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Abstract: Automated fruit identification is always challenging due to its complex nature. Usually,
the fruit types and sub-types are location-dependent; thus, manual fruit categorization is also still a
challenging problem. Literature showcases several recent studies incorporating the Convolutional
Neural Network-based algorithms (VGG16, Inception V3, MobileNet, and ResNet18) to classify the
Fruit-360 dataset. However, none of them are comprehensive and have not been utilized for the
total 131 fruit classes. In addition, the computational efficiency was not the best in these models. A
novel, robust but comprehensive study is presented here in identifying and predicting the whole
Fruit-360 dataset, including 131 fruit classes with 90,483 sample images. An algorithm based on
the Cascaded Adaptive Network-based Fuzzy Inference System (Cascaded-ANFIS) was effectively
utilized to achieve the research gap. Color Structure, Region Shape, Edge Histogram, Column Layout,
Gray-Level Co-Occurrence Matrix, Scale-Invariant Feature Transform, Speeded Up Robust Features,
Histogram of Oriented Gradients, and Oriented FAST and rotated BRIEF features are used in this
study as the features descriptors in identifying fruit images. The algorithm was validated using
two methods: iterations and confusion matrix. The results showcase that the proposed method
gives a relative accuracy of 98.36%. The Fruit-360 dataset is unbalanced; therefore, the weighted
precision, recall, and FScore were calculated as 0.9843, 0.9841, and 0.9840, respectively. In addition, the
developed system was tested and compared against the literature-found state-of-the-art algorithms
for the purpose. Comparison studies present the acceptability of the newly developed algorithm
handling the whole Fruit-360 dataset and achieving high computational efficiency.

Keywords: automated image classification; cascaded-ANFIS; confusion matrix; features descriptors;
Fruit-360 dataset

1. Introduction

Given the tremendous growth of the current population rate, the foods that we con-
sume are a significant concern. Fruits are an essential consuming food in the day-to-day
life pattern of most people and a highly recommended source of nutrient supply by nutri-
tionists. Various strategies for fruit detection utilizing computer vision technologies have
been used for many years. These approaches are used to categorize and distinguish various
types of fruits from a collection of photographs. Fruit categorization is still regarded as a
contentious and complex problem not only in the research world but also in the practicing
industries. Identifying the class of a particular fruit, for example, allows grocery staff to
quickly calculate its price [1]. Furthermore, nutritional recommendations are beneficial in
assisting consumers in picking appropriate food varieties that satisfy their nutrient and
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well-being demands [2,3]. Fruit categorization techniques are frequently employed in most
food facilities for automated packing.

The fruit types and sub-types are location-dependent (varies from location to location
even in the same country), thus manual fruit categorization is still a challenging problem.
This vast disparity is centered on the availability of population-dependent and region-
dependent fruits, as well as the required elements in the fruits [3]. Artificial Intelligence (AI)
and Machine Learning (ML) approaches are utilized in various applications to give optimal
solutions to challenges faced in a variety of disciplines such as image analysis, speech
recognition, forecasting, prediction, massive dataset analysis, and marketing [4]. Thus,
the rapid advancement in computer vision and machine learning, particularly in the recent
decade, has drawn the attention of various researchers to the use of established approaches
in automatic fruit categorization. Researchers frequently employed elements linked to
exterior quality descriptors in their study, such as form, size, texture, and color [5,6].
In general, most of the suggested classifiers were either constrained to a certain kind of
fruit or showcased poor accuracy. Many of the classification systems are purely based on
Neural Network (NN) algorithms and very few approaches in the literature were based on
Fuzzy Logic (FL).

2. Related Works

Several automatic fruit and vegetable categorization algorithms have been introduced
in recent years by experts. VeggieVision [7] was the first product from a significant attempt
in recognizing the vegetables and fruits. This device had an integrated scale as well as
a digital camera. When an item was placed on the scale, the camera captures the image.
Color, texture, and other characteristics were retrieved and compared to previously stored
characteristics of distinct product varieties. These stored characteristics were acquired
throughout the training procedure. When the training and testing datasets were from the
same store, the best pick had a classification accuracy of 82.6%. The classification accuracy
decreased dramatically when the training and testing datasets were from separate stores.

Seng and Mirisaee [8] suggested another fruit detection method based on color, shape,
and size. The color was represented by the mean RGB value, shape by the measure of
roundness, and size by the area and perimeter values. These feature values were then used
to classify data using the k-nearest neighbor technique. Despite the excellent accuracy rates
reported, the training and testing datasets were relatively small.

Two different machine learning-based fruit categorization algorithms are proposed
by Wang et al. [9]. Wavelet entropy, principal component analysis, feed-forward neural
networks trained with Fitness-Scaled Chaotic Artificial Bee Colony (FSCABC), and bio-
geography-based optimization techniques were used in their procedures. The categoriza-
tion accuracy for both approaches was 89.5%, which is higher compared to the earlier ap-
proaches.

However, Pennington and Fisher [3] were the first scientists to utilize the cluster-
ing approach to categorize fruits and vegetables in 2009. They have employed a dataset
having 104 common fruits and vegetables for classification. Visible spectroscopy was
used by Pholpho et al. [10] to distinguish damaged and undamaged fruits. Furthermore,
Yang et al. [11] presented an estimating approach for blueberry fruit identification using
multi-spectral image analysis. In contrast, computer vision and multi-class Support Vector
Machine (SVM) were used to categorize distinct varieties of fruit with an 88.20% accu-
racy [12]. Later, eight different citrus fruits were identified using Raman spectroscopy as a
quick and non-destructive measure using two analytic approaches (hierarchical cluster and
principal component) [5]. In addition, Fadhel et al. [13] employed color segmentation to
identify immature strawberries. They have used two different methods for classification:
color thresholding and K-means clustering. The results indicate that the color thresholding
results outperform the clustering method. The literature also presents the related studies
in impurity identification in olive oil using similar techniques of computer vision and
machine learning [6]. Furthermore, Breijo et al. [14] used an electronic nose (also known
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as a piece of olfactory sampling equipment) to characterize the odor of Diospyros kaki
(Persimmons). The system’s operating parameters have the power to impact the changeable
configurations, allowing the system to be flexible.

On the other hand, Fan et al. [15] used an artificial neural network with two hidden lay-
ers to predict the texture features derived from a food-surface picture. The back-propagation
method was utilized for training the neural network. However, the neural network ap-
proach had some disadvantages, including behaving as a black box, intensive duration of
development, and the requirement of a lot of data.

However, Omid et al. [16] presented an expert system for extracting size and then
defecting information using machine vision and Fuzzy Logic. This approach employed two
different types of membership functions, including triangular and trapezoidal. In addition,
the study was evaluated using the Correct Classification Rate (CCR), and overall accuracy
of 95.40% was obtained.

Another automatic fruit categorization system was proposed based on the fitness-
scaled chaotic artificial bee colony algorithm [17]. The authors have compared the perfor-
mance of the proposed algorithm with three well-known AI methods. However, the pro-
posed FSCABC-FNN method has only shown an 89.10% accuracy outperforming other
algorithms. In addition, Khanmohammadi et al. [18] have proposed a classification method
based on Near-Infrared Spectrometry (FT-NIR) and Square SVM. They have succeeded in
obtaining a meager prediction error rate of 2%. Furthermore, a texture-based method that
involves descriptor computation and interest-point feature extraction was proposed [19].
They stated that the study shows excellent results on a single image detection rate having
85.00% and 100.00% for pineapple and bitter lemon fruits, respectively. Date fruits were
identified using Weber’s local descriptor and local binary pattern approaches and SVM
for classifier and Fisher discrimination ratio for feature selection [20]. This study has
considered three feature descriptors such as color, texture, and shape. The proposed algo-
rithm shows a 98.00% accuracy after the dimension reduction using Fisher Discrimination
Ratio (FDR).

The literature presents many related research studies based on Convolutional Neural
Networks (CNN) to the Fruit-360 dataset in recognizing the fruits. A CNN-based VGG16
model used developed by Siddiqi [21] to classify 72 classes of the Fruit-360 dataset and
the author has obtained 99.27% accuracy in total. Ghazanfar et al. [22] have presented a
model using Deep Convolutional Neural Networks (DCNN) to classify the same dataset
(Fruit-360) and acquired a 92.00% recognition rate. The individual classes of the Fruit-
360 dataset were combined to create new classes in this research. Therefore, the total
number of categories was reduced to 16 for the classification. This created the problem of
robustness. In addition, Ghosh et al. [23] have introduced an image classification model
using ShufleNet V2 that is based on the CNN algorithm. They have obtained an accuracy
of 96.24% for 40 classes in the Fruit-360 dataset. Furthermore, Postalcıoğlu [24] has also
presented a model based on CNN. Three different optimizers including Stochastic Gradi-
ent Descent with Momentum (SDGM), Adaptive Moment Estimation (Adam), and Root
Mean Square Propagation (RMSPROP) were used in that analysis to evaluate the results.
The results were 98.08%, 98.83%, and 99.02% accurate, respectively. However, the research
was only conducted for 48 classes in the Fruit-360 dataset. Therefore, the study was not a
comprehensive work. In another study, Ziliang et al. [25] have showcased an accuracy of
98.06% for a classification model using the CNN algorithm. However, they have extended
the analysis for 81 classes of the Fruit-360 dataset.

A deep review of related literature presents the following drawbacks and shortcom-
ings.

1. The studies required expensive sensors such as weight, dew, heat, chemical, gas-
sensitive, and infrared light to model the classification.

2. The classifiers are only capable of recognizing a few types of fruits, not the whole
Fruit-360 dataset.
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3. The system performance is insufficient, owing primarily to closely related texture,
color, and shape properties.

4. The classification precision falls short of the standards for typical applications.
5. The algorithms required a higher computational power.

Therefore, this research study proposes a new algorithm based on the Cascaded
Adaptive Neuro Fuzzy Inference System (Cascaded-ANFIS) [26] to fill the above-identified
research gaps in the literature and then to present a much enhanced and robust model
to identify the fruits based on their properties. The major contributions of the presented
research can be listed as follows.

1. This study proposes a novel structure for the Cascaded-ANFIS algorithm for image
classification.

2. The system is designed using nine state-of-the-art feature descriptors (including
Color Structure (CS), Region Shape (RS), Edge Histogram (EH), Column Layout
(CL), Gray-Level Co-Occurrence Matrix (GLCM), Scale-Invariant Feature Transform
(SIFT), Speeded Up Robust Features (SURF), Histogram of Oriented Gradients (HOG),
and Oriented FAST and rotated BRIEF features (ORB)).

3. The total dataset of 131 classes is used for the classification.
4. The novel system can reduce the dimension input to different features due to the

usage of the feature reduction method.
5. Comparison of the accuracy with the state-of-the-art algorithms (including CNN

with Stochastic Gradient Descent with Momentum, CNN with Adaptive Moment
Estimation, CNN with RMS propagation, Customized Inception V3, Customized VGG
16, Customized MobileNet, Vanilla MobileNet, ShufeNet V2, DCNN, and ResNet18).

6. The comparative computational power is relatively inexpensive while providing an
accuracy up to 98.36%.

3. Proposed Methodology
3.1. The Fruit-360 Dataset

Fruit-360 is a dataset which has 90,483 fruit photos (67,692 in the training set and
22,688 in the test set) [27]. The collection contains 131 different varieties of fruits, and each
fruit has an image only capturing one fruit. These images are 100 × 100 pixels in size.
The training set and test set for each fruit type contain a somewhat different number of
photos, although, in most situations, roughly 70% training images and 30% test images are
provided for each fruit type. These images are obtained by filming a brief video of fruit
for twenty seconds while it is slowly spun by a motor and then extracting frames/images
from that movie. A white sheet of paper is used as the background for the capture.
The background of each fruit is then eliminated by a specific algorithm. The varying light
intensity can impact the background; therefore, it has to be removed.

3.2. The Cascaded-ANFIS Algorithm

The development of the classifier requires a combination of several theories. The core
algorithm used in this study is the Cascaded-ANFIS algorithm and a brief introduction is
presented in the following subsection.

ANFIS combines two different algorithms, such as NN and FL. Therefore, ANFIS
showcases the advantages of both NN and FL algorithms [26]. ANFIS has six layers in its
structure. Usually, the first layer is the input while the last layer is the output. The mem-
bership functions are generated in the 2nd layer using FL while the cumulative product
of these membership functions is generated in the 3rd layer. The 4th layer normalizes the
output from the 3rd layer while the 5th layer is used to defuzzify the previous outputs to
generate the final value. Equations (1)–(5) present the corresponding calculations for each
level in general ANFIS algorithm.
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µAi = max(min(
x − ai
bi − ai

,
ci − x
ci − bi

), 0), i = 1, 2 (1)

O2,j = wj = µAi(x1) ∗ µBi(x2) (2)

O3,j = w̄j =
wj

∑ wi
, j = 1, 2, ..., n (3)

O4,j = w̄j f j = w̄j(pjx1 + qjx2 + rj) (4)

O5,1 =
n

∑
j=1

w̄j f j (5)

where µAi is the Ath membership function for the input i = 1, 2 and x, a, b, and c are input
values and the premise parameters in the triangular membership function, respectively.
O(k,j) is the output of respective layer k and jth rule. wj is the firing strength of the jth rule
and p, q, and r are the consequent parameters for the defuzzification.

The ANFIS algorithm is repetitively used with two inputs, and one output in the
Cascaded-ANFIS algorithm. The construction of the Cascaded-ANFIS algorithm is pre-
sented in Figure 1.

Figure 1. Flowchart of the original Cascaded-ANFIS algorithm structure.

The Cascaded-ANFIS algorithm is made up of two major parts: the pair selection
method and the training method. More information and technical details about Cascaded-
ANFIS can be found in Rathnayake et al. [26,28]. ANFIS poses a major disadvantage when
it is used with higher dimensional data. The computational complexity of the ANFIS
algorithm mainly depends on the number of input features used in the system. Therefore,
in related research, dimension reduction methods are generally used to overcome this effect.
However, the computational complexity is easily handled by the innovative Cascaded-
ANFIS algorithm. In addition, noisy data sets can also be handled by the unique techniques
developed in Cascaded-ANFIS. However, this study is based on image data classification
which provides an extensively large number of input dimensions to the system. Therefore,
a state-of-the-art dimension reduction method was investigated to apply to solve this
issue. Hence, three well-known Dimension Reduction (DR) methods were considered:
Independent Component Analysis (ICA) [29], Principle Component Analysis (PCA) [30,31],
and Multi-Dimensional Scaling (MDS) [32].

The results of using these DR methods are illustrated in the implementation of the
algorithm section. A simple experiment was carried out to identify the best algorithm for
dimension reduction. Three well-known datasets (vehicles by Siebert [33], breast cancers
by Wolberg and Mangasarian [34], Musk 1 by Dietterich et al. [35]) were used to reduce the
dimension using the Cascaded-ANFIS algorithm using all three methods. These datasets
were selected based on different perspectives, such as field of interest and the number of
inputs and outputs.
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3.3. Image Data Analysis—Feature Extraction

Features are the key ingredient in implementing a classifier. Therefore, according
to the literature, nine feature descriptors are used to extract different features from the
Fruit-360 image dataset. This section provides a brief introduction to each of these feature
extraction methods. The first method is the Color Structure descriptor. It is based on
histogram equalization, but it seeks and gives a complete description by differentiating
localized color variations for each color [36]. The next feature descriptor is the Region
Shape. The shape characteristics are less developed than their color and texture equivalents
because of the intrinsic difficulties of portraying forms [37].

However, due to the variety of possible projections of a 3D object into 2D shapes,
the complexity of each object shape, the presence of shadows, occlusions, non-uniform
illumination, and varying surface reflectivity, it is not accessible to precisely segment an
image into meaningful regions using low-level features. Therefore, the Column Layout
feature descriptor was used as the third feature extraction method.

The Edge Histogram (EDH) descriptor represents the geometry of an image and is
meant to depict the distribution of local edges inside pictures [38]. Therefore, the EDH
descriptor was used as the fourth feature extraction method in this research. Edges are
an essential attribute for viewing image information, and the histogram was used to
characterize them. The homogeneous color histogram and texture feature cannot reproduce
an image’s EDH-described qualities [39,40]. The fifth feature descriptor is the Gray Level
Co-Occurrence Matrix (GLCM). It determines how frequently unique combinations of grey
levels co-occur in an image or section of an image given an image made up of pixels, each
with an intensity (a specific grey level). The GLCM contents are utilized in texture feature
calculations to measure the change in intensity (also known as image texture) at the pixel
of interest [41].

The sixth and seventh descriptors are Scale Invariant Feature Transform (SIFT) [42]
and Speeded Up Robust Features (SuRF) [43]. SIFT characteristics include scale and rota-
tion invariance and they have various advantages, including localization, distinctiveness,
quantity, efficiency, and flexibility. On the other hand, SURF is a quick and trustworthy ap-
proach for encoding and estimating pictures in a local, similarity invariant way. The SuRF
technique’s main appeal is its ability to calculate operators fast using box filters, enabling
real-time tracking and object recognition applications.

The Histogram of Oriented Gradients (HOG) feature descriptor is the eighth feature
extraction method used in this study. It is related to the Canny Edge Detector and the SIFT,
and it is used in image processing to detect objects [44]. The method counts how many times
a gradient orientation appears in a specific picture section. The ninth and the last feature
descriptor was presented by Ethan et al. and it is called the Oriented FAST and Rotated
BRIEF (ORB) [45]. The FAST key-point detector serves as the foundation for the ORB
descriptor. ORB performs feature identification similarly to SIFT and SURF while being
roughly two orders of magnitude faster. Because of its significant contributions, the ORB
descriptor is employed as the feature extractor in many machine learning models [46,47].

3.4. Application Methodology—Novel Modified Structure for the Cascaded-ANFIS

The flowchart for the developed Cascased-ANFIS algorithm is presented in Figure 2.
In Figure 2, A(i,j) represents the ANFIS structure and i and j are the number of the levels
and the number of the ANFIS structures in the corresponding level. Hence, there are seven
ANFIS structures in the first level and represented as A1,1...A1,7.
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Figure 2. The Proposed Modified Novel Structure of Cascaded-ANFIS algorithm.

A modified Cascaded-ANFIS algorithm had to be built to extract more features from a
few descriptors from a single image (for example 352 features can be extracted as shown
in Figure 2). However, reducing these features to a lesser number of meaningful features
is challenging.

One of the main aspirations of this study is to generate a real-time system with
higher accuracy compared to the existing algorithms. Therefore, reducing as many input
dimensions as possible gives an added advantage in reducing time consumption and
computational complexity. The reduction of input features was carried out considering
each feature descriptor individually.

As shown in Figure 2, ICA was used as the feature reduction method in the developed
model. The feature reduction was carried out for each set individually. The resulting feature
set is the “Selected Data” (refer to Figure 2) and each set of features contains 9 features.
The feature number was reduced to 63 (from 352) by using ICA. Then, the initial level of
the modified Cascaded-ANFIS algorithm was started. The initial level of this structure uses
seven inputs (consisting of 9 features) even though the usual Cascaded-ANFIS algorithm
uses 2 inputs. Therefore, this modified architecture has seven Cascaded-ANFIS levels. Each
ANFIS uses the previous output as the input to the current module.

3.5. Performance Analysis Techniques

The performance of the developed model was analyzed using a confusion matrix.
A confusion matrix gives information about the predictions. Other classification matrices
shown in Equations (6)–(12) were tested to understand the confusion matrix.

AccuracyAvg =
∑l

i=1
tpi+tpi

tpi+ f ni+ f pi+tni

l
(6)

Precisionµ =
∑l

i=1 tpi

∑l
i=1(tpi + f pi)

(7)

Recallµ =
∑l

i=1 tpi

∑l
i=1(tpi + f ni)

(8)

FScoreµ =
(β2 + 1)PrecisionµRecallµ

β2Precisionµ + Recallµ
(9)
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PrecisionM =
∑l

i=1
tpi

tpi+ f pi

l
(10)

RecallM =
∑l

i=1
tpi

tpi+ f ni

l
(11)

FScoreM =
(β2 + 1)PrecisionMRecallM

β2PrecisionM + RecallM
(12)

where tpi, tni, f pi, and f ni are True Positive, True Negative, False Positive, and False
Negative respectively. In addition, l is the total number of classes and µ and M are the
micro and micro-averaging. Each of these parameters conveys valuable information about
the performance of the classification when the problem is multiclass [48]. The performance
of the novel Cascaded-ANFIS model was tested and presented for its accuracy.

4. Results and Discussion
4.1. Feature Dimension Reduction

Figure 3a–c show the results of dimension reduction for three algorithms. They all
reach very good accuracies and showcase similar variations. Therefore, the time consump-
tion to perform these algorithms was considered a selection criterion.

Figure 3. Accuracy comparison of feature dimension reduction algorithms when used on well-known
datasets (breast cancer, vehicle, and Musk 1).

Figure 4 presents the time consumption to perform the DRs. As it can be clearly seen,
the time consumption is almost similar in ICA and PCA from features 2 to 10. However,
MDS shows a longer calculation time when compared with the other two methods. For ex-
ample, 0.99 s, 1.07 s, and 192.76 s were consumed at feature number two for ICA, PCA,
and MDS, respectively.
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Figure 4. Time consumption for feature dimension reduction (time is denoted in seconds (s)).

However, with the increase in feature numbers, ICA and PCA have caught up with
MDS. This can be seen at the feature number of 10. Nevertheless, ICA still shows better per-
formance with respect to time consumption. At feature number 10, the time consumption
is recorded as 1632 s, 1710 s, and 1852 s, respectively for ICA, PCA, and MDS. Therefore,
the modified Cascaded-ANFIS algorithm was constructed using the ICA feature dimension
reduction method.

4.2. Learning Behaviour by Iterations

The learning behavior performance of selected algorithms was compared with the
novel Cascaded-ANFIS algorithm performances. A summary of the experiment is shown
in Table 1.

Table 1. Model training performance with iterations.

No of
Iterations SVM MLP ANFIS PSO-ANFIS GA-ANFIS Cascaded-ANFIS

1 1.98 3.28 2.02 1.91 1.92 0.31

10 1.61 0.95 2.02 1.91 1.92 0.24

100 1.20 0.43 2.02 1.43 1.83 0.20

The traditional non-fuzzy-based algorithms, such as SVM and MLP, showed a decreas-
ing trend in RMSE, while the fuzzy-based algorithms show a neutral behavior to increasing
iterations. In addition, GA-ANFIS and PSO-ANFIS algorithms presented a decreasing
trend of RMSE after many iterations. However, it is noteworthy that the ANFIS algorithm
kept the RMSE at 2.02 during all iterations, while the Cascaded-ANFIS algorithm gives
the best RMSE. The Cascaded-ANFIS algorithm trains several FIS modules at a single
iteration. Therefore, it is clear that the Cascaded ANFIS reaches a lower RMSE value in
fewer iterations. Hence, this proves that the Cascaded-ANFIS algorithm performance
saturates at the minimum number of iterations.

4.3. Confusion Matrix Analysis

The performance comparison of the modified Cascaded-ANFIS structure was evalu-
ated using learning curves and the analysis of the confusion matrix. The overall confusion
matrix was generated for all 131 classes when using the Cascaded-ANFIS algorithm for the
classification.

Due to the unbalance samples in each class of the Fruit-360 dataset, the confusion ma-
trix shows different colors at the top predictions. Therefore, summarized class information
is given in Table 1 for further clarification.
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Moreover, 10-fold cross validation was carried out to investigate the stability and
robustness of the proposed algorithm. Figure 5 shows the resulting plot of the 10-fold cross
validation. As shown in the figure, the accuracy remains between 98% and 99%. However,
the average accuracy is calculated as 98.36%.

2 4 6 8 10
0.98

0.98

0.98

0.99

0.99

K-Fold

A
cc

ur
ac

y
(×

10
0%

)
Cascaded-ANFIS

Figure 5. 10-Fold Cross-Validation of the Accuracy of the Classifications.

The Accuracy Evaluation of the Confusion Matrix

The accuracy of the class prediction was tested as a percentage of correctly predicted
vs total tested images. A classification accuracy of 98.41% was achieved from the developed
Cascaded-ANFIS model. In addition, the accuracy was checked for the confusion matrix
using Equations (6)–(12). The dataset class samples were not balanced in Fruit-360, thus,
the confusion matrix was generated for all 131 classes. Figure 6 presents a sample confusion
matrix of eight classes. Table 2 shows the performance values for each of the parameters of
the Cascaded-ANFIS algorithm-based classifier.

Table 2. Sample distribution of the Fruit-360 dataset among some of the classes.

Class ID Class Label Number of
Samples

0 Apple Braedurn 492

12 Apple Red Yellow 2 672

25 Cauliflower 702

32 Chestnut 450

42 Ginger Root 297

44 Grape Blue 984

66 Mangostan 300

73 Nut Pecan 534
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Figure 6. Confusion matrix for eight classes classification.

Four main parameters can be extracted from a confusion matrix such as True Positive
(TP), False Positive (FP), True Negative (TN), and False Negative (FN). TP is the value
of correct predictions of positives out of actual positive samples whereas the FP is the
false positive representations of actual negative samples. TN is the accurate pessimistic
predictions of actual negative samples, and FN is the false-negative samples. When the
classes are unbalanced, the recall score is a good indicator of prediction success. It is the
proportion of TP to a genuinely positive and FN in mathematics.

As can be clearly seen in Table 3, all the parameters are above the level of 0.98. This
concludes that the classification performance of the Cascaded-ANFIS model is excellent
and served well for the Fruit-360 dataset.

Table 3. Performance of Confusion Parameters.

Metric Performance Value

Average Accuracy 0.9841

Precisionµ 0.9841

Recallµ 0.9841

FScoreµ 0.9841

PrecisionM 0.9846

RecallM 0.9849

FScoreM 0.9845

PrecisionW 0.9843

RecallW 0.9841

FScoreW 0.9840
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4.4. Comparison of Classification Accuracy against State-of-the-Art Algorithms

The literature showcases several attempts in classifying the Fruit-360 dataset at dif-
ferent years. The dataset is upgraded year by year, thus the usage of classes differs from
study to study. Table 4 shows the best attempts in the past using different algorithms.

Table 4. Configuration of the host computer.

Processor Intel(R) Core(TM) i9-10900K
CPU @ 3.70 GHz 3.70 GHz

Installed RAM 64.0 GB (63.9 GB usable)

Windows Edition Windows 10 Education

HDD 4 TB

SSD 1 TB

Ten different algorithms used to classify Fruit-360 data into its classes are summarized
in Table 5. Importantly, all these attempts have been made during 2019 and 2020, and it is
worth noting that these algorithms are based on CNN, such as CNN with Stochastic Gradi-
ent Descent with Momentum, CNN with Adaptive Moment Estimation, and Customized
Inception V3.

Table 5. Comparison of classification accuracy against similar research work.

Reference
Study Algorithm

Size of the Dataset
Test Accuracy

# Classes # Samples

Seda
Postalcioglu
(2019) [24]

CNN with Stochastic
Gradient Descent
with Momentum

48 50,590

98.08

CNN with Adaptive
Moment Estimation

98.83

CNN with Root Mean
Square Propagation

99.02

Raheel Siddiqi
(2019) [21]

Customized
Inception v3 72 48,249

99.1

Customized VGG16 99.27

Ziliang Huang et al.
(2019) [25]

Customized
MobileNet 81 55,244

98.06

Vanilla MobileNet 95.98

Sourodip Ghosh et al.
(2020) [23]

ShufeNet V2 31 29,347 96.24

Ghazanfar Latif et al.
(2020) [22]

DCNN 18 22,341 95

Jorg Martinet al.
(2019) [49]

ResNet18 116 58,428 98.7

This Study (2022) Cascaded-ANFIS 131 67,692 98.36

The accuracy was measured as a percentage for all cases. The best results were found
for the CNN approach when employing a Customized VGG16 network [21] and that was
99.27%. Though the results are higher in that research than in the proposed method in this
study, the amount of data in the Fruit-360 dataset was lesser for Siddiqi [21]. Only used
72 classes with 48,249 samples were used by Siddiqi, while 131 classes with 90,380 samples
were utilized for the presented study here.
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In addition, the attempts presented in the year 2020 have noticeable accuracy reduc-
tion of 4–5% (96.25% [22] and 95% [23]). This could be due to the growth of the dataset.
Therefore, the Cascaded-ANFIS model with a larger dataset has advantages in classifica-
tion accuracy.

Usually, an expensive GPU is needed to run CNN-based algorithms due to high
computational cost, whereas a conventional computer without GPU is enough for fuzzy-
based ANFIS algorithms. Our experiments showed that the Cascaded-ANFIS algorithm
could be implemented successfully using a computer without GPU, as shown in Table 3.

Moreover, CNN-based methods use an inbuilt feature extraction method, and the
classification processes are performed using a fully connected neural network. However,
the Cascaded-ANFIS study uses a fuzzy-based method and the feature extraction is per-
formed outside of the leading classification algorithm. This characteristic of the algorithm
allows the system to be modified using state-of-the-art feature extraction algorithms.

Furthermore, the Cascaded-ANFIS algorithm is a combination of multiple Fuzzy
Inference Systems. Therefore, it can synthesize and infer good combinations automatically.
Therefore, implementing the algorithm by distinct fuzzy reasoning methods can generate
optimized solutions. The CNN-based processes operate as a black box, and the alternations
of the functions can be challenging. Therefore, the Cascaded-ANFIS algorithm has many
merits over the traditional CNNs.

5. Conclusions

The Fruit-360 dataset has 131 fruit classes with 90,483 sample images, and many
researchers tried to classify fruits in the dataset using artificial intelligence and machine
learning techniques. However, none of the previous attempts focused on handling all 131
fruit classes with a total number of fruit images. Therefore, a novel and successful attempt
is presented in this research work in identifying all images in the Fruit-360 dataset using a
Cascaded-ANFIS algorithm. The capability in image-based classification performance of
the Cascaded-ANFIS algorithm was tested using nine feature descriptors. Thus, a robust
and comprehensive Cascaded-ANFIS algorithm is presented in this research work.

The performance of the tested algorithm was tested using the learning curve and the
confusion matrix. It can be concluded herein that the Cascaded-ANFIS algorithm outper-
formed all other state-of-the-art algorithms available for the specific task. The weighted
precision, weighted recall, and weighted FScore reached their highest accuracies at 0.9843,
0.9841, and 0.9840, respectively for the unbalanced Fruit-360 dataset. Therefore, the results
provide compelling evidence that the Cascaded-ANFIS algorithm can handle multiple class
image classification problems with higher cost-effectiveness and comparative accuracy
than the CNN-based methods in the past studies.

In addition, the algorithm showcased its capacities and capabilities in handling the
total Fruit-360 data set at lower computational power. According to the results, it can
be concluded that the Cascaded-ANFIS-based classifiers are suitable for real-time and
cost-effective system implementations. The Cascaded-ANFIS architecture is an automatic
cascade connection to the truth space approach of FIS. Therefore, Cascaded-ANFIS can rinse
off the approximate reasoning part and make the reasoning of primary elements. Moreover,
interaction selection of Cascaded-ANFIS works as the best choice with FIS. A significant
limitation of using the Cascaded-ANFIS algorithm is that it may need a different structure
to obtain better accuracy for each dataset, such as a specific number of levels and a total
number of inputs. Therefore, future works should implement a generic Cascaded-ANFIS
structure for image-based classification problems.
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