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Abstract
Many health conditions, ranging from psychiatric disorders to cardiovascular disease, dis-

play notable seasonal variation in severity and onset. In order to understand the molecular

processes underlying this phenomenon, we have examined seasonal variation in the tran-

scriptome of 606 healthy individuals. We show that 74 transcripts associated with a 12-

month seasonal cycle were enriched for processes involved in DNA repair and binding. An

additional 94 transcripts demonstrated significant seasonal variability that was largely influ-

enced by blood cell count levels. These transcripts were enriched for immune function, pro-

tein production, and specific cellular markers for lymphocytes. Accordingly, cell counts for

erythrocytes, platelets, neutrophils, monocytes, and CD19 cells demonstrated significant

association with a 12-month seasonal cycle. These results demonstrate that seasonal vari-

ation is an important environmental regulator of gene expression and blood cell composi-

tion. Notable changes in leukocyte counts and genes involved in immune function indicate

that immune cell physiology varies throughout the year in healthy individuals.

Introduction
The variation of RNA transcription levels within a population (P), is driven by both genetic
(G) and environmental (E) factors (Eq (1)):

s2
P ¼ s2

G þ s2
E ð1Þ

Gene expression studies in humans have aimed to quantify the total contribution of genetic
variation underlying RNA level variation within a population and to identify genetic loci that
contribute to that variation [1] [2]. The proportion of phenotypic variance explained by genetic
variance is termed heritability (H2) and can be estimated using information from related [3]
and unrelated [4] [5] individuals. The RNA levels of transcripts measured using high-through-
put arrays have moderate to high heritability estimates, with 42% of transcripts having additive
genetic variance h2 > 0.3 and 5% with h2> 0.5 [6] [7]. Expression quantitative trait loci
(eQTL) mapping studies have been extremely successful in identifying many loci that contrib-
ute to the heritable variation [8] [9] [10] [11]. However, environmental variation, which can be
considered as 1-H2, makes the largest contribution to variation in RNA expression levels [12].
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Identifying and quantifying the influence of the environmental factors can provide a more
thorough understanding of the differences in expression levels between individuals and be-
tween populations. Knowledge of environmental effects will also provide information on gene
function and potentially gene-environment interactions, which will aid in understanding how
expression profiles are affected by certain environmental conditions, such as geographical loca-
tion [13].

One environmental factor that has a well-documented effect is seasonal variation. Changes
in gene regulation have been associated with seasonal effects such as photoperiod in animals
[14] [15] and plants [16] [17]. Previous research into the effect of seasonal variation in humans
has focused only on a subset of genes [18] or cluster of genes [19] [20] and failed to identify
many genes whose expression levels change in response to the season.

Seasonal changes between months of the year include but are not limited to differences in
day length [21], ultraviolet (UV) index [22], humidity [23] and temperature [24], all of which
could potentially influence expression levels either independently or interactively. Several
health conditions are affected by seasonal changes, including asthma [25], cardiovascular dis-
ease [26], depression [27], diabetes [28], bipolar disorder [29], schizophrenia [30], migraine
[31] and multiple sclerosis [32] [33]. Environmental changes between seasons also influence
infection rates of influenza and respiratory syncytial virus [34] and vitamin D deficiency has
been attributed to seasonal UV changes [35] [36]. Identifying genes, the expression levels of
which change in response to the season could potentially shed light on some of the mechanisms
that might be driving these health conditions. Here we report results from a systematic, ge-
nome-wide analysis of the effect of season on gene expression levels in a human population.
We identified significant blood cell count changes in erythrocytes, leukocytes and platelets as-
sociated with seasonality and enrichment for expressed cellular gene markers for lymphocytes.
Furthermore, after correcting for blood cell counts, we identified 135 probes whose expression
levels were significantly associated with 12-month seasonal cycle.

Materials and Methods

Ethics Statement
This study used previously published data, deposited in GEO under accession number
GSE33321. The research and study design were approved by the University of Queensland
Human Ethics Review Board and the QIMR Berghofer Medical Research Institute Institutional
Review Board for Research on Human Subjects. All participants gave informed
written consent.

Samples
This study comprised of 606 individuals from 246 families in the Brisbane System Genetics
Study (BSGS) [37]. Genotype, gene expression and cell counts were measured for
each individual.

Genotyping
All individuals were genotyped on an Illumina 610-Quad Beadchip (Illumina Inc, San Diego,
CA) by the Scientific Services Division at deCODE Genetics, Iceland. Full details of the geno-
typing procedure are given in [37].
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Gene expression
RNA levels were measured from whole blood collected with a PAXgeneTM tube (QIAGEN,
Valencia, CA). The expression levels were quantified on an Illumina HumanHT-12 v4.0 Bead-
chip. Samples were randomized across the chip to minimize batch effects due to family, sex
and age. Full details of the procedures used to generate the expression levels are given in [37].
Pre-processing of the microarray data, including calculation of average bead signal, removal of
outliers and the calculation of detection p-values, was performed in the Illumina software Ge-
nome studio. Probes were considered significantly expressed above background noise at a
p< 0.05. All probes falling below this threshold were considered non-expressed and denoted
as such for further analysis. Probes that did not map to characterized Ref-Seq genes were re-
moved. Probes with non-expression in> 50 of samples were excluded, leaving 13,311 probes
for further analysis.

Cell counts
Cell counts measured in BSGS include individual measures of single cell types, along with mea-
sures representing a composite of multiple cell types. For example, total white blood count in-
cludes measures of several cell types such as monocytes, lymphocytes, basophils, neutrophils
and eosinophils. We chose to correct for the individual blood cell types, rather than composite
measures. The cell types that were selected for correction were red blood (RBC), platelets
(PLT), monocytes (MONO), basophils (BASO), neutrophils (NEUT), eosinophils (EOS), B-
cells (CD19), Two subtypes of T-cells (CD4, CD8) and NK cells (CD56). Cell counts were log
transformed and converted to z-scores. Linear regression was used to correct expression levels
for effects due to cellular composition.

Normalization
A rank-based inverse normal transformation (INT) was used to transform probe expression to
a normal distribution. The normalization was done using the R package GenABEL [38]. As the
BSGS contains related individuals, the polygenetic (cryptic and family) effects were removed
by fitting the relationship matrix (A), determined using an identity-by-state (IBS) Genomic Re-
lationship Matrix (GRM) in software package, Genome-wide Complex Trait Analysis (GCTA)
[39]:

y1 ¼ gþ e1 ð2Þ

Where g � Nð0;As2
gÞ and e1 � Nð0; Is2

e1
Þ. Variation in expression levels can be attributed

to batch effects such as chip and chip processing. Corrections were made for batch effects using
Eq (3).

y2 ¼ Xbþ Zbþ e2 ð3Þ

Where y2 = e1, Z is the incidence matrix for the chip ID fitted as a random effect (b) with
b � Nð0; Is2

e2
Þ. Fixed effect covariates (X) were selected from a list of recorded batch effects

using forward step-wise regression with model selection based on the lowest Akaike informa-
tion criterion (AIC). Covariates that demonstrated significant association with gene expression
levels included chip position, age, sex and length of sample storage, which is the difference be-
tween the date that the tissue sample was collected and the date that the mRNA was extracted.
The values calculated from e2 (Eq (3)) were used for further analysis and referred to as the
“uncorrected” dataset.
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Cell count correction
The expression dataset was corrected for cell count using Eq (4):

y3 ¼ Xbþ e3 ð4Þ

Where y3 ¼ e2; e3 � Nð0; Is2
e3
Þ and X is the fixed effect cell count covariates selected

previously. The values obtained in e3 (Eq (4)) were used for further analysis and referred to as
the “corrected” dataset.

Conversion to time series
BSGS tissue samples were collected over a six-year period, between February 2005 and March
2010. Expression levels and cell counts were averaged by the month of sample collection, creat-
ing a monthly time series for each probe. Of the 606 samples, 597 were collected between Feb-
ruary 2005 and February 2008. The remaining 9 samples, which were collected between March
2008 and March 2010, were excluded from further time series analysis due to the low number
of samples per month.

Seasonal decomposition
The gene expression and cell count time series data were decomposed into seasonal (s), trend
(t) and error components (�) using loess function [40].

y4 ¼ gðtÞ þ gðsÞ þ e4 ð5Þ

Where y4 are the residuals from e2 from Eq (2) for the uncorrected analysis or e3, from
Eq (3) for the corrected anlaysis. g(s) and g(t) are estimated by loess smoothing functions,
which allow the estimation of repeating periodic variation without any constraint to a particu-
lar cyclical pattern. The trend component represents the overall changes that occur over the
whole time series.

Autocorrelation
Autocorrelation within time series data indicates the presence of periodic repeating patterns. A
Ljung-Box test [41] was used to test for significant levels of autocorrelation in the g(s) esti-
mates:

Q ¼ nðnþ 2Þ
Xh

k¼1

r̂2k
n� k

ð6Þ

Where n is the sample size, k is the lag, r̂ k is the autocorrelation, and h is the number of lags
[41]. The test statistic (Q) follows a chi-square distribution with h degrees of freedom.

Cosinor regression
Cyclic seasonal patterns, which have periodical cycles repeating over set time frames, can be
modelled by the cosine function:

f ðtÞ ¼ a� cos
2pt
T

� �
� y

� �
ð7Þ

Where t = month (1–12 for January to December), T = time period (in months) over which
the cycle repeats, a = amplitude and θ = horizontal shift or phase of the cosine function [42].
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This transformation creates the cosinor regression model [43]:

y4 ¼ b0 þ b1 � sin
2pt
T

� �
þ b2 � cos

2pt
T

� �
þ e4 ð8Þ

Where y4 = s, the seasonal component from Eq (5). Cosine and sine curves with repeating
cycles (T) of 12 months were fitted. Significance was determined with ANOVA F-statistic and
multiple testing accounted for using Bonferroni correction.

Measured weather variables
The cosinor model was applied to 12 measured environmental variables collected for each
month: mean maximum temperature, mean minimum temperature, mean daily ground mini-
mum temperature, mean rainfall, mean number of rainy days, maximum wind gust speed,
mean daily sunshine, mean daily solar exposure (MJ/m2)), mean number of sunny days, mean
number of cloudy days, and mean daily evaporation (all obtained from the Australian Bureau
of Meteorology—http://www.bom.gov.au/) and mean UV level (obtained from the Australian
Radiation Protection and Nuclear Safety Agency—http://www.arpansa.gov.au/). The weather
values for each individual used in this study can be found in S1 Table. The association of
weather variables to a 12-month repeating cosine curve was determined with a Kendall tau
rank correlation test. Kendall tau rank correlation is a non-parametric test that determines de-
pendence between two ordinal variables.

Biological enrichment analysis
Probes that demonstrated significant association to cyclic seasonal variation were tested for bi-
ological enrichment using DAVID (v6.7) [44] [45]. Functional annotation clustering was used
to identify groups with shared annotation. Statistical significance of the clusters is given by an
enrichment scores, where a score> = 1.3 is equivalent to a p-value of 0.05. Molecular pathways
were identified from the Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway en-
richment implemented by DAVID functional annotation tool. Significance of Gene Ontology
(GO)-terms obtained from KEGG pathway enrichment and the functional annotation chart
was determined using modified the Fisher’s exact test [44] [45] and corrected for multiple test-
ing using the Benjamini-Hochberg false discovery rate (FDR) [46].

Blood cell specific markers
Enrichment for blood cell-specific markers was determined using the userListEnrichment()
function in the WGCNA R package [47]. This function compares the gene list obtained from
the seasonal analysis to 11 published gene lists that are representative markers for blood cells
including red blood cells, lymphocytes, leukocytes and platelets. The function tests for signifi-
cant overlap between each list of genes and the cell markers using a hypergeometric test. Signif-
icant enrichment was determined by a study-wide significance threshold of p< 0.05/11 [48].

Results

Decomposition of time series data
The Brisbane Systems Genetics Study (BSGS) dataset [37], comprising gene expression levels
for 606 individuals and 13,311 probes, were decomposed into seasonal, trend and irregular (re-
mainder) components using the loess smoothing function (see Fig 1 and Methods). This en-
ables regular cyclic components for each probe to be isolated from residual or
background noise.
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Effect of season on gene expression
Cosinor regression was used to test for effect of season (based on when the expression levels
were sampled) for each of the time series adjusted probes. Cosinor regression is a linear model
with sine and cosine terms that estimate the parameters of repeating cyclic variation across
multiple phases (see Methods). To investigate the effect of season on blood cell counts, we per-
formed the cosinor regression analysis on expression levels that had been adjusted for cell
counts (“corrected”, see Methods) and unadjusted (“uncorrected”).

Significant associations with season at study-wide threshold of p< 0.05/13,311 were identi-
fied for 169 (uncorrected) and 135 (corrected) probes (Table 1). The significant probes from

Fig 1. Time series decomposition for TRIM23 (ILMN_1752741) using loess decomposition.Original = The raw time-series data for the probe.
Seasonal = The regular cyclic component. Trend = The linear drift over time. Remainder = The irregular (error) component that is not explained by the
seasonal and trend components.

doi:10.1371/journal.pone.0126995.g001
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these models also demonstrated significant autocorrelation, an alternative statistical test for re-
peating patterns, in 160 (uncorrected) and 121 (corrected) probes (Table 1). Of these probes,
75 (approximately 50% of the significant seasonal probes) were shared between the uncorrect-
ed and corrected datasets.

The probes that were significantly associated with season, were located throughout the ge-
nome (Fig 2), indicating a diverse range of probes affected by seasonality. The mean proportion
of phenotypic variation in expression levels explained by the seasonal effect was 0.13 (uncor-
rected) 0.12 (corrected) (S1 Fig). The variance explained by the models (R2) values for probes
with significant levels of association were much higher with both corrected and uncorrected
datasets having and R2 of 0.59 for (Table 1).

Table 1. Significant probes for cosinor regression.

Dataset Significant probes Mean R2 for significant probes Significant autocorrelation

Uncorrected 169 0.59 160

Corrected 135 0.59 121

The mean variance of gene expression explained by seasonal variation for probe significant at the Bonferroni corrected thresholds.

doi:10.1371/journal.pone.0126995.t001

Fig 2. Manhattan plot of the cosinor seasonal analysis. The −log10(p) of each cosinor regression model is plotted against the chromosomal location of
each probe. Bonferroni correction significance line is added. A) Not corrected for cell count B) Corrected for cell count. Includes autosomal chromosomes
1–22, X(23), Y(24) and Mitochondrial(25).

doi:10.1371/journal.pone.0126995.g002
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Cell count seasonality
Cell counts for 10 blood cell types representing distinct subgrouping in erythrocytes, platelets,
granulocytes, monocular cells and lymphocytes were selected for association to seasonal varia-
tion using cosinor regression with a 12-month repeating cycle. Five cell types demonstrated a
significant association with season: Erythrocytes (p = 1.78e−3, R2 = 0.3), Platelets (p = 5.46e−6,
R2 = 0.51), Neutrophils (p = 4.41e−3, R2 = 0.27), Monocytes (p = 1.58e−5, R2 = 0.48) and CD19
cells (p = 4.89e−6, R2 = 0.51). The R2 value denotes how much variance in the cell counts the lin-
ear model explains. The fitted 12-month seasonal cycle explained between 30–51% of variance
in the cell counts. The change in cell count levels throughout the year demonstrates differing
seasonal highs and lows (Fig 3). The CD19 cells, Monocytes and Platelets share a similar sea-
sonal cycle that peaks in autumn and drops in spring. Red blood cells and Neutrophils demon-
strate a slightly shifted pattern peaking in late winter/early spring and dropping in summer.
These seasonal patterns have been reported before for platelets [49] and red blood cells [50].

Environmental variables
The cosinor regression models a regular cyclic wave that represents natural seasonal variation.
For 12 measured environmental conditions ranging from temperature to UV exposure, there
was a significant association with a 12 month repeating cosine curve (S2 Fig) with tau-rank cor-
relation coefficient of τ* 1 for temperature (ground, maximum and minimum), τ* 0.7 for
UV, clear days, cloudy days, evaporation, rainy days, rainfall and solar exposure and τ* 0.16
for wind speed and hours of sunshine (S2 Fig). The 12-month cycle therefore is a good seasonal
surrogate variable that represents various seasonal environmental conditions, in particular
temperature, in Brisbane (S2 Fig).

Enrichment analysis
We next sought to identify a shared biological function of genes exhibiting significant levels of
cyclic seasonal variation by performing an enrichment analysis using the Database for Annota-
tion, Visualization and Integrated Discovery (DAVID) [44].

DAVID Functional annotation of the significant seasonal probes for the uncorrected dataset
showed enrichment for several Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathways
and GO terms related to immune function. This included a number of autoimmune disorders
(autoimmune thyroid disease (p = 2.3e−3), type 1 diabetes (p = 4.77e−4)), chronic inflammatory
diseases (asthma (p = 2.1e−4)), antigen process and presentation (p = 1.97e−3) (S3 Fig) cellular
activation, differentiation and development (cluster enrichment score 1.8) as well as MHC
class 2 immune response (cluster enrichment score 2.28) (Table 2). There was also enrichment
for protein production and modification including translation, post-translation modifications
and localizations (cluster enrichment score 1.4). Cellular components involved in protein pro-
duction, the endoplasmic reticulum (p = 1.24e−3) and the Golgi apparatus membrane (cluster
enrichment score 1.44) were also enriched (Table 2). The significant seasonal probes for the
corrected dataset, however only showed enrichment for DNA repair and binding (Table 2), a
pathway that was also identified for the uncorrected seasonal probes.

Cell-specific mRNAmarkers
As the expression levels were measured in whole blood, which is composed of many cell types,
we attempted to determine whether a specific cell type drove the seasonal expression patterns.
Using the userListEnrichment() function incorporated in the WGCNA R package, we tested 11
lists of different blood cell markers for enrichment. This analysis revealed that the non-
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Fig 3. Seasonal variation in cell count. The seasonal variation of five cells that demonstrate significant seasonal variation. The black lines represent the
fitted values in a cosinor regression. The red lines represent the actual cell values. From these figures it is evident that the cells follow complex repeating
patterns of peaks and troughs throughout the year. However, it can be observed that they show a consistent seasonal trend following one clear peak and
trough per year. These values were collected over a three year period and are plotted in sequential order. The year of collection is labeled in the axis as a
number (5–8) after the month. This corresponds to the years 2005, 2006, 2007 and 2008 respectively.

doi:10.1371/journal.pone.0126995.g003
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corrected seasonal probes were significantly enriched for lymphocyte markers (Table 3) after
Bonferroni correction (0.05/11 test sets). After correction for cell count, no association to any
cell markers were observed, indicating that cellular markers can reflect the cell counts present
for the individuals. This demonstrates that fluctuations in cell count can be observed within
the transcriptome through the presence of specific cellular markers and also through the en-
richment of seasonal genes involved in immune function.

Table 2. Biological enrichment for the 12month seasonal cycle.

Seasonal cycle General process Terms Significance

Corrected DNA DNA repair CER 1.68

DNA binding CER 1.5

Uncorrected Protein production and modification Acetylation p = 3.21e−5

Ubiquitin CER 1.64

Ribosome biogenesis CER 1.48

Protein localization CER 1.46

Translation CER 1.44

Peptidase activity CER 1.42

Uncorrected Cellular component Endoplasmic reticulum p = 1.24e−3

Golgi apparatus membrane CER 1.44

Immune response Allograph rejection p = 4.19e−4

Asthma p = 2.1e−4

Intestinal immune network for IgA production p = 4.29e−4

Type 1 diabetes mellitus p = 4.77e−4

Autoimmune thyroid disease p = 2.3e−3

Antigen processing and presentation p = 1.97e−3

Lymphocytes differentiation CER 1.6

Antigen processing and presentation CER 1.5

Immune cell activation differentiation and development CER 1.8

MHC class two immune response pathway CER 2.28

Uncorrected DNA DNA binding CER 1.75

Nucleotide metabolism CER 1.67

Uncorrected Cellular function Apoptosis CER 1.93

CER = cluster enrichment score

doi:10.1371/journal.pone.0126995.t002

Table 3. Gene list enrichment analysis for blood cells.

User Defined Categories Type Number of
Genes

Corrected p-
values

Genes

Bcell Blood (composite) Blood 31 3.52E-06 BANK1, BCL11A, C22ORF13, C4ORF34, CCDC106, CCR6,
CD24, CD79A, CD79B, CXXC5, CYBASC3, EIF2AK3, GJB6,
GNB5, HLA-DOA, HVCN1, ITPR1, IVD, MEF2C, NOC3L,
P2RY10, PACAP, PNOC, SMARCB1, SP100, SPIB, TLR10,
TPD52, TTC21A, ZDHHC23, ZNF165

Lymphcytes
genesCorrelatedAcrossIndividuals Whitney

Blood 11 3.2e-02 BTG1, CD74, CD79A, CSF1R, HLA-DMB, HLA-DPA1, HLA-DRA,
HLA-DRB4, MS4A1, SPIB, TCL1A

Enrichment for blood cell signature was found using the userListEnrichment function in the WGCNA R package.

doi:10.1371/journal.pone.0126995.t003
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Discussion
There are seasonal differences in the prevalence and severity of conditions such as psychiatric
disorders [27] [51] [30] [29], inflammatory [25] and cardiovascular diseases [52] [26]. The ef-
fect of seasonal variability has also been recorded for several molecular phenotypes such as
homovanillic acid [53], serotonin [54] [55], monoamine neurotransmitters [56], 25-hydroxyvi-
tamin D3 [57] [58] [59] [60] and N-3 poly-unsaturated fatty acid [61]. Gene expression pro-
vides an intermediate phenotype between the genome and higher order phenotypes such as
metabolites and can provide clues as to the underlying biological functions that are being al-
tered in response to seasonal changes.

We investigated whole blood gene expression for seasonal variability in a cohort of 606 indi-
viduals. Using cosinor regression models we were able to identify 135 probes (1% of all probes
tested) that showed significant seasonal variation after being corrected for blood cell composi-
tion. Significant autocorrelation, an alternative statistical technique, was also identified for 90%
of these probes further confirming the presence of repeating cyclic trends in expression levels
of numerous transcripts. In order to examine how this impacts seasonal gene expression, we
examined the expression levels with and without corrections for cell counts.

Transcripts showing seasonal variation in the uncorrected data were enriched for immune
pathways and protein production. The enriched KEGG immune pathways included (Table 2)
allograph rejection, antigen processing and presentation (S3 Fig), lymphocyte differentiation,
immune cell activation, differentiation and development, MHC class two immune response
and autoimmune diseases; type 1 diabetes, autoimmune thyroid disease and asthma. Asthma is
a chromic inflammatory disease condition, which has been observed to exhibit seasonal vari-
ability [25], potentially through the cellular mechanisms identified here. Other cellular func-
tion, such as protein modification and apoptosis, were found in the uncorrected gene
expression dataset (Table 2). There were 74 seasonally associated genes shared between the cor-
rected and uncorrected datasets and these were enriched with terms for DNA binding. This
suggests that transcripts encoding genes involved with DNA binding experience significant
seasonal variation, independent of seasonal fluctuations in cell count.

A previous study by De Jong et al. [20] identified three modules, comprising 5,062 probes
(mapping to 1,458 unique genes), that were associated with cyclic seasonal patterns. However,
these probes were primarily driven by changes in red blood cells and platelets [20]. Here, we
did not identify cell type specific gene signatures for red blood cells, but instead identified en-
richment for leukocytes markers. This difference could be attributed to the single-gene ap-
proach we employed and that we only shared 2,406 genes (18% of our dataset) with the De
Jong et al. analysis [20].

We demonstrate in this study that the 12-month cosinor regression has perfect correlation
(τ* 1) with temperature, a high correlation (τ* 0.7) with UV index, number of clear, cloudy
and rainy days, evaporation, rainfall and solar exposure, and a low correlation (τ* 0.16) for
wind speed and hours of sunshine. This relationship suggests that temperature could be a
major factor driving the seasonal variation in gene expression levels identified with the
12-month cosinor regression model.

A limitation of this study is that each time point represents the mean expression levels of a
group of samples collected during the same time period. Therefore, estimates of effects repre-
sent population variation, rather than intra-individual variation. To more accurately assess the
impact of seasonal environmental factors of gene expression, repeat measures should be col-
lected for samples throughout the year.
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Conclusion
Our results demonstrate the effect of seasonality on cell count and gene expression levels. We
observe that the cellular composition of erythrocytes, platelets and leukocytes varies through-
out the year, following seasonal patters. This trend was also evident in gene expression levels,
with significant seasonal changes in the expression of genes involved in immune function and
protein translation. However, we are unable to determine the direct route of causation for these
transcriptional changes. DNA binding however, a key component of transcription control,
demonstrated significant seasonal variation independent of cell counts, indicating that gene ex-
pression could be pervasively influenced by seasonality in a regulatory manner. Collectively,
our results show that seasonality is an important environmental regulator of physiological pro-
cesses, which can be identified through transcriptional variation.

Supporting Information
S1 Fig. Histograms showing the distribution of the variance explained by the model (R2).
Blue denotes probes with statistically levels of association between gene expression levels and
cyclic variation A) Not corrected for cell count B) Corrected for cell count.
(TIFF)

S2 Fig. Standardized monthly values for 12 weather conditions.Measured weather variables
that exhibit seasonal variation in Brisbane (black dots and connecting lines). The red dots rep-
resent the cosine curve with a 12-month repeating cycle.
(TIF)

S3 Fig. KEGG enriched pathway for Antigen Processing and Presentation. Significant sea-
sonal genes in our study are highlighted with red stars.
(TIF)

S1 Table. A table containing all seasonal data for BSGS cohort samples. Sample IDs match
those of the expression data deposed in GEO GSE33321
(TXT)
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