algorithm

Once satisfied with the level of overlap across groups, re-
searchers must decide on a matching method and algorithm. 
Common methods include nearest neighbor matching and op-
timal matching. Nearest neighbor matching selects the con-
trol individual with the smallest distance in propensity score 
from the treated individual. Optimal matching minimizes a 
global rather than individual distance. Compared to nearest 
neighbor matching, optimal matching produces more closely 
matched pairs but does not improve overall balance across 
matched cohorts (Austin, 2014; Gu & Rosenbaum, 1993).

When deciding between matching algorithms, researchers 
can consider ratio matching, matching with or without replace-
ment or ties, and caliper widths. Ratio matching selects the 
number of matched controls for each treated individual. Ratios 
range from one-to-one matching, where each treated patient is 
matched to a single control, to many-to-one matching, to vari-
able ratio matching, where the number of matched controls 
varies across treated patients (Ming & Rosenbaum, 2001). The 
decision around number of allowable matches involves a trade-
off between bias and statistical efficiency. As a result, the lit-
erature typically recommends matching either one or, at most, 
two controls to each treated patient (Austin, 2010).

Matching with replacement allows the same control to be 
matched to multiple treated patients. This approach can im-
prove the average quality of matches, reduce bias, and is use-
ful when few controls are similar to treated patients (Caliendo 
& Kopeinig, 2008; Stuart, 2010). Matching with ties allows 
multiple controls with equal propensity scores to be matched 
to a treated patient. The alternative, to randomly select a sin-
gle control patient from those with tied values, is generally 
not recommended because it will underestimate the variance 
of the final outcome variable (Sekhon, 2011). If matching 
with replacement or ties, the data should be weighted to avoid 
false imprecision.

Caliper widths specify a maximum distance between pro-
pensity scores for a treated individual and their matched con-
trols. Optimal caliper widths vary across applications. When 
at least some of the covariates are continuous, Austin (2011b) 
recommends using a caliper width equal to 0.2 of the stan-
dard deviation of the logit of the propensity score. When all 
covariates are binary, estimation performance is less sensi-
tive to the choice of caliper width.

1.1.3 | Step 3 – Assessing covariate balance

The propensity score is a balancing score (Rosenbaum & 
Rubin, 1983). After matching on the true score, baseline 
characteristics will asymptotically have the same distribution 
across treated and control patients. If the propensity score 
model is misspecified, covariates in the matched sample will 
be imbalanced leading to biased estimates. It is critical to as-
sess balance of entire covariate distributions, through stand-
ardized differences in means and medians, variance ratios, 
empirical quantile–quantile (QQ) plots, higher order, and in-
teraction terms (Austin, 2011a). While hypothesis tests, such 
as paired t-tests or Kolmogorov–Smirnov (KS) tests are often 
used to assess differences, conclusions can be misleading be-
cause matching reduces sample sizes and increases p-values 
(Imai et al., 2008; Kolmogorov, 1933; Smirnov, 1939).

To assess whether balance on key covariates is achieved, 
“rules of thumb” are often used. Standardized differences less 
than 10 and variance ratios close to 1 are taken to suggest no ev-
idence of imbalance (Cohen, 1977; Rubin, 2001). Standardized 
differences exceeding 10 and variance ratios outside the range 
of 0.5 to 2 indicate imbalance. The literature generally recom-
mends minimizing imbalance without limit (Imai et al., 2008). 
If there remains any evidence of imbalance on key variables 
after matching, the propensity score model and/or matching al-
gorithm can be respecified. Given that the propensity score is 
a function of covariates rather than outcomes, repeated analy-
ses attempting to balance covariate distributions across treated 
and control patients will not bias final effect estimates (Rubin, 
2001). The iterative process of PSM can be time consuming 
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and covariate distributions may never balance. Even when bal-
ance is achieved, it may not be maximized.

1.1.4 | Optimizing balance with 
genetic matching

Genetic matching automates the process of maximizing balance 
on observed covariates through supervised learning (Diamond 
& Sekhon, 2013). As a generalized form of Mahalanobis dis-
tance matching, this method matches individuals based on their 
weighted Mahalanobis distance rather than the difference be-
tween their propensity scores (Mahalanobis, 1936). Through 
the use of an evolutionary genetic search algorithm (Sekhon 
& Mebane, 1998), genetic matching iteratively checks differ-
ent weights for each covariate when calculating the general-
ized Mahalanobis distance and considers balance statistics 
at each iteration. This algorithm selects the final weights to 
minimize baseline differences across groups according to pre-
specified optimization criteria. Most steps for genetic matching 
are similar to PSM, with the exception of selecting criteria for   
optimization. For any criteria specified, genetic matching will 
asymptotically converge to the optimal matched cohort.

1.2 | Analysis after matching

Following matching, researchers can estimate an intervention's 
impacts using nonparametric and parametric analyses, includ-
ing regression (Stuart, 2010). This two-step approach involv-
ing matching as a data preprocessing step can result in effect 
estimates that are less sensitive to modeling choices and final 
specifications (Ho et al., 2007). There is some debate around 
whether final outcomes analysis must account for the matched 
nature of the data and whether variance estimation must account 
for propensity score estimation and the matching procedure 
(Stuart, 2008, 2010). If outcomes are analyzed across treatment 
groups as a whole rather than across individual matched pairs, 
researchers typically do not adjust their analytic methods. If 
variance estimation does not account for the initial matching 
step, standard errors will be overestimated and confidence in-
tervals will be relatively conservative. If desired, standard boot-
strapping can be used to account for the uncertainty associated 
with matching, but these methods are invalid when matching 
with replacement (Abadie & Imbens, 2008; Austin & Small, 
2014). To enable consistent standard error estimation in these 
scenarios, additional methods development is required.

1.3 | Application to precision oncology

In July 2012, POG began to explore the feasibility of inte-
grating WGTA data into clinical decision-making (Laskin 

et al., 2015). After July 2014, the program expanded to offer 
WGTA to a larger number of BC patients diagnosed with ad-
vanced cancers. POG generates WGTA data from a patient's 
fresh tumor biopsy sample (frequently a metastatic site) and 
genome sequence data from matched normal DNA. Clinical 
and pathology information are combined with genomic data 
to produce a report of genomic aberrations as well as candi-
date pathways dysregulated in patient's tumors. The analysis 
reveals detailed information on aberrant genes and related 
biological processes that may underpin malignant progres-
sion. One objective of POG-initiated WGTA is to provide 
clinicians with insight into a patient's tumor genome and 
transcriptome such that potential therapeutic targets and re-
sistance mechanisms can be identified and optimal treatment 
options can be considered. Whether POG’s approach results 
in measurable survival benefit remains unexamined, largely 
owing to the lack of an available control cohort and the heter-
ogeneity of diseases considered. In the following case study, 
we illustrate how matching methods and population-based 
administrative data can be used to generate a control cohort 
for POG’s evaluation. Our analytic approach is depicted in 
Figure 1.

2 |  MATERIALS AND METHODS

2.1 | Ethical compliance

Our study was approved by the University of British 
Columbia-BC Cancer Research Ethics Board.

2.2 | Data sources

We based our retrospective analysis on de-identified admin-
istrative data sets provided by the BC Cancer Registry. We 
obtained data for adult patients diagnosed with cancers of 
varying histologies in BC. Our study cohort comprised adults 
who participated in POG between July 2014 and December 
2015 and matched POG-naive controls. POG inclusion cri-
teria are: (a) metastatic disease considered incurable by the 
oncologist; (b) good performance status; and (c) life expec-
tancy greater than 6 months. POG-naive controls were eligi-
ble for matching after receiving systemic therapy treatment 
for advanced stage disease, indicated by BC Cancer systemic 
therapy protocol codes.

We identified eligible control patients from the BC Cancer 
Registry, a population-based provincial cancer registry re-
cording disease, demographic, and mortality information 
for all cancer diagnoses in BC. We identified POG patients 
from the BC Cancer Outcomes and Surveillance Integration 
System POG Module Database. To assess treatment history, 
we obtained prescription records containing information 
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about drug type, dispensation date, and protocol code for sys-
temic therapy drugs dispensed by BC Cancer pharmacies. In 
BC, all approved systemic therapy treatments administered 
in regional cancer centers, community hospitals, or taken at 
home are dispensed by BC Cancer pharmacies.

2.3 | Control selection

Cases (POG patients) and controls (POG-naive patients) 
were matched based on the index date, which was the date of 
POG biopsy. Biopsy date indicates when patients who have 
consented to POG begin undergoing WGTA. We excluded 
60 patients who consented to POG but either withdrew or 
were ineligible for the study (21% of patients). For the index 
date, each control was randomly assigned a pseudo-biopsy 
date, as described in Figure S1. To ensure sufficient overlap 
across groups, we excluded patients diagnosed with stage 0, 
benign, noninvasive, or in situ cancers, and patients whose 
performance status indicated they were completely disabled 
at initial diagnosis (0.01% of patients).

To match each case to a control, we used logistic regres-
sion models to calculate propensity scores estimating each 
patient's probability of participating in POG. Models were 
adjusted for a selection of baseline covariates hypothesized 
to correlate with both probability of participating in POG 
and mortality, including patient demographics, clinical char-
acteristics, and treatment histories at the index date. Genetic 
testing history and mutational status do not influence POG 
eligibility and were not included in our propensity score 

models. Specifications for our covariates, including cate-
gory levels, were chosen to maximize model fit according to 
Akaike information criterion (Akaike, 1974). Squared terms 
were included in regression models to allow for nonlinear re-
lationships between continuous variables and the probability 
of participating in POG.

Owing to the high degree of variation across patients di-
agnosed with breast cancer and those diagnosed with other 
cancers, we stratified propensity score models and matching 
analyses. Among patients with breast cancer, the regression 
model accounted for index date, age, rurality, year of diagno-
sis, grade at initial diagnosis, cancer stage at initial diagnosis, 
and number of lines of systemic therapy treatment received 
prior to index date. Among patients with other cancers, the 
regression model also accounted for sex, primary cancer site, 
and performance status at initial diagnosis. In the absence of 
manually coded number of lines of therapy data for the co-
hort, we applied an automated algorithm validated for use in 
administrative prescription drug data (Weymann et al., 2019).

We applied two matching techniques: 1:1 nearest neigh-
bor matching on propensity scores and 1:1 genetic matching 
on propensity scores and baseline covariates. We selected 
final regression models and matching algorithms that max-
imized balance of baseline covariates, quadratic terms, and 
relevant interaction terms across cases and controls. We com-
pared balance across matched and unmatched cohorts using 
standardized mean differences, variance ratios, QQ plots, 
bootstrapped KS tests in continuous variables, and paired 
t-tests in binary variables. Further details are available in 
Supplemental Material.

F I G U R E  1  Overview of analytic approach.
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2.4 | Survival analysis

Survival was estimated from the index date in matched and 
unmatched cohorts. All analyses accounted for weights re-
lated to our matching structure and censoring resulting from 
varying index dates and lengths of follow-up until the end 
point of interest, death. We estimated Kaplan–Meier (KM) 
survival functions and used log rank tests to assess differ-
ences (Kaplan & Meier, 1958). We identified statistical 
significance using a threshold of p  <  0.05. One-year sur-
vival rates were inferred based on estimated KM survival 
functions. We also estimated unadjusted, Weibull regres-
sion models of probability of mortality to determine the 
hazard ratio (HR) associated with POG versus POG-naive 
care. Subgroup analysis according to whether POG patients 
received a treatment change based on their WGTA results 
was applied to explore differences in overall survival pat-
terns. For simplicity, we present pooled survival analyses. 
Analyses stratified according to cancer type (breast cancer 
vs. other cancers) and covariate-adjusted Weibull regression 
results are available in Figures S2 and S3 and Table S7, re-
spectively. Adjusting for covariates for which some evidence 
of imbalance remained resulted in no material differences in 
study findings or conclusions.

To estimate average 1 year survival time in the presence of 
incomplete follow-up data, we applied inverse probability of 
censoring weighting (Bang & Tsiatis, 2000; Lin, 2003; Willan 
et al., 2005). Inverse probability weighting reduces estima-
tion bias by recreating the sample population we would ex-
pect to see in the absence of censoring. We estimated inverse 
probability weights for each 1-month time interval using KM 
product limit estimates of probability of censoring. We used 
weighted regression methods to generate mean estimates and 
applied nonparametric bootstrapping to simulate correspond-
ing sampling distributions. We conducted all statistical anal-
yses in R and Stata 15 (Team, 2017; StataCorp, 2017).

3 |  RESULTS

3.1 | Matching

From July 2014 to December 2015, 230 patients participated 
in the POG program. We identified 5,224 POG-naive pa-
tients as eligible for matching. Table 2 summarizes the demo-
graphic and clinical characteristics of the pooled unmatched 
and matched cohorts after weighting. We report detailed bal-
ance statistics in Supplemental Material. Prior to matching, 
32 of the 54 covariates examined showed evidence of imbal-
ance (Table S2). Compared to unmatched control patients, 
a higher proportion of POG patients were women, lived in 
urban areas, were diagnosed with either gastrointestinal, pan-
creas, or other cancers, and were stage IV or had unknown 

stage, recurrent, or unstageable cancers at initial diagnosis. 
On average, POG patients were younger than unmatched 
controls and were diagnosed with cancer more recently.

All POG patients were matched following PSM and ge-
netic matching resulting in the identification of two coun-
terfactuals for this single-arm application of precision 
oncology. Propensity score models are reported in Table S1. 
The propensity score matched cohort included 210 controls 
(nweighted=230) and the genetic matched cohort included 204 
controls (nweighted=230). Covariate balance improved after 
matching, with genetic matching outperforming PSM for 
higher order terms, interaction terms, and in stratified cohorts. 
In the PSM cohort, eight of 54 covariates examined showed 
some evidence of residual imbalance across POG patients 
and matched controls compared to four of 54 covariates in 
the genetic-matched cohort (Table S2). In stratified cohorts, 
these differences increased to 13 of 54 versus 3 of 54 (Table 
S3) and 10 of 54 versus 3 of 54 (Table S4). Unbalanced co-
variates frequently related to number of lines of prior therapy, 
year of diagnosis, and/or performance status.

3.2 | Survival

During follow-up, 59 (25.7%) deaths occurred in POG pa-
tients, 1,265 (24.2%) deaths occurred in unmatched POG-
naive patients, 57 (24.8%) occurred in propensity score 
matched POG-naive patients, and 61.5 (26.7%) occurred in 
genetic matched POG-naive patients. Given that POG enroll-
ment was ongoing throughout the period, observation times 
ranged from 1 month to a maximum of 1.5 years. On average, 
patients were observed for 0.6 years prior to death or censor-
ing. Among POG patients, 15% (n = 35) experienced a treat-
ment change during the study period as a result of WGTA. 
WGTA-informed treatments included approved therapies 
reimbursed by BC’s public health-care system, off-label 
therapies either provided through Compassionate Access 
Programs or paid for out-of-pocket, and therapies provided 
in clinical trials (Laskin et al., 2015). The remaining 85% 
(n = 195) of POG patients did not receive WGTA-informed 
treatment owing to a number of factors, including no clini-
cally actionable findings generated, no targeted treatments 
available or accessible to patients, currently responding to 
a non-targeted treatment option, or declining health status. 
Additional details on which WGTA-informed treatments 
were dispensed during the study period and why WGTA-
informed treatments were not given are provided in Tables 
S5 and S6.

Overall, few significant survival differences were iden-
tified across POG patients and POG-naïve controls before 
matching and none were identified after matching. Figure 
2 shows that KM survival functions were overlapping in 
all matched cohorts. While POG patients appeared to have 
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reduced survival compared to unmatched POG-naive pa-
tients, survival functions were not statistically significantly 
different across cases and controls in any cohort (p = 0.511 

in unmatched cohort; p = 0.931 in propensity score matched 
cohort; p  =  0.966 in genetic matched cohort). Estimated 
1-year survival rates were somewhat higher in unmatched 
POG-naïve patients than in POG patients (66.96% (95% CI: 
65.21%, 68.65%) versus 58.56% (95% CI: 47.98%, 67.72%), 
respectively). These differences were eliminated after match-
ing, with rates falling to 57.60% (95% CI: 46.33%, 67.32%) 
in propensity score matched controls and 59.73% (95% CI: 
49.35%, 68.65%) in genetic matched controls.

According to the Weibull regression results summarized 
in Table 3, POG patients did not have statistically signifi-
cantly different hazards of death compared with POG-naive 
patients in any cohort. HRs associated with POG patients 
compared to POG-naive patients ranged from 1.12 (95% CI: 
0.86, 1.45) in the unmatched cohort to 0.95 (95% CI: 0.66, 
1.37) after PSM, to 0.97 (95% CI: 0.68, 1.39) after genetic 
matching. Similarly, average 1-year survival was not statis-
tically significantly different across POG and POG-naive 
patients in any cohort (p  =  0.147 in unmatched cohort; 
p  =  0.801 in propensity score matched cohort; p  =  0.997 
in genetic matched cohort). Average 1-year survival times 
ranged from 8.13 months (95% CI: 7.43, 8.84) in POG pa-
tients to 8.65  months (95% CI: 8.50, 8.80) in unmatched 
POG-naive controls, to 8.24 months (95% CI: 7.56, 8.91) in 
propensity score matched controls, to 8.16 months (95% CI: 
7.49, 8.83) in genetic matched controls.

When stratifying analyses based on whether POG patients 
received WGTA-informed treatment, we found evidence of sur-
vival differences. POG patients who received WGTA-informed 
treatment had improved KM estimated survival compared to 
POG-naive patients in all cohorts, shown in Figure 3. POG pa-
tients who did not receive informed treatment experienced ei-
ther reduced survival when compared to unmatched POG-naive 
patients or overlapping survival when compared to matched 
controls. Differences in KM survival functions were statisti-
cally significant in all cohorts (p = 0.023 in unmatched cohort; 
p = 0.021 in propensity score matched cohort; and p = 0.028 in 
genetic matched cohort). Estimated 1-year survival rates ranged 
from 72.79% (95% CI: 44.69%, 88.23%) in POG patients who 
received WGTA-informed treatment to 55.86% (95% CI: 
44.19%, 66.03%) in those who did not.

In all cohorts, Weibull regression indicated that POG pa-
tients who received WGTA-informed treatment experienced 
a statistically significant reduction in their hazard of death 
compared to POG-naive patients (HR: 0.41, 95% CI: 0.17, 
0.98 in unmatched cohort; HR: 0.33, 95% CI: 0.13, 0.81 in 
propensity score matched cohort; and HR: 0.34, 95% CI: 0.14, 
0.86 in genetic matched cohort; Table 3). Non-informed treat-
ment correlated with a significant increase in the hazard (HR: 
1.33, 95% CI: 1.01, 1.75) in the unmatched cohort but had no 
significant effect in the matched cohorts (HR: 1.16, 95% CI: 
0.80, 1.68 in the propensity score matched cohort and HR: 
1.17, 95% CI: 0.81, 1.69 in the genetic matched cohort).

F I G U R E  2  Kaplan–Meier survival estimates for POG patients 
and POG-naive patients in matched and unmatched cohorts. Each 
subgraph depicts survival functions across POG patients and POG-
naïve patients in the different cohorts. Risk tables present the number 
of uncensored patients at risk of death at the beginning of each interval 
across groups.

(a) 

(b) 

(c) 
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In all cohorts, 1-year survival was significantly greater in 
POG patients who received WGTA-informed treatment than 
in POG-naive patients. While average 1-year survival was 
statistically significantly less in POG patients who received 
non-informed treatment compared to POG-naive controls in 
the unmatched cohort, this difference was not significant in 
either matched cohort. Average 1-year survival times ranged 
from 7.51 months (95% CI: 6.76, 8.25) in POG patients who 
received non-informed treatment to 10.99  months (95% 
CI: 10.17, 11.80) in those who received WGTA-informed 
treatment.

4 |  DISCUSSION

We provide an introduction to matching methods and illus-
trate how matching can be used to analyze precision oncol-
ogy interventions using real-world data. We focus on the use 
of PSM and genetic matching to reduce selection bias in a 
case study of BC’s POG program, which applies WGTA to 
inform treatment planning for patients with advanced can-
cers. We find both methods are valid tools for generating 
well-balanced counterfactuals for precision oncology, even 
in highly heterogeneous patient cohorts. Genetic matching 
outperformed PSM when achieving balance on covariates of 
interest, coinciding with past literature comparing these ap-
proaches (Radice et al., 2012).

To our knowledge at the time of writing, our study is the 
first to examine the survival benefits of applying WGTA to in-
form treatment planning across multiple tumor sites. Analyses 
on unmatched and matched cohorts indicate that overall sur-
vival did not significantly differ across POG and POG-naive 
patients. These results broadly align with past observational 
studies of less comprehensive forms of genomic testing to 
guide cancer care and may reflect low WGTA-informed treat-
ment rates observed within our study period (Presley et al., 
2018). Of the patients enrolled in POG, 15% (n = 35) received 
a treatment change informed by their genomic results.

Stratification by WGTA-informed treatment revealed 
differences in estimated survival. Estimated 1-year survival 
ranged from 8.16 months (95% CI: 7.49, 8.83) to 8.65 months 
(95% CI: 8.50, 8.80) in POG-naive patients compared to 
10.99 months (95% CI: 10.17, 11.80) in POG patients who 
received WGTA-informed treatment. In all cohorts, POG 
patients whose WGTA led to treatment change were at a 
statistically significantly reduced hazard of death compared 
to POG-naive patients. Estimated HRs ranged from 0.33 
(95% CI: 0.13, 0.81) to 0.41 (95% CI: 0.17, 0.98). While this 
subgroup analysis may influence overall covariate balance 
achieved through matching, we found little evidence of re-
sidual imbalance on observable characteristics. Sensitivity 
analysis involving estimation of covariate-adjusted Weibull 
regression models led to no substantive differences in esti-
mates or conclusions (Table S7). Although these results do 

T A B L E  3  Weibull regression estimates for hazard ratios.

Unmatched cohort 
(n = 5,454)

Propensity score matched cohort 
(nweighted=460)

Genetic matched cohort 
(nweighted=460)

Model 1

POG naïve (Ref.) (Ref.) (Ref.)

POG enrolled 1.12 (SE: 0.15) 0.95 (SE: 0.18) 0.97 (SE: 0.18)

Constant 0.42* (SE: 0.01) 0.53* (SE: 0.07) 0.50* (SE: 0.08)

Log-likelihood −3,890 −306 −333

Likelihood-ratio χ2 statistic 0.67 0.07 0.02

p-value for likelihood-ratio test 0.412 0.793 0.889

AIC 7,786 618 672

Model 2

POG naïve (Ref.) (Ref.) (Ref.)

POG enrolled, WGTA informed 0.41* (SE: 0.18) 0.33* (SE: 0.15) 0.34* (SE: 0.16)

POG enrolled, WGTA non-informed 1.33* (SE: 0.19) 1.16 (SE: 0.22) 1.17 (SE: 0.22)

Constant 0.42* (SE: 0.01) 0.54* (SE: 0.07) 0.50* (SE: 0.07)

Log-likelihood −3,885 −301 −328

Likelihood-ratio χ2 statistic 9.59 10.42 9.66

p-value for likelihood-ratio test 0.008 0.005 0.008

AIC 7,779 610 664

AIC, Akaike Information Criterion; SE, standard error.
Hazard ratio estimates are statistically significant at p-value<0.05*, <0.10º.
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not guarantee the absence of unobserved confounding, they 
do signal that the proportion of patients receiving WGTA-
guided care will impact precision oncology's ability to de-
liver on promises of improving patients’ health.

POG patients whose WGTA information did not lead 
to treatment change had an average 1-year survival time 
of 7.51 months (95% CI: 6.76, 8.25) and were at a signifi-
cantly increased hazard of death compared to unmatched 

F I G U R E  3  Kaplan–Meier survival estimates for POG patients stratified by WGTA-informed treatment and POG-naive patients in matched 
and unmatched cohorts. Each subgraph depicts survival functions across POG patients who received WGTA-informed treatment, POG patients who 
did not receive WGTA-informed treatment and POG-naïve patients in the different cohorts. Risk tables present the number of uncensored patients 
at risk of death at the beginning of each interval across groups.

(a)

(b)

(c)
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POG-naive patients (HR: 1.33, 95% CI: 1.01, 1.75). In the 
matched cohorts, there were no statistically significant dif-
ferences in hazards across these two groups. Our study's 
small sample size and short follow-up period for our clin-
ical endpoints, overall and 1-year survival, may limit the 
precision of our final estimates. Yet, the observed variation 
demonstrated through matching provides evidence of selec-
tion bias in the unmatched control cohort and compared to 
covariate adjustment, matching produces less biased effect 
estimates.(Austin, 2013; Ho et al., 2007) Failing to account 
for apparent baseline differences in patients’ characteristics 
will lead to inaccurate conclusions about the health impacts 
of precision oncology.

Compared to the clinical end points examined in this 
study, progression-free survival analyses may yield ad-
ditional estimates of the short-term benefits of WGTA-
informed treatment. Disease progression on molecularly 
guided treatment is less likely to be impacted by crossover 
and requires a smaller sample size and shorter follow-up 
period for data collection than overall survival (Villaruz & 
Socinski, 2013). However, the accuracy of progression-free 
survival estimates relies on objective, consistent measures 
of disease progression, which are unavailable in many ju-
risdictions including BC. Future evaluations of precision 
oncology would benefit greatly from routine collection and 
standardization of disease progression information in clin-
ical outcomes databases.

Studies are beginning to apply matching when evalu-
ating precision oncology but often do not report detailed 
balance statistics (Barcenas et al., 2017; Presley et al., 
2018). Matching relies on the strong underlying assump-
tion of ignorability. Careful balance assessment for entire 
covariate distributions is critical to obtain reliable results. 
Even if final cohorts appear well-balanced on observ-
able characteristics, unobserved confounding can remain, 
which may introduce selection bias. For example, disease 
prognosis may guide the selection of POG patients and 
influence eligibility for WGTA-informed treatments, but 
this information is not routinely recorded in administrative 
databases. Further research exploring the use of matching 
in combination with quasi-experimental methods that ad-
just for certain forms of unobserved confounding are nec-
essary to support health-care decision-making in precision 
oncology.

In conclusion, matching methods combined with popula-
tion-based administrative data offer a solution to the challenge 
of non-randomized enrollment observed in many precision 
oncology studies. In the absence of RCTs, PSM and genetic 
matching can be used to mitigate the selection bias present in 
observational studies. We find that while both methods are 
able to identify a counterfactual for a single-arm application 
of precision oncology, genetic matching outperformed PSM 

when balancing observable characteristics. Genetic matching 
will thus result in more reliable effect estimates than PSM 
alone. After matching, we detected no significant overall sur-
vival differences POG patients and matched controls. Instead, 
our analyses signaled that the clinical effectiveness of preci-
sion oncology approaches will depend on the influence of 
genomic information on subsequent treatment change. Our 
study will guide future applications of matching in precision 
oncology and help to ensure reliability of final effect esti-
mates in the absence of RCT data.
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