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Abstract Familial adenomatous polyposis is most fre-

quently caused by pathogenic variants in either the APC

gene or the MUTYH gene. The detection rate of pathogenic

variants depends on the severity of the phenotype and

sensitivity of the screening method, including sensitivity

for mosaic variants. For 171 patients with multiple colo-

rectal polyps without previously detectable pathogenic

variant, APC was reanalyzed in leukocyte DNA by one

uniform technique: high-resolution melting (HRM) ana-

lysis. Serial dilution of heterozygous DNA resulted in a

lowest detectable allelic fraction of 6 % for the majority of

variants. HRM analysis and subsequent sequencing detec-

ted pathogenic fully heterozygous APC variants in 10

(6 %) of the patients and pathogenic mosaic variants in 2

(1 %). All these variants were previously missed by vari-

ous conventional scanning methods. In parallel, HRM APC

scanning was applied to DNA isolated from polyp tissue of

two additional patients with apparently sporadic polyposis

and without detectable pathogenic APC variant in leuko-

cyte DNA. In both patients a pathogenic mosaic APC

variant was present in multiple polyps. The detection of

pathogenic APC variants in 7 % of the patients, including

mosaics, illustrates the usefulness of a complete APC gene

reanalysis of previously tested patients, by a supplementary

scanning method. HRM is a sensitive and fast pre-screen-

ing method for reliable detection of heterozygous and

mosaic variants, which can be applied to leukocyte and

polyp derived DNA.

Keywords APC � High-resolution melting � Mosaicism �
Polyposis � Colorectal cancer � Molecular diagnostics

Introduction

Familial adenomatous polyposis (FAP) is a hereditary

tumor syndrome predisposing to early-onset colorectal

cancer (CRC), accounting for 1 % of CRC cases. Classic

FAP patients develop well over a hundred of colorectal
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polyps starting from early adolescence, leading to CRC

approximately a decade later. Attenuated FAP (AFAP)

patients develop 10–100 polyps at an older age at onset in

their forties [1, 2]. Most FAP and AFAP patients carry

dominantly inherited pathogenic germline variants in the

APC gene (MIM: 175100) or recessive germline variants in

the MUTYH gene (MIM: 604933). Pathogenic APC or

MUTYH variants can also cause extracolonic features, like

duodenal and gastric adenomas and cancer, desmoid tumors,

osteomas and benign skin tumors (Gardner syndrome).

The detection rate of pathogenic APC variants, includ-

ing large structural variation, is approximately 70–80 % in

classic FAP patients and 10–30 % in AFAP patients [3–6].

The MUTYH associated polyposis (MAP) phenotype gen-

erally resembles AFAP. Bi-allelic pathogenic MUTYH

variants are found in a quarter of polyposis patients nega-

tive for pathogenic APC variants [7]. In 20–30 % of ade-

nomatous polyposis patients, no pathogenic variant in APC

or MUTYH is identifiable, especially in patients with low

polyp counts [7, 8]. A few polyposis patients have been

linked to other genes, such as SMAD4, BMPR1A, POLE

and POLD1 [8, 9]. Pathogenic variants in unexplored genes

may underlie the remaining genetically unexplained pol-

yposis patients. However, two considerations warrant fur-

ther examination of the APC gene, with its paramount role

in the mechanism of polyposis and somatic defects in

almost all adenomatous polyps.

First, in the past 20 years, a variety of methods have

been applied to identify pathogenic germline APC variants,

including direct sequencing and indirect methods like the

protein truncation test (PTT), denaturing high performance

liquid chromatography (dHPLC) and denaturing gradient

gel electrophoresis (DGGE), southern blot and multiplex

ligation-dependent probe amplification (MLPA). The

detection rate of pathogenic variants is partly determined

by the sensitivity of these methods and to which extend the

length of the APC gene was tested [10, 11]. Second, mosaic

pathogenic APC variants are particularly difficult to detect

and probably an underestimated cause of polyposis coli. Of

all detected constitutive pathogenic APC variants, 15–25 %

occur de novo and 1–4 % are mosaics [12, 13].

In this study a reanalysis of the entire coding region of

APC was performed in a group of 171 patients with C10

colorectal polyps, without previously detectable pathogenic

APC (or MUTYH) variants. APC scanning had been per-

formed before by various methods with different levels of

sensitivity and completeness [12]. To identify possible pre-

viously missed heterozygous and mosaic variants, we used

one uniform technique: high-resolution melting (HRM)

analysis, which is known to be able to reliably detect het-

erozygous variants and lower allelic fractions [14, 15]. Also,

scanning in polyp DNA of two patients was performed, as a

proof of principle, to identify possible mosaic variants.

Materials and methods

Patient samples

The study group consisted of 171 index patients, referred

for APC and/or MUTYH gene testing at the Laboratory for

Diagnostic Genome Analysis (LDGA) in Leiden, The

Netherlands, between 1995 and 2007, without detectable

pathogenic variants by analysis as earlier described [12].

Of the 244 consecutively referred patients 171 were

included, diagnosed with C10 colorectal polyps of ade-

nomatous or predominantly adenomatous histology. The

excluded 73 patients had insufficient DNA quality (3),

insufficient clinical data (13) or\10 polyps (57). Informed

consent was obtained for DNA testing according to pro-

tocols approved by local ethics review board. Clinical data

was obtained from patient records at the LDGA (Table 1).

DNA was extracted from blood leukocytes according to

standard protocols. Tissue DNA was analyzed if applicable

and available for part of the patients. For HRM validation

in total 117 DNA samples with unique heterozygous

variants and for each amplicon 10 wild-type samples

available at the LDGA were used. Additionally homozy-

gous, heterozygous and wild-type controls of eight com-

mon SNPs were tested.

PCR, primers and unlabeled probes

The APC gene is located at 5q22.2, spans 163,719 bp, con-

tains 15 coding exons with an open reading frame of

8,532 bp and encodes 2,843 amino acids (OMIM: 611731,

Genbank: NG_008481.4, NM_000038.5, http://www.ncbi.

nlm.nih.gov/nuccore). Primers were designed with Lights-

canner Primer Design Software (Idaho Technology, Salt

Lake City, UT) and comprised M13 sequencing tails. APC

exons 1–15 were covered by 61 amplicons, of which 42 in

exon 15, including exon–intron boundaries, but not the

untranslated regions (50 and 30 UTRs). Amplicon length was

chosen approximately 150–300 bp [16]. For exons covered

by multiple amplicons, the minimal overlap between amli-

cons was 30 bp, excluding primer regions. PCR conditions

were as previously described [16–18]. Unlabeled probes

were designed for eight amplicons with common SNPs (5,

11, 13, 15.18, 15.22, 15.23, 15.24 and 15.27), complement to

the wild-type strand, with a length of *30 bp, melting

temperature of\70 �C and GC content between 40 and 45 %

[16, 17] (online resource Supp. Table S1).

The 10 ll PCR mix contained 20 ng of template DNA,

19 Lightscanner Mastermix (including LC Green Plus dye,

Idaho Technology), 2.5 pmol of each primer and distilled

water. In our hands results with Lightscanner Mastermix

were better compared to separately mixed ingredients (data

not shown). Template DNA concentrations were measured
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by a Nanodrop 1000 Spectrophotometer (Thermo Fisher

Scientific, Wilmington, DE). Asymmetric PCRs with unla-

beled probes were performed with a 1:5 ratio, with 1 pmol of

forward primer, 5 pmol of reverse primer and 5 pmol of the

unlabeled probe. Optimal primer annealing temperatures

were established by temperature gradient PCR and HRM.

Amplicons were redesigned if they showed more than two

melting domains [17] (online resource Supp. Fig. S1).

HRM data analysis

Melting of PCR products was performed on a 96 wells

Lightscanner instrument, with Lightscanner software version

2.0 (Idaho Technology). Temperature ranges of 70–98 and

55–98 �C were used for amplicon scanning and unlabeled

probe genotyping, respectively, with increments of 0.1 �C/s.

Melting curve data analysis was performed as described [16,

17]. The software’s sensitivity level was set to C3.0. Raw

melting curves were normalized at 100 and 0 % fluorescence

intensity. They were also temperature shifted, at 5 or 95 %

fluorescence intensity, to correct for slight temperature dif-

ferences across the plate. Melting analysis was performed

twice per PCR plate to rule out melting artifacts.

Variant scanning and sequencing

PCR and HRM were performed in 96 well plates, including

positive controls per amplicon in each plate, with allelic

fractions of 50, 13 and 6 %. PCR and HRM were repeated

if the first experiment showed an aberrant melting curve.

Sequencing was performed if the repeated experiment

showed an aberrant melting curve, except for those that

were induced by a SNP under a specific probe. The overall

portion of succeeded tests, including HRM and sequencing

per amplicon, for the 171 patients 9 61 amplicons was

99 %. Direct sequencing was performed as described,

directly after HRM, on the same reaction mix and analyzed

by Seqscape software version 2.5 [12, 17]. Sequences were

carefully observed for detection of low peaks. Pyrose-

quencing was performed as described, to confirm low-level

mosaic variants [12]. Detected variants were searched in

literature and the UMD and LOVD public databases (www.

lovd.nl/apc, www.umd.be/apc, [19–22]). New variants

were analyzed in silico for possible pathogenicity by Ala-

mut version 2.3 (Interactive Biosoftware, Rouen, France).

Results

HRM variant scanning in patients with multiple polyps

Pathogenic heterozygous variants

In the 171 scanned patients, HRM analysis and subsequent

sequencing detected eight different heterozygous patho-

genic variants occurring in ten patients (6 %). Four of the

Table 1 Patient characteristics Clinical characteristics Mean (range) n Pathogenic APC variant

Gender

Male 96

Female 75

Age diagnosis polyps 50 (14–73)

Polyp number

10–29 53 (20–69) 56 1

30–99 55 (30–73) 45 1

[100 43 (33–70) 14 2

‘Multiple/Polyps/Ten’s/Polyposis’ 46 (14–67) 56 6 ? 2 mosaics

CRC

Yes 63 1 ? 1 mosaic

No 108 9 ? 1 mosaic

Family history 1st and 2nd degree

Polyps (with or without CRC) 60 6

Parents 21 3

Sibs 47 5

Grandparents 1

Offspring 2

CRC, no polyps 36 3 ? 1 mosaic

No polyps and CRC 62 2 ? 1 mosaic

Unknown 13 1
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pathogenic variants were novel and four were previously

reported in the literature. Three novel pathogenic variants

were frameshifting variants and one was a duplication at

the splice donor site of intron 14, (c.1958 ? 1_1958 ?

2dup, patient 7). In silico analysis by Alamut predicted an

in frame skip of exon 14, which was confirmed by reverse

transcriptase PCR (data not shown). In nine out of the ten

patients with a pathogenic variant, it had been missed by

previous diagnostic testing methods, respectively PTT at

the 50 part of exon 15, DGGE in exons 9, 14 and 15 or

single-strand conformational polymorphism (SSCP) in

exons 9 and 11. One pathogenic variant was located in a

region of the gene not tested in that particular patient

before (Table 2, online resource Supp. Table S2).

VUS and polymorphisms

Sixteen different rare variants of unknown significance

(VUS) were found in 17 of the 171 scanned patients, of

which five were novel, including one silent variant, two

missense variants, one in frame deletion and one in frame

duplication. No effects on splicing or other in silico clues

for pathogenicity were predicted by Alamut. All of these

VUS were found in patients without a pathogenic variant,

except one (online resource Supp. Table S2). The in-frame

deletion c.5501_5506del, p.Val1834_Arg1835del was

found in a patient with 100 colorectal polyps (patient 15).

Segregation of the variant with the disease in this family

suggests that causal relevance of this VUS as a high-

Table 2 Pathogenic variants and two VUS detected and corresponding clinical data in the 171 patientsa, b

Amplicon Variant DNA

(allelic %)

Variant protein No. Sex No of polyps

(age in years)

CRC, other

(age in years)

Family

historyc

Pathogenic

6 c.679del p.Asp227Thrfs*66 1 F [100 (43) – P

9.3 c.1180C[T p.Gln394* 2 M Polyposis (48) – P, C

3 F [20 (58) – P, C

4 M 70 (57) – P, C

9.3 c.1248C[A p.Tyr416* 5 F Polyposis (27) Papillary thyroid carcinoma

(19)

P

11 c.1548 ? 1G[A p.spl 6 M Polyposis (48) CRC (48) No

14.2 c.1958 ? 1_1958 ? 2dup p.spl 7 M Polyposis (56) Gastric cancer P

15.1 c.1972_1975del p.Glu658Thrfs*11 8 F Multiple (41) – Unknown

15.1 c.2003del p.His668Profs*2 9 M 10 s (32) – P, C

15.2 c.2222dup p.Asn741Lysfs*15 10 M [100 (16) – C

Mosaic

15.3 c.2269C[T (* 5 %) p.Gln757* 11 M Countless adenomas

(36)

Duodenal adenomas (37) No

15.17 c.4393_4394dup

(*15 %)

p.Ser1465Argfs*9 12 M Multiple (44) CRC (50), Gastric and

duodenal polyps

No

Polyp tissue only

15.14 c.4057G[T p.Glu1353* 13 V 32 (17); only in

rectosigmoid

– No

Polyp tissue only (outside study group)b

15.19/20 c.4666dup p.Thr1556Asnfs*3 14 M [100 (26) – Unknown

VUS

15.24 c.5501_5506del p.Val1834_Arg1835del 15 M 100 – P, Cd

15.29/30 c.6363_6365dup p.Ala2122dup 16 F [13 (58) – Ce

a Pathogenic variants and a selection of two VUS are shown (an in-frame deletion and an in-frame insertion). The other VUS and SNPs

(common and rare missense and silent variants) are shown in online resource Supp. Table S2. cDNA nomenclature is according to NCBI

Reference sequence NM_000038.5
b Of two patients DNA isolated from polyps was available for HRM of APC. Patient 13 was part of the study group of 171 patients referred

between 1995 and 2007 and patient 14 was referred after this interval in 2008
c Family history in 1st and 2nd degree relatives. Only polyps or CRC are given. P: polyps, C: CRC
d The c.5501_5506del variant was present in the son (not affected at age 40 years) and the sister (CRC and polyps) of the index patient. The son

of the sister (multiple polyps at age 40 years) did not carry the VUS
e For patient 16 no family members were tested
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penetrant pathogenic variant is unlikely (see Table 2). The

in frame duplication c.6363_6365dup, p.Ala2122dup was

found in a patient with[13 polyps (patient 16), for whom

no further family members were available for segregation

analysis (Table 2, online resource Supp. Table S2). One

known VUS was the Ashkenazim low risk variants

c.3920T[A, p.Ile1307Lys, detected in one patient, of

which the allele frequency in the scanned group of 171

patients was similar to Caucasian dbSNP populations

(online resource Supp. Table S2) [23].

Pathogenic mosaic variants

In two patients (1 %) pathogenic mosaic variants were

detected in leukocyte derived DNA (patients 11 and 12).

Patient 11 carried the pathogenic variant c.2269C[T,

p.Gln757*, which was confirmed by pyrosequencing, and

had an allelic fraction of 5 %. The allelic fraction in a

saliva sample was also estimated at 5 % and in one tested

colorectal adenoma it was enriched to 20–50 %. Patient 12

carried c.4393_4394dup, p.Ser1465Argfs*9 at an estimated

allelic fraction of *15 %. In a duodenal adenoma the

allelic fraction was *25 % and in normal duodenal

mucosa *40 %. The two pathogenic mosaic variants were

missed in leukocyte derived DNA by previous diagnostic

testing by DGGE and PTT and by PTT and sequencing,

respectively (Table 2; Fig. 1, online resource Supp. Table

S2).

Pilot scanning study to detect mosaic variants in polyp

derived DNA in two patients

The HRM set-up was tested on polyp-derived DNA of two

apparently sporadic polyposis patients of whom tumor

tissue was available (patients 13 and 14), and in whom no

pathogenic APC variants in leukocyte-derived DNA were

detected by HRM. Patient 13 was part of the study group.

She had 32 adenomas limited to the rectosigmoid, diag-

nosed at the age of 17 years, without family history. In the

DNA of three polyps the c.4057G[T, p.Glu1353* variant

was found with an allelic fraction of 20–50 %. The variant

was not detectable by HRM analysis and direct sequencing

in cultured skin fibroblasts, buccal mucosa and urine.

Patient 14 was referred for diagnostic APC testing after the

time interval of the study group. He had [100 polyps

diagnosed at the age of 26 years, without family history.

The majority of polyps had adenomatous and a minority

hyperplastic histology. In the DNA of one adenomatous

and one hyperplastic polyp the c.4666dup, p.Thr1556As-

nfs*3 variant was found, both with an estimated allelic

fraction of *30 % (Table 2; Fig. 2, online resource Supp.

Table S2).

HRM validation

Heterozygous variants

Amplicons were tested for sensitivity of the detection of

heterozygous variants using the available positive control

samples. Of the 117 tested samples with unique heterozy-

gous variants in 50 of the 61 amplicons, 116 were detect-

able (online resource Supp. Fig. S2). The variant c.423-

17dup, a duplication of a T in a T7A13-stretch in intron 3,

was not detectable by HRM. This region has been descri-

bed as problematic before [24]. Ten wild-type samples

were tested per amplicon in duplicate, among which no

false positives were seen.

Low allelic fractions

The 116 samples with detectable heterozygous variants

were serially diluted to allelic fractions of 25, 13 and 6 %

in a wild-type background. All 116 variants were detect-

able down to at least 13 % and 105 (90 %) down to at least

6 %. For 72 variants the dilutions were continued down to

3 and 2 % and 28 and 6 variants were detectable, respec-

tively. The eleven variants not detectable below 13 % were

eight 1-bp deletions or insertions, two base-pair neutral

changes (A[T and T[A) and one A[G change (online

resource Supp. Table S3). Of six variants tested in multiple

overlapping amplicons, three showed different detection

limits (6 vs. 25 % for one, and 3 vs. 6 % for two variants).

Four variants were better detectable with temperature shift

set at level 95 % instead of the default 5 % (online

resource Supp. Fig. S2 and S3).

Common SNPs and unlabeled probes

Eight amplicons contained a common SNP, with a MAF

[10 %, for which unlabeled probes were designed to

facilitate specific detection of SNP genotypes. Control

samples were available with heterozygous, homozygous

and wild-type genotypes of the eight SNPs, which were all

detected correctly by the probes. The HRM analysis of the

amplicon (expert scanning) could not distinguish homo-

zygous minor from wild-type genotypes for four SNPs

(amplicons 15.18, 15.22, 15.24 and 15.27). Of four variants

serial dilutions were tested by probe genotyping, which

were detectable down to allelic fractions of 6 % (15.18) or

13 % (15.22, 15.23, 15.24) (online resource Supp. Table S2

and Fig. S4).

Multiple variants per amplicon

The presence of one heterozygous variant in an amplicon

causes heteroduplexes during HRM, altering the melting
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curve. The effect of an additional second variant in the

same amplicon on the melting curve may be less well

visible [25]. During our validation, melting curves from six

double heterozygous control samples, with a common SNP

and additionally a rare variant, showed melting curves well

distinguishable from single heterozygotes and wild-types in

amplicons 13.1, 13.2, 15.18 and 15.27. Two double het-

erozygotes were also tested in serial dilutions of the rare

variants, in exon 13 and amplicon 15.18. The rare variants

were distinguishable down to 6–25 % (online resource

Supp. Fig. S4 and S5).

Discussion

Re-analysis of APC in leukocyte DNA by HRM in eligible

patients previously tested negative for pathogenic variants

by other methods, yielded pathogenic variants in 12 out of

171 (7 %) patients, of whom two appeared to be present as

mosaicism. Additionally, in each of two patients with

apparently sporadic polyposis, without a variant in leuko-

cyte DNA, a mosaic pathogenic variant was detected in

polyp tissue DNA only. The detection of these pathogenic

variants facilitates genetic counseling and family testing.

Fig. 1 Pathogenic mosaic variants in leukocyte and tissue DNA from

patients 11 and 12. a Patient 11, HRM: a minimally aberrant curve in

amplicon 15.3 in repeated experiments. Blood and saliva show a

comparable allelic fraction. HRM of polyp DNA failed (data not

shown). b Patient 11, direct sequencing: reverse sequence with a

c.2269C[T mosaic variant, a very small T-peak in blood and saliva

(*5 % allelic fraction), not visible in wild-type, and enriched in one

polyp (*20–50 % allelic fraction). Different PCR reactions showed a

different result in the polyp, possibly due to preferential amplification.

c Patient 11, pyrosequencing: reverse complement sequence with a

very small A-peak, not visible in wild-type, calculated at an allelic

fraction of 5 %. d Patient 12, HRM: a slightly aberrant curve in

amplicon 15.17 in repeated experiments. As comparison curves of

two control samples with heterozygous variants at the same location

are shown. HRM showed enrichment in a duodenal polyp and in

normal duodenal mucosa. e Patient 12, direct sequencing: forward

sequence with a c.4393_4394dup mosaic variant, with an allelic

fraction of *15 %. Enrichment was visible in normal duodenal

mucosa (*40 %) and the duodenal polyp (*25 %) [Color figure can

be viewed in the online issue, which is available at http://link.

springer.com/]
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The previously used pre-screening techniques SSCP,

DGGE and PTT have detected most APC variants in the

past, including mosaics. However, these methods have

been shown to be incapable of detecting all of the variants

present, explaining our results [12, 13, 25–29].

Our minimal detectable allelic fraction by HRM was

2–6 % for 91 % of variants, and 13 % for those remaining.

HRM has been shown to detect allelic fractions of between

1 and 13 %, significantly better than the 10–25 % reported

for Sanger sequencing [14, 26, 30–34]. Sensitivity has been

reported to be optimal for small amplicons of around

100 bp. Our amplicon size was 120–400 bp, in order to

span the large APC gene with a limited amplicon number

[14, 35, 36]. Currently, many diagnostic laboratories are

using Sanger sequencing without pre-screening for diag-

nostic gene testing, since it has become cheaper and easier

to perform, also for APC [1, 20, 37]. Sanger sequencing

would have detected the 10 heterozygous variants.

However, the mosaics in patients 11 and 12 (5 and 15 %

allelic fraction) were missed by standard sequencing ana-

lysis. They were only visible for us after carefully scruti-

nizing the sequence trace, with the current knowledge of an

aberrant melting curve suggestive for a mosaic variant. The

two mosaics with the lowest allelic fraction (5–6 %) from

Hes et al. [12] were also not detectable by Sanger

sequencing, but only by DGGE. Because of its superior

sensitivity to detect mosaic variants, HRM is a method to

consider using for scanning genes with high occurrence of

mosaic variants, like APC. However, next generation

sequencing (NGS) methods may ultimately be the method

of choice for mosaic detection in laboratories for which this

is feasible. The advantage of NGS is a limit of detection of

B1 % and immediate identification of the variant [38–40].

Possible disadvantages of NGS in comparison to HRM are

the complexity of the method, the expertise needed and

purchase costs of the apparatus. HRM is relatively fast,

Fig. 2 Pathogenic mosaic variants in tissue DNA, but not in

leukocyte DNA from patients 13 and 14. a Patient 13, HRM: an

aberrant curve from polyp DNA in amplicon 15.14 in repeated

experiments. b Patient 13, direct sequencing: forward sequence from

DNA samples isolated from three different polyps showing a

c.4057G[T variant with an allelic fraction estimated at *20–50 %

in the sequence trace. This variant was not detectable in blood by

sequencing (b) and HRM (data not shown). c Patient 14, HRM: an

aberrant curve in overlapping amplicons 15.19 and 15.20 in repeated

experiments, from DNA samples isolated from two different polyps,

with different histology, adenomatous and hyperplastic. d Patient 14,

direct sequencing: forward sequence showing a c.4666dup variant in

both polyps, with an estimated allelic fraction of *30 %. This variant

was not detectable in blood, by sequencing (d) and HRM (data not

shown) [Color figure can be viewed in the online issue, which is

available at http://link.springer.com/]
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inexpensive and technically less complicated compared to

NGS. HRM is also more flexible, with separate analyses

per amplicon, while with NGS large amounts of amplicons

are pooled together. With HRM it is easier to repeat failed

experiments. For a low limit of detection for mosaicism,

NGS needs sufficient sequencing depth, making it more

expensive. However, the costs for NGS are reducing, and it

will probably be more cost-effective (soon and for many

laboratories/countries) to optimize an NGS approach

instead of HRM.

HRM is a sensitive, inexpensive and convenient diag-

nostic method, when its limitations are taken into account

[25, 41]. It can be readily applied in almost every standard

diagnostic laboratory. Known limitations of HRM, like

limited sensitivity for particular variant types, such as

homozygous and base-pair neutral variants, variants loca-

ted in nucleotide stretches and multiple variants per

amplicon, were also shown in our study [17, 25]. Variants

in known nucleotide stretches, like the T7A13-stretch in

intron 3, can be detected by using an unlabeled probe

covering the stretch (data not shown). No adaptations were

made for homozygous variant detection, as they are con-

sidered as embryonically lethal in APC [42].

Sensitivity of HRM, and also sequencing, for mosaic

variants can be improved by Cold-PCR, down to allelic

fractions of 0.1–1 % [43]. Cold-PCR might be challenging

to optimize for large scale gene scanning [44]. Cold-PCR

applications have mostly been described for pathogenic

variant hotspot regions and one for multiplex PCR of the

coding region of TP53 [43, 45]. APC pathogenic hotspot

variants and common C[T transitions might be good

candidate locations to start with [12]. Other methods suit-

able for mosaic detection are ultra-sensitive allele specific

methods and deep next generation sequencing [12, 39, 46–

50].

Clinical implications of the detection of APC mosaicism

have been described before [12, 13, 51]. Depending on the

timing of occurrence and distribution during embryonic

development, a mosaic variant can be present in blood,

affected tissue and/or germ cells. The distribution and level

of the mosaic variant can indicate its heritability, pheno-

type and detectability. If a mosaic variant is present in the

germ cells, offspring has up to 50 % risk for inheriting the

disease. The severity of the phenotype of a heterozygous

germline pathogenic APC variant is dependent on its

position in the gene. Part of described mosaic patients have

milder phenotypes compared to heterozygous carriers of

similar variants [12, 13]. Our four detected mosaic variants

were located at positions related to a severe phenotype, if

heterozygous. Patients 11 and 12, with a mosaic variant in

both blood and polyps, had a relatively late age of onset,

but both had extracolonic features. Patients 13 and 14 had a

severe phenotype. However the polyps of patient 13 were

limited to the rectosigmoid. None of our four mosaic

variants were CGA to TGA transitions, which were pre-

viously described to be a significant portion of mosaic

variants [12, 13].

Blood leukocyte DNA is most commonly used for

testing for pathogenic germ line variants [12, 51, 52]. To

demonstrate the value of testing affected tumor tissue for

the detection mosaics, and the possibilities of HRM, two

cases of whom we had polyp tissue available were ana-

lyzed as ‘proof of principle’ (patients 13 and 14). Both

patients showed a pathogenic APC variant recurrent in

multiple polyps, without detectable pathogenic variant in

blood. Both patients had a clear polyposis phenotype and

early age of onset, without detectable pathogenic germ line

variants in the APC gene or MUTYH gene. Patient 13 had

polyps limited to the rectosigmoid, suggestive of mosai-

cism. Patient 14 had a typical FAP phenotype, for which

the chance of detection of pathogenic APC or MUTYH

germ line variants is expected to be very high. Finding the

same pathogenic variant recurrent in multiple polyps in

each of the two patients (100 % detection ratio of somatic

mosaicism), should in this case be seen as a coincidental

finding. One comparable mosaic patient was earlier

described, with a pathogenic variant present in five ana-

lyzed adenomas and not detectable in blood [12]. It is

mandatory to build larger series of patients without path-

ogenic germ line variants in the polyposis genes and collect

their polyp material for somatic APC variant analysis [12,

13, 51]. For distinguishing between mosaicism in a sub-

stantial part of the colon and an isolated somatic variant

limited to one tumor, analysis of multiple polyps and/or

surrounding normal tissue is necessary.

A significant group of patients with multiple colorectal

polyps remains genetically unexplained after extensive

testing for pathogenic APC and MUTYH variants [8, 20].

Yet undetected APC (mosaic) variants will probably

explain a small minority of cases. Other screening

approaches, like next generation sequencing (NGS), for

searching genetic, epigenetic or multifactorial aberrations

inside or outside APC need to be explored [53]. Recently,

pathogenic variants in the POLE and POLD1 gene were

found to explain a small portion of polyposis cases [9].

In conclusion, rescreening of APC by a uniform sensitive

detection method like the described HRM method detects

heterozygous and mosaic variants previously missed by

different conventional methods in group of genetically

unexplained patients with multiple colorectal polyps. In

addition, scanning APC in DNA isolated from multiple

independent polyps of two patients successfully detected

mosaic pathogenic APC variants present in affected tissue,

but undetectable in blood. By using HRM and by screening

of tumor DNA, we have genetically explained a further small

portion of unexplained polyposis patients from our cohort.
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