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A B S T R A C T   

Corona Virus Disease (COVID-19) has been announced as a pandemic and is spreading rapidly throughout the 
world. Early detection of COVID-19 may protect many infected people. Unfortunately, COVID-19 can be 
mistakenly diagnosed as pneumonia or lung cancer, which with fast spread in the chest cells, can lead to patient 
death. The most commonly used diagnosis methods for these three diseases are chest X-ray and computed to
mography (CT) images. In this paper, a multi-classification deep learning model for diagnosing COVID-19, 
pneumonia, and lung cancer from a combination of chest x-ray and CT images is proposed. This combination 
has been used because chest X-ray is less powerful in the early stages of the disease, while a CT scan of the chest is 
useful even before symptoms appear, and CT can precisely detect the abnormal features that are identified in 
images. In addition, using these two types of images will increase the dataset size, which will increase the 
classification accuracy. To the best of our knowledge, no other deep learning model choosing between these 
diseases is found in the literature. In the present work, the performance of four architectures are considered, 
namely: VGG19-CNN, ResNet152V2, ResNet152V2 + Gated Recurrent Unit (GRU), and ResNet152V2 + Bidi
rectional GRU (Bi-GRU). A comprehensive evaluation of different deep learning architectures is provided using 
public digital chest x-ray and CT datasets with four classes (i.e., Normal, COVID-19, Pneumonia, and Lung 
cancer). From the results of the experiments, it was found that the VGG19 +CNN model outperforms the three 
other proposed models. The VGG19+CNN model achieved 98.05% accuracy (ACC), 98.05% recall, 98.43% 
precision, 99.5% specificity (SPC), 99.3% negative predictive value (NPV), 98.24% F1 score, 97.7% Matthew’s 
correlation coefficient (MCC), and 99.66% area under the curve (AUC) based on X-ray and CT images.   

1. Introduction 

As 2019 ended, coronavirus disease, known as COVID-19, started 
proliferating all over the world and has created an alarming situation 
worldwide. The virus originated in Wuhan, a town in Eastern China, in 
December 2019. In 2020, it was declared by the World Health Organi
zation (WHO) as a “Public health emergency of international concerns”, 
and by March 2020 they classified the disease as a pandemic [1]. The 
disease has affected about 118.7 million people around the world, and 
2.6 million deaths were confirmed by March 2021. This virus causes 
pneumonia with other symptoms, such as fatigue, dry cough, and fever. 
One of the primary methods of testing coronavirus is reverse tran
scription polymerase China reaction (RT-PCR), which is performed on 
respiratory samples, and the testing results are produced within a few 

hours to two days. This method of detection is expensive and 
time-consuming [2]. Therefore, designing other methods for virus 
detection is currently an important challenge for researchers. Specif
ically, until now, there has been no definite medical treatment for 
COVID-19 [3]. 

Automating the diagnosis of many diseases nowadays has been based 
on artificial intelligence, which has proven its efficiency and high per
formance in automatic image classification problems through different 
machine learning approaches. Moreover, machine learning defines 
models that have the ability to learn and make decisions by using large 
amounts of input data examples. Artificial intelligence makes calcula
tions and predictions based on analyzing the input data, then performs 
tasks that require human intelligence such as speech recognition, 
translation, visual perception, and more. Deep learning is a combination 
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of machine learning methods that mostly focus on the automatic feature 
extraction and classification of images and have shown great achieve
ment in many applications, especially in health care [4,5]. 

Deep learning efficiently generates models that produce more ac
curate results in predicting and classifying different diseases using im
ages as in breast cancer [6], liver diseases [7], colon cancer [8], brain 
tumor [9], skin cancer [10], lung cancer [11], pneumonia [12], and 
recently COVID-19 diagnosis, without requiring any human interven
tion. The main reason for using deep learning is that deep learning 
techniques learn by creating a more abstract representation of data as 
the network grows deeper (not like classical machine learning). As a 
result, the model automatically extracts features and yields higher ac
curacy results. Unlike traditional machine learning algorithms, deep 
learning algorithms specify features through a series of nonlinear 
functions that are collated in a combinatorial fashion to maximize the 
model accuracy. 

The literature has many researches about the use of deep learning as 
a classification model for COVID-19 using chest X-rays, as in Refs. 
[13–15] and using computed tomography (CT) images, as in Refs. 
[16–22]. Other work was interested in detecting and diagnosing 
COVID-19 based on lung datasets, as in Refs. [5,23]. Moreover, some 
studies applied convolutional neural networks (CNN) using limited 
datasets for classifying and detecting COVID-19 from chest X-ray im
ages, as in Refs. [24,25]. Additionally, several studies have focused on 
detecting COVID-19 and distinguishing it from other chest diseases like 
pneumonia, as in Refs. [26–30]. Furthermore, authors in Ref. [31] 
demonstrated that a chest X-ray is less impetus in the initial stages, 
although a CT scan of the chest is useful even before symptoms appear. 
One of the problems associated with chest CT or X-ray images is the 
possible overlap between the diagnosis of COVID-19, pneumonia, and 
chest cancer, especially if the person diagnosing has little experience or 
the patient history file is not presently at hand. This necessitates the 
automation of such a process in a manner that can accurately confirm 
the existence of one of those three diseases. Up to now, there has been no 
classification model for classifying these three lung diseases, which 
encouraged us to introduce such model a in this paper. 

To this end, and to benefit from the privileges introduced by deep 
learning approaches, this paper introduces a multi-classification model 
based on deep learning techniques for detecting COVID-19 from both 
chest X-ray and CT images. A combination of CT and X-ray images was 
used for two reasons: First, to increase the dataset size. Second, since 
chest X-ray is less impetus in the initial stages, although a CT scan of the 
chest is useful even before symptoms appear, the two types, CT and X- 
ray images, were used, and this can precisely detect the abnormal fea
tures that are identified in the images. The study provides a detailed 
description for each of the architectures, and through the results, the 
best of them is concluded, which can achieve superior detection accu
racy. Furthermore, we provide a comprehensive evaluation of different 
deep learning architectures using public digital chest X-ray and CT 
datasets with four classes: Normal, COVID-19, Pneumonia, and Lung 
cancer. 

The rest of this paper is organized as follows: Section 2 presents the 
recent related work regarding COVID-19, pneumonia, and lung cancer 
detection methods based on deep neural networks. Materials and 
Methods, including the chosen datasets for the study, data pre- 
processing, and the proposed deep learning models are illustrated in 
Section 3. In Section 4, the experiments parameters and the performance 
metrics for our multi-classification model are explained with the 
experimental results comparisons. Discussions of the results are drawn 
in Section 5, and finally, conclusions with possible ongoing future work 
are drawn in Section 6. 

2. Related works and background 

Chest X-ray and computed tomography (CT) images are quite easy to 
obtain for patients and are a low-cost procedure, which makes using 
them in the recognition of COVID-19 applicable in most countries. In 
Ref. [32], three different convolutional neural network models: 
ResNet50, InceptionV3, and Inception-ResNetV2 were used for the 
detection of corona virus pneumonia in infected patients using chest 
X-ray radiographs. No feature extraction or selection phase were 
required. They achieved 98% classification accuracy using the ResNet50 
model, 97% accuracy for InceptionV3, and 87% accuracy for Incep
tionResNetV2. To avoid overfitting, they performed around 30 epochs in 
their training phase for all the models. However, they used a few images 
in their study, which were available for them to use at that time. 

Digital X-ray images were also used to automatically distinguish 
between COVID-19 and pneumonia patients in Ref. [33] using four 
different pre-trained convolutional neural networks (CNNs): ResNet18, 
AlexNet, SqueezeNet, and DenseNet201. Image augmentation ap
proaches were used (namely, rotation, scaling, and translation) to 
generate a 20-fold training set of COVID-19 images. The results of the 

Table 1 
Overview of studies using deep learning approaches with their working methods 
and performance metrics for COVID-19 case detection.  

Study Method Medical Image Performance 

[5] ResNet + SVM Chest x- ray 95.38% (Acc.) 
97.29% 
(Sens.) 

[29] AlexNet Chest x- ray 98% (Acc.) 
[36] VGG-16+ CNN Chest x- ray 91.24% (Acc.) 
[37] Resnet50, VGG16 Chest x- ray 94.4% (Acc.) 
[27] GAN and CNN: AlexNet, Resnet18 Chest x- ray 99% (Acc.) 
[38] DenseNet169, ResNet50, ResNet34, 

Inception 
ResNetV2, VGG-19, RNN 

Chest x- ray 95.72% (Acc.) 

[39] ResNet-50 (COVID-ResNet) Chest x- ray 96.23% (Acc.) 
[40] COVID-Net: Tailored model Chest x- ray 92.4% (Acc.) 

91% (Sens.) 
98% (Prec.) 

[12] ResNet152V2, MobileNetV2, CNN, 
LSTM 

Chest x- ray 99.22% (Acc.) 
99.43% 
(Prec.) 
99.44% 
(Sens.) 
99.77% (AUC) 

[15] COVIDx-Net Chest x- ray 90% (Acc.) 
100% (Prec.) 

[40] Tailored model Chest x- ray 96% (Acc.) 
[21] UNet++ Chest CT 95.2% (Acc.) 

100% (Sens.) 
93.6% (Spec.) 

[35] CNN Chest CT 89% (F1- 
score) 

[22] CNN Chest CT 94.1% (Sens.) 
95.5% (Spec.) 

[28] AlexNet, VGG-16, VGG-19, 
SqueezeNet, 
GoogleNet, MobileNet-V2, ResNet-18, 
ResNet-50, ResNet-101, and Xception 

Chest CT 99.51% (Acc.) 

[41] ResNet- 50 Chest CT 86.0% (Acc.) 
[34] ResNet Chest CT 86.7% (Acc.) 

86.7% (Sens.) 
81.03% 
(Spec.) 

[42] Tailored model (COVID-19Net) Chest CT 87% (AUC) 
[26] DarkCovidNet Chest x- ray 90.8% (Acc.) 

95.13% 
(Sens.) 
95.3% (Spec.) 

[19] CNN Chest CT 82.9% (Acc.) 
[41] DRE-Net Chest CT 86% (Acc.) 

96% (Sens.) 
80% (Prec.) 

[20] ResNet-50 Chest CT 90.0% (Sens.) 
96.0% (Spec.) 

[31] VGG-19, ResNet-50, InceptionV3 Chest x-ray +
CT 

93.0% (Acc.) 
91.0% (Prec.) 
90.0% (Sens.)  
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models were obtained with and without augmentation. To increase the 
detection accuracy, the images were resized to a specific size as a 
pre-processing step. Finally, a public database was introduced as a 
collection of three public databases recently published in the literature. 
The database contains a mixture of 1345 viral pneumonia, 190 
COVID-19, and 1341 normal chest X-ray images. They obtained an ac
curacy of 98%. 

Similarly, the authors in Ref. [27] used a generative adversarial 
network (GAN) with fine-tuned deep transfer learning approaches, 
namely AlexNet, GoogLeNet, Squeeznet, and Resnet18, to detect 
COVID-19 using chest X-ray images for a limited dataset. Using 

generative adversarial network (GAN) overcome the overfitting problem 
and helped in generating more images from the dataset that consisted of 
5863 X-ray images containing normal and infected images. 

Instead of using X-ray images [34], used transverse section CT im
ages for COVID-19 patients to detect the virus early using deep learning 
approaches. These images show different characteristics that can 
discriminate COVID-19 patients from other kinds of pneumonia, such as 
influenza-A. The samples were collected from three COVID-19 desig
nated hospitals in Zhejiang Province, China and contain a total of 618 CT 
samples: 224 from 224 patients with influenza-A viral pneumonia, 219 
samples from 110 patients identified with COVID-19, and 175 samples 

Fig. 1. Block diagram of the proposed multi-classification deep-chest model.  

Fig. 2. Chest X-ray and CT images: (a) COVID-19 with and without deep dream filter; (b) Normal images with and without deep dream filter; (c) Pneumonia images 
with and without deep dream filter; (d) Lung cancer images with and without deep dream filter. 
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from healthy people. These images were segmented into multiple 
candidate image cubes using two three-dimensional (3D) CNN models. 
The first CNN type was the traditional ResNet23, while the other was a 
designed model based on the first network structure by concatenating 
the location-attention mechanism in the full-connection layer to 
improve the overall accuracy, which reached 86.7%. 

Another important work that was based on using the CT images in 
detecting COVID-19 was presented in Ref. [16]. They utilized a 
weakly-supervised deep learning-based model to develop their own 
model called DeCoVNet. The lung regions, segmented using a 
pre-trained UNet, were fed into a 3D deep neural network to investigate 

the possibility of COVID-19 infectious. The masking of the lung areas 
helped to reduce the background information and better detect the 
infection. Their model consists of three stages. The first stage contained 
a normal 3D convolution with a kernel size of 577; a batch norm layer 
and a pooling layer. The second stage was composed of two 3D residual 
blocks (ResBlocks). In each ResBlock, a 3D fully connected (FC) layer 
with the SoftMax activation function was utilized. A dataset that con
tained 499 CT images was used for training and 131 CT image positive 
and COVID-negative; the accuracy of the algorithm is 90.1%, while the 
positive predictive value is 84%. 

A CT scan COVID-19 dataset [17] has been built to assist researchers 
in performing the detection process of the virus. Their dataset contains 
275 CT scans that are positive for COVID-19 and 195 CT scans that are 
negative for COVID. Moreover, they used this dataset to train a deep 
CNN model for detecting the presence of the COVID-19 virus. The size of 
their dataset is small for training the deep learning models, which results 
in overfitting; thus, they used a transfer learning approach that uses a 
large collection of chest X-ray images to pre-train a deep CNN model, 
then re-tune this pre-trained network on the COVID CT dataset. They 
also used data augmentation to increase the size of training data by 
creating and adding new image-label pairs to the training set. They 
achieved an accuracy of 84.7%. A rapid method for COVID-19 diagnosis 
based on artificial intelligence has been proposed in Ref. [28], where 
CNN applied to CT images from 108 patients with laboratory verified 
COVID-19 and 86 patients with pneumonia diseases. To distinguish 
between COVID-19 and pneumonia, the authors used several deep 
learning methods: VGG-19, VGG-16, SqueezeNet, AlexNet, GoogleNet, 
ResNet-18, MobileNet-V2, ResNet-50, ResNet-101, and Xception, where 
ResNet-101 achieved the highest accuracy of 99.51%. 

In [35], the authors proposed a classification schema that consists of 
a multiclass classification and a hierarchical classification of chest X-ray 
images for identifying COVID-19 and pneumonia cases. The latter 
classification is used for pneumonia, which can be organized as a hier
archy. The RYDLS-20 dataset was used that contained chest X-ray im
ages of pneumonia and chest X-ray images of healthy lungs. Their 
approach achieved 65% for F1-Score using a multiclass approach and an 
F1-Score of 0.89 for the COVID-19 identification in the hierarchical 
classification scenario. Another recent work proposed by Ref. [36] 
detected COVID-19 from chest X-rays using deep learning on a small 
dataset. They used chest X-rays of 135 patients identified with 
COVID-19 and about 320 chest X-rays of pneumonia patients. The 
experiment results showed an accuracy of 91.24% when using 
pre-trained ResNet50 and VGG-16 models, which, along with their CNN, 
were trained on a balanced set of COVID-19 and pneumonia chest 
X-rays. 

Authors in Ref. [31], proposed a model for detecting COVID-19 using 
CXR and CT images based on transfer learning and Haralick features. 
Here, transfer learning technology can provide a fast alternative to aid in 
the diagnostic process and thus reduce spread. The primary purpose of 
this work is to provide radiologists with a less complex model that can 
aid in the early diagnosis of COVID-19. The proposed model produces 
91% accuracy, 90% retrieval, and 93% accuracy by VGG-16 using 
transfet learning, which outperforms other models present in this 
pandemic period. A summary of these studies and more research papers 
using deep learning approaches, including their working methods, are 
illustrated in Table 1. 

In other research papers, deep learning models only for COVID-19 as 
in Refs. [13,15,17,32], pneumonia only as in Ref. [12] or for both dis
eases as in Refs. [26,27,33,34] have been proposed. But in this paper, a 
multi-classification deep learning model for diagnosing COVID-19, 
pneumonia, and Lung Cancer from chest X-ray and CT images is 
developed. To the best of our knowledge, this work is the first to di
agnose chest diseases. Many performance metrics will be used in our 
proposed framework’s evaluation, such as accuracy, AUC, sensitivity or 
recall, specificity, precision, negative predictive value (NPV), F1 score, 
and Matthew’s correlation coefficient range. Other researchers only 

Fig. 3. Age-wise distribution of chest datasets related to each disease.  

Fig. 4. Gender-wise distribution: (a) for chest related to each disease; and (b) 
for all the datasets. 
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used accuracy, AUC, sensitivity, or recall and specificity, as in Refs. 
[43–45]. 

3. Materials and Methods 

There are many diseases that may attack the human lung system, 
such as pneumonia, lung cancer, and recently COVID-19. For diagnosing 
these diseases, chest images using CT or X-ray are needed, as they play a 
critical and essential role. Computer science technologies have intro
duced tools to help in disease diagnoses, such as deep learning-based 
systems. In this paper, a multi-classification deep learning model for 
chest disease diagnoses is developed. The objective of our study is to 
propose a deep learning model for chest disease classification using four 
different models. To the best of our knowledge, this work can be 

considered the first approach toward introducing a single deep learning 
model for detection of a collection of chest diseases. It leverages the 
burden of the user to use several applications for the detection of each 
disease separately, and hence reduce decision time. 

The model block diagram is shown in Fig. 1. As clearly seen from the 
figure, the model consists of three main stages: data pre-processing, deep 
learning models for feature extraction, and classification. The proposed 
model uses chest images from CT and X-ray as inputs, and the final 
output is the classification of the input image into one of the four classes: 
COVID-19, Normal, Pneumonia and Lung Cancer. 

The first stage handles image pre-processing, such as resizing, image 
augmentation, and data, splitting randomly into two groups: training 
and validation by 70% and 30%, respectively. The dataset images are 
randomly split into two parts (train and validation) to insure the variety 
of the images. Data normalization is also used after converting the image 
to an array of pixels to rescale the image’s pixel value to the interval 
[0,1]. The second and third stages are feature extraction and image 
classification, respectively, by using different types of deep learning 
approaches, as will be discussed later. The input images for our proposed 
model can be CT or X-ray images. These images are resized to 224×

224× 3. To increase the number of training images to produce efficient 
and reliable accuracy for our system, image augmentation methods are 

Fig. 5. VGG19+CNN proposed model architecture.  

Table 2 
The proposed VGG19+CNN architecture.  

Layer (type) Output Shape Parameters 

vgg19 (Functional) (None, 7, 7, 512) 20024384 
reshape (Reshape) (None, 7, 7, 512) 0 
conv2d (Conv2D) (None, 7, 7, 128) 1638528 
activation (Activation) (None, 7, 7, 128) 0 
conv2d_1(Conv2D) (None, 7, 7, 128) 409728 
activation_1 (None, 7, 7, 128) 0 
batch_normalization   
(BatchNormalization) (None, 7, 7, 128) 512 
max_pooling2d   
(MaxPooling2d) (None, 2, 2, 128) 0 
dropout (Dropout) (None, 2, 2, 128) 0 
flatten (Flatten) (None, 512) 0 
dense (Dense) (None, 512) 262656 
dropout_1 (Dropout) (None, 512) 0 
dense_1 (Dense) (None, 4) 2052 
Total parameters: 22,337,860 
Trainable parameters: 22,337,604 
Non-trainable parameters: 256  

Fig. 6. ResNet152V2 proposed model architecture.  

Table 3 
The proposed ResNet152V2 architecture.  

Layer (type) Output Shape Parameters 

Resnet152v2 (None, 7, 7, 2048) 58331648 
reshape (Reshape) (None, 7, 7, 2048) 0 
flatten (Flatten) (None, 512) 0 
dense (Dense) (None, 128) 12845184 
dropout_1 (Dropout) (None, 128) 0 
dense_1 (Dense) (None, 4) 516 
Total params: 71,177,348 
Trainable params: 71,033,604 
Non-trainable params: 143,744  
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used, such as flip, rotate, and skewing, in two places: first in dataset 
preparing and second in data pre-processing. The use of augmentation 
twice increases the dataset size, which will be reflected in the system 
accuracy. 

3.1. Datasets for the study 

For the purpose of our experiments, many sources of X-rays and CT 
images were accessed and collated. This collection includes COVID-19, 
pneumonia, and lung cancer images from both types; X-ray and CT, in 
addition to normal images. First, for COVID-19, we selected dataset from 
repositories like GitHub [46,47] with about 4320 images (X-ray and CT). 
Secondly, some useful websites have a public and medical dataset that 
are considered to be the most common datasets, such as the Radiological 
Society of North America (RSNA), the Italian Society of Medical and 
Interventional Radiology (SIRM), and Radiopaedia, which are a collec
tion of common pneumonia X-ray images with about 5856 images 
[48–50] that can be used for training our proposed deep CNN to 
distinguish COVID-19 from pneumonia. The third dataset source is lung 
cancer X-ray and CT images that are available in Ref. [51], with about 
20,000 images. The last dataset that will be used in this study is normal 

images and contains 3500 X-ray and CT images. The total number of 
images from the collected datasets is 33,676 images. 

Samples of chest X-ray and CT images for COVID-19, normal cases, 
pneumonia, and lung cancer images, with and without deep dream filter 
are shown in Fig. 2. The number of patients for each disease dataset with 
respect to all ages, is shown in Fig. 3. The ages were frequently between 
38 and 65 for the COVID-19 dataset, 26 and 62 for the pneumonia 
dataset, 28 and 58 for the lung cancer dataset, and for normal patients 
the ages were between 33 and 58 years. 

Fig. 4 illustrates the gender-wise distribution for the collected 
dataset. It can be realized obviously in Fig. 4 (a) which gender is affected 
more by each disease, i.e. COVID-19 and pneumonia affect males more 

Fig. 7. ResNet152V2 and GRU Model architecture.  

Table 4 
The proposed ResNet152V2+GRU architecture.  

Layer (type) Output Shape Parameters 

Resnet152v2 (None, 7, 7, 2048) 58331648 
reshape (Reshape) (None, 7, 7, 2048) 0 
Time_distributed_7 (None, 7, 14336) 0 
gru_6 (GRU) (None, 256) 11208192 
dense (Dense) (None, 128) 32896 
dropout_4 (Dropout) (None, 128) 0 
dense_7 (Dense) (None, 4) 516 
Total params: 71,177,348 
Trainable params: 71,033,604 
Non-trainable params: 143,744  

Fig. 8. ResNet152V2+Bi-GRU proposed model architecture.  

Table 5 
Proposed Resnet152V2+Bi-GRU architecture.  

Layer (type) Output Shape Parameters 

Resnet152v2 (None, 7, 7, 2048) 58331648 
reshape (Reshape) (None, 7, 7, 2048) 0 
Time_distributed_7 (None, 7, 14336) 0 
bidirectional GRU (None, 512) 22416384 
dropout (Dropout) (None, 512) 0 
dense (Dense) (None, 4) 2052  

Total params: 80,750,084 
Trainable params: 80,606,340 
Non-trainable params: 143,744  

Table 6 
Models’ training parameters.  

Model Optimizer Learning Rate 

VGG19+CNN Adamax 0.00006 
ResNet152V2  0.00009 
ResNet152V2+GRU  0.00009 
ResNet152V2+Bi-GRU  0.00009  
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than females, while lung cancer affects more females than males. Fig. 4 
(b) demonstrates the gender distribution for all diseases. 

3.2. Dataset pre-processing 

The used datasets are first augmented to excess the number of the 
used images and to balance between the four types of datasets. We have 
obtained around 33,676 images, as explained in the previous subsection, 
and after augmentation we have a total of 75,000 images. The first use of 
augmentation techniques will be split between the four training classes: 
COVID-19, Normal, Pneumonia, and Lung cancer. Then, these images 
are used as input for the data pre-processing stage. 

The pre-processing stage is usually used for preparing the input data 
to satisfy the deep learning model requirements. In our model, the input 
images were prepared using different pre-processing steps: 1) resizing 
images to 224× 224× 3, 2) augmenting the resized images using 
augmentation methods such as rotate, flip, and skewing, 3) normalizing 

all images (original and augmented images), and 4) converting the im
ages into arrays for using them as input for the next stage of the model. 
For training the deep learning model, the dataset must be split. The 
dataset images are randomly split into two parts (train and validation) 
70% and 30% for training and validation, respectively, to insure the 
variety of the images. 

3.3. Deep learning proposed methods 

In this paper, several types of supervised deep learning techniques 
are utilized for developing the proposed four deep-chest classification 
models. We aim to explore their performance in detecting the three 
considered chest diseases and concluding the best of them. Each of these 
models consists of a combination of CNN and recurrent neural network 
(RNN). Two pre-trained models, VGG19 and ResNet152V2, are used 
with normal CNN, gated recurrent unit (GRU) and bidirectional gated 
recurrent unit (Bi-GRU) as types of RNN. In the following subsections, 
we add the details of each of the four developed models. 

3.3.1. VGG19+CNN deep model 
A deep model that consists of a VGG19 pre-trained model followed 

by CNNs is designed to diagnose chest diseases using CT and X-ray im
ages. It employs as a feature extraction and classification. The proposed 
model details are illustrated in Fig. 5. It contains input images, feature 
extraction, and classification layers. 

The input layer for the model receives a 224 × 224 × 3 CT or X-ray 
chest image. The feature extraction consists of VGG19, followed by two 
CNN blocks that work as feature extraction sections. The first CNN block 
has a convolution layer and a ReLU layer. While the second block has 
two convolution layers, followed by two ReLU layers, then a batch 
normalization layer, followed by a maximum pooling layer, and finally a 
dropout layer, as shown in Fig. 5. 

The feature extraction layer output is then passed to a flatten layer to 
convert the data shape to a one-dimensional data vector as the first task 
of classification. The classification part consists of a dense layer with 512 
neurons followed by a dropout layer. The final output is produced from a 
dense layer with four neurons and SoftMax activation function, which 
classifies the output image into one of the chest diseases classes: COVID- 
19, pneumonia, lung cancer, or normal. The proposed model architec
ture is listed in Table 2. The overall number of parameters is 22,337,860, 
which are separated into two groups; the total trainable parameters are 
22,337,604, and the non-trainable parameters are 256. The difference 
between trainable and non-trainable parameters is that the trainable 
parameters are the parameters that are updated in the training processes 
and are needed by training to get the optimal value of these parameters, 
while non-trainable parameters mean the parameters that are not 
updated during training. In other words, non-trainable parameters of a 
model are those that you will not be updating and optimized during 
training, and that have to be defined a priori, or passed as inputs. 
Therefore, the non-trainable will not contribute to the classification 
process. 

3.3.2. ResNet152V2 deep model 
In the second model, ResNet152V2 is used as a feature extraction 

model, as shown in Fig. 6, instead of the VGG19-CNN model. The model 
has initial weights because it is a pre-trained model, which can help to 
gain acceptable accuracy faster than a traditional CNN. The model ar
chitecture consists of the ResNet152V2 model followed by a reshape 
layer, a flatten layer, a dense layer with 128 neurons, a dropout layer, 
and finally a dense layer with Softmax activation function to classify the 
image into its corresponding class. The architecture is detailed in 
Table 3. The whole parameters of the ResNet152V2 are 71,177,348, 
which consist of two types of parameters: the trainable parameters and 
the non-trainable parameters, which are 71,033,604 and 143,744, 
respectively. 

Table 7 
Confusion matrix explanations.    

Predicted 

Normal Pneumonia COVID-19 Lung Cancer 

Actual Normal Pnn Ppn Pcn Pln 

Pneumonia Pnp Ppp Pcp Plp 

COVID-19 Pnc Ppc Pcc Plc 

Lung Cancer Pnl Ppl Pcl Pll 

Pcc: COVID-19 class were correctly classified as COVID-19 
Ppc: COVID-19 class were incorrectly classified as Pneumonia 
Pnc: COVID-19 class were incorrectly classified as Normal 
Plc: COVID-19 class were incorrectly classified as Lung Cancer 
Pcp: Pneumonia class were incorrectly classified as COVID-19 
Ppp: Pneumonia class were correctly classified as Pneumonia 
Pnp: Pneumonia class were incorrectly classified as Normal 
Plp: Pneumonia class were incorrectly classified as Lung Cancer 
Pcn: Normal class were incorrectly classified as COVID-19 
Ppn: Normal class were incorrectly classified as Pneumonia 
Pnn: Normal class were correctly classified as Normal 
Pln: Normal class were incorrectly classified as Lung Cancer 
Pcl: Lung Cancer class were incorrectly classified as COVID-19 
Ppl: Lung Cancer class were incorrectly classified as Pneumonia 
Pnl: Lung Cancer class were incorrectly classified as Normal 
Pll: Lung Cancer class were correctly classified as Lung Cancer  

Fig. 9. Confusion matrix for the proposed VGG19-CNN model.  
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3.3.3. ResNet152V2 and GRU deep model 
ResNet152V2 has many advantages as a pre-trained model in 

accelerating training and converging to high accuracy rapidly. There
fore, adding it before deep learning models can build efficient and 
reliable models, which results in higher accuracy. However, GRU is one 
of the RNN architectures that has the main advantage of its ability to 
maintain the information irrelevant to the prediction for a long time 
without removing it. It also has many other features, such as being very 
simple, easy to modify, and taking less training time, which makes it 
more efficient and suitable for many applications like this one. 

The ResNet152V2, followed by GRU, was used as a feature extraction 

model, as shown in Fig. 7. The model contains the ResNet152V2 fol
lowed by a reshape layer, GRU layer with 256 units, flatten layer, dense 
layer with 128 neurons, dropout layer, and dense layer, with Softmax 
activation function to classify the image into one of our four classes. The 
architecture is detailed in Table 4. The total parameters of the 
ResNet152V2 are 69,573,252 that consist of two types of parameters: 
trainable parameters: 69,429,508 and non-trainable parameters: 
143,744. 

3.3.4. ResNet152V2 and Bi-GRU deep model 
The last proposed deep learning model in this paper consisted of a 

ResNet152V2, followed by bi-GRU, which was used as a feature 
extraction model, as shown in Fig. 8. The model has a ResNet152V2, 
followed by a reshape layer, bi-GRU layer with 512 units, a dropout 
layer, and a dense layer, with a SoftMax activation function to classify 
the image into one of our four classes. The architecture of the model is 
detailed in Table 5. The total parameters of the ResNet152V2 are 
80,750,084, which consist of two types of parameters: trainable pa
rameters: 80,606,340 and non-trainable parameters: 143,744. 

4. Results 

4.1. Experimental parameters 

The models were implemented using Python 3 and the Keras 
framework. These were run on Google Colab pro version [52] with 2 TB 
storage, 25 GB RAM, and a P100 graphical processing unit (GPU) pro
cessor. To accomplish the statistical results, the images of the input 
classes were augmented using an API Keras Augmentor [53] in the first 
use of the dataset to raise the number of images in each class. The uti
lized augmentation methods are image rotation, skew, and shift. All 
images, original and augmented, were passed to the Image
DataGenerator class in Keras [53] to perform pre-processing operations, 
such as augmentation, resizing, and normalization. The generated im
ages were fed into our proposed multi-classification deep learning 

Fig. 10. Loss, AUC, precision, recall, and accuracy between the training and validation phases with the number of epochs for the VGG19-CNN model.  

Fig. 11. Confusion matrix for the proposed ResNet152V2 model.  
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models. For training and validating our models, an optimizer and suit
able fit functions were used, where each model ran around 800 epochs 
with eight iterations per epoch and a batch size of 64. To train deep 
learning models well, we needed to increase the number of samples and 
epochs. When we used increased numbers of epochs, we found that the 
loss decreased. Therefore, we used 800 epochs. 

The results were accomplished by applying the performance metric 
equations to the resulting validation data outputs, and the registered 
results represent the maximum obtained validation values. The opti
mizer used for our proposed models was the (Adamax) [54]. The 
learning rate (LR) value and optimizer for all models are listed in 

Table 6. The entire code for our multi-classification deep learning 
models was uploaded to the GitHub website at [55]. 

4.2. Performance metrics 

The performance of the chest disease classification models was 
evaluated based on several metrics: accuracy (ACC), loss, recall, positive 
predictive value (PPV), which is commonly known as precision, speci
ficity (SPC), negative predictive value (NPV), F1-score, Matthew’s cor
relation coefficient (MCC), and area under curve (AUC). 
Correspondingly, a confusion matrix is introduced for each model. Ac
curacy, given in eq. (1), is the number of examples correctly predicted 
from the total number of examples. 

Accuracy(ACC)=
Tp + Tn

Tp + Tn + Fp + Fn
(1)  

where Tp and Tn are the true positive and negative parameters, 
respectively. Fp and Fn are the false positive and false negative values. 

Sensitivity or recall, given in eq. (2), is the number of samples 
actually and predicted as positive from the total number of samples 
actually positive; also known as true positive rate. 

Recall(Sensitivity)=
Tp

Tp + Fn
(2) 

While the true negative rate, called specificity, given in eq. (3), is the 
number of samples actually and predicted as negative from the total 
number of samples actually negative. 

Specificity(SPC)=
Tn

Tn + Fp
(3) 

Eq. (4) shows precision, also called positive predictive value [43], 
which represents the number of samples actually and predicted as pos
itive from the total number of samples predicted as positive. 

Fig. 12. Loss, AUC, precision, recall, and accuracy between the training and validation phases, with the number of epochs for the ResNet152V2 model.  

Fig. 13. Confusion matrix for the proposed ResNet152V2+GRU model.  
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Precision(PPV)=
Tp

Tp + Fp
(4)  

Whereas the negative predictive value (NPV) [43], is the number of 
samples actually and predicted as negative from the total number of 
samples predicted as negative, given in eq. (5). 

NPV =
Tn

Tn + Fn
(5) 

The harmonic mean of precision and recall, which is known as F1 
score, is shown in eq. (6). 

F1 − score =
2∗Tp

2∗Tp + Fp + Fn
(6) 

Finally, Matthew’s correlation coefficient range [44], allows one to 
gauge how well the classification model/function is performing. 

MCC=
(Tp × Tn) − (Fp × Fn)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(Tp + Fp)(Tp + Fn)(Tn + Fp)(Tn + Fn)

√ (7) 

Moreover, recent studies support the use of confusion matrix analysis 
in model validation [56] since it is robust to categorize data relation
ships and any distribution. It provides extra information on illustrating 
the classification models. To analyze our models using a confusion 
matrix, we must understand how it is structured, and we need to define 
all variables and parameters that can be extracted from Table 7. 

Using these parameters, we can define other variables for true pos
itives, true negatives, false positives, and false negatives, as in Table 8. 

4.3. Multi-classification deep learning model results 

In this section, we illustrate our multi-classification model results, 
followed by a brief discussion and analysis for each proposed model. The 
confusion matrix is the major means to evaluate errors in classification 
problems. According to the confusion matrix explanations presented in 
Table 6, we built the confusion matrix for the VGG19+CNN proposed 
model, as shown in Fig. 9. The figure shows that the VGG19+CNN model 
can successfully classify the four patient statuses (COVID-19, Pneu
monia, Lung Cancer, and Normal) with the highest ratio to the normal 
images (0.9323), then lung cancer (0.8963), followed by pneumonia 
(0.88), and finally COVID-19 (0.8747). This result assures that the 
classification is performed correctly for the four statuses. 

In addition, we illustrate the loss, AUC, precision, recall, and accu
racy between the training and validation phases with the number of 
epochs in Fig. 10. 

Fig. 11 displays the ResNet152V2 model confusion matrix which 

Fig. 14. Loss, AUC, precision, recall, and accuracy between the training and validation phases, with the number of epochs for the ResNet152+GRU model.  

Fig. 15. Confusion matrix for the proposed ResNet152V2+Bi-GRU model.  
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demonstrates that the model can classify the four patient status (COVID- 
19, Pneumonia, Lung Cancer, and Normal) starting with the normal 
images that has the highest ratio (0.9678), then COVID-19 (0.8677), 
followed by lung cancer (0.865), and finally pneumonia (0.818). These 
results are lower compared to those generated by the VGG19+CNN 

model, which had better values for pneumonia and lung cancer. 
In addition, Fig. 12 shows the loss, AUC, precision, recall, and ac

curacy between the training and validation phases with the number of 
epochs. Similarly, in Fig. 13, the confusion matrix of the 
ResNet152V2+GRU model shows the classification of the four patient 
statuses (COVID-19, Pneumonia, Lung Cancer, and Normal) with the 
highest ratio to the normal images (0.9329), then lung cancer (0.8736), 
followed by pneumonia (0.8599), and finally COVID-19 (0.8591). These 
results are also lower than the VGG19+CNN model results but better 
than the ResNet152V2 model. 

Also, as in Fig. 14, loss, AUC, precision, recall, and accuracy between 

Fig. 16. Loss, AUC, precision, recall, and accuracy between the training and validation phases, with the number of epochs for the ResNet152+Bi-GRU model.  

Table 8 
True positives, true negatives, false positives, and false negatives variables 
definitions.  

True Positives: True Negatives: 

TP (Normal): Pnn TN (Normal): Ppc + Ppl + Pcl + Plc + Plp + Pcp + Pcc 
+ Pll + Ppp 

TP (Pneumonia): Ppp TN (Pneumonia): Pnl + Pnc + Pln + Pcn + Pnn + Pcl 
+ Plc + Pcc + Pll 

TP (COVID-19): Pcc TN (COVID-19): Pll + Ppl + Pnl + Pnp + Ppp + Plp +
Pln + Ppn + Pnn 

TP (Lung cancer): Pll TN (Lung cancer): Pnn + Ppn + Pcn + Pnp + Ppp +
Pcp + Pnc + Ppc + Pcc 

False Positives: False Negatives: 

FP (Normal): Pnl + Pnc +
Pnp 

FN (Normal): Pln + Pcn + Ppn 

FP (Pneumonia): Ppl +
Ppc + Ppn 

FN (Pneumonia): Plp + Pcp + Pnp 

FP (COVID-19): Pcn + Pcp 
+ Pcl 

FN (COVID-19): Pnc + Ppc + Plc 

FP (Lung cancer): Plc +
Plp + Pln 

FN (Lung cancer): Pcl + Ppl + Pnl  

Table 9 
Evaluation metrics for the different models.  

Models Loss TP FP TN FN ACC Recall PPV SPC NPV F1-Score MCC AUC 

VGG19+CNN 0.3280 251 4 764 5 98.05 98.05 98.43 99.5 99.3 98.24 97.7 99.66 
ResNet152V2 0.1693 244 12 756 12 95.31 95.31 95.31 98.4 98.4 95.31 93.8 99.17 
ResNet152V2+GRU 0.1350 246 10 758 10 96.09 96.09 96.06 98.7 98.7 96.09 94.8 99.34 
ResNet152V2+Bi-GRU 0.2554 477 34 1502 35 93.36 93.16 93.35 97.8 97.8 93.26 91.1 98.44  

Fig. 17. Loss measures for the VGG19+CNN, ResNet152V2, ResNet152V2+
GRU, and ResNet152V2+Bi-GRU models. 
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the training and validation phases, with the number of epochs, are 
illustrated. Correspondingly, the confusion matrix of the 
ResNet152V2+Bi-GRU model is presented in Fig. 15. The figure dem
onstrates the successful classification of the four patient statuses 
(COVID-19, Pneumonia, Lung Cancer, and Normal) starting with the 
normal images, which have the highest ratio, then lung cancer, followed 
by COVID-19, and lastly pneumonia. 

Likewise, as shown in Fig. 16, loss, AUC, precision, recall, and ac
curacy between the training and validation phases, with the number of 
epochs, are demonstrated. 

4.4. Experimental comparisons 

The experimental results of the proposed models are summarized in 
Table 9. The comparison between the models in terms of the different 
performance metrics as loss values is illustrated in Fig. 17, and the other 
metrics: accuracy (ACC), recall, precision (PPV), specificity (SPC), 
negative predictive value (NPV), F1-score, Matthew’s correlation coef
ficient (MCC), and area under the curve (AUC) for the proposed models 
are presented in Fig. 18. As clearly seen from the figures, the 
VGG19+CNN model outperforms the other three proposed models in 
terms of accuracy, precision, F1-score, and AUC; however, it has the 
highest value of loss. 

5. Comparative analysis and discussion 

In the present work, four deep learning architectures for lung disease 
detection and diagnosis in the human lung system are proposed. These 
architectures are used to classify between the most common chest dis
eases: COVID-19, pneumonia, and lung cancer. The different proposed 
models were compared according to accuracy, recall, precision, F1 
score, and AUC. As listed in Table 8, the obtained results show that the 
VGG19+CNN model gave the best classification performance (98.05% 
accuracy) followed by ResNet152V2+GRU, with 96.09% accuracy. 
Contrarily, ResNet152V2 and ResNet152V2+Bi-GRU are the lowest 
compared to the other architectures, since these models have obtained 
95.31% and 93.36% accuracy, respectively. From Table 1, it seems that 
our result is not better than [27,28]. The reason is the authors measured 
the performance of their models only by one metric, which is accuracy. 
In addition, the authors in Ref. [27] used only chest X-rays, and the 
authors in Ref. [28] used only CT images. While in our proposed model, 
we measured the performance based on eight metrics in addition to 
accuracy, as represented in Table 9. 

Consequently, we recommend the VGG19+CNN model (which ach
ieved 98.05% accuracy, 98.05% recall, 98.43% precision, 99.5% spec
ificity, 99.3% negative predictive value, 98.24% F1 score, 97.7% MCC, 
and 99.66% AUC) based on X-ray and CT images be used to diagnose the 
health status of chest patients against COVID-19, pneumonia, and lung 

cancer. We hope that the introduced deep models and their results may 
serve as a first step toward developing a chest disease diagnosis system 
from CT and X-ray chest images. 

6. Conclusion and future work 

In this study, a multi-classification deep learning model was designed 
and evaluated for detecting COVID-19, pneumonia, and lung cancer 
from chest x-ray and CT images. This model is, to the best of our 
knowledge, the first attempt to classify the three chest diseases in a 
single model. It is important to correctly diagnose these diseases early to 
determine the proper treatment and apply isolation to COVID-19 pa
tients to prevent the virus from spreading. Four architectures were 
presented in this study: VGG19+CNN, ResNet152V2, ResNet152V2+
GRU, and ResNet152V2+Bi-GRU. 

Through extensive experiments and results performed on collected 
datasets from several sources that contained chest x-ray and CT images, 
the VGG19+CNN model outperformed the other three proposed models. 
The VGG19+CNN model achieved 98.05% accuracy, 98.05% recall, 
98.43% precision, 99.5% specificity, 99.3% negative predictive value, 
98.24% F1 score, 97.7% MCC, and 99.66% AUC, based on X-ray and CT 
images. 

Ongoing work attempts to enhance the performance of the proposed 
model by raising the number of images in the used datasets, increasing 
the training epochs, and using other deep learning techniques such as 
GAN in both classification and augmentation. 
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