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Abstract

Representing the absence of objects is psychologically demanding. People are slower, less confident and show lower metacognitive
sensitivity (the alignment between subjective confidence and objective accuracy) when reporting the absence compared with presence
of visual stimuli. However, what counts as a stimulus absence remains only loosely defined. In this Registered Report, we ask whether
such processing asymmetries extend beyond the absence of whole objects to absences defined by stimulus features or expectation
violations. Our pre-registered prediction was that differences in the processing of presence and absence reflect a default mode of
reasoning: we assume an absence unless evidence is available to the contrary. We predicted asymmetries in response time, confidence,
and metacognitive sensitivity in discriminating between stimulus categories that vary in the presence or absence of a distinguishing
feature, or in their compliance with an expected default state. Using six pairs of stimuli in six experiments, we find evidence that
the absence of local and global stimulus features gives rise to slower, less confident responses, similar to absences of entire stimuli.
Contrary to our hypothesis, however, the presence or absence of a local feature has no effect on metacognitive sensitivity. Our results
weigh against a proposal of a link between the detection metacognitive asymmetry and default reasoning, and are instead consistent
with a low-level visual origin of metacognitive asymmetries for presence and absence.
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Introduction
At any given moment, there are many more things that are not
there than things that are there. As a result, and in order to
efficiently represent the environment, perceptual and cognitive
systems have evolved to represent presences, and absence is
implicitly represented as a default state (Oaksford and Chater
2001; Oaksford 2002). One corollary of this is that presence can
be inferred from bottom-up sensory signals, but absence is never
explicitly represented in sensory channels and must instead be
inferred based on top-down expectations about the likelihood

of detecting a hypothetical signal, had it been present. Experi-
ments on human subjects accordingly suggest that representing
absence is more cognitively demanding than representing pres-
ence, even in simple perceptual tasks, as is evident in slower
reactions to stimulus absence than stimulus presence in near-
threshold visual detection (Mazor et al. 2020), in a general difficulty
to form associations with absence (Newman et al. 1980), and in the
late acquisition of explicit representations of absence in develop-
ment (e.g. Sainsbury 1971; Coldren and Haaf 2000; for a review on
the representation of nothing, see Hearst 1991).

An overarching difficulty in representing absence may reflect
the metacognitive nature of absence representations; to repre-
sent something as absent, one must assume that they would have
detected it had it been present. In philosophical writings, this
form of higher-order, metacognitive inference-about-absence is
known as the ‘argument from epistemic closure’ or ‘argument
from self-knowledge’ (“If it was true, I would have known it”;
De Cornulier 1988; Walton 1992). Strikingly, quantitative mea-
sures of metacognitive insight are consistently found to be lower
for decisions about absence than for decisions about presence.
When asked to rate their subjective confidence following near-
threshold detection decisions, subjective confidence ratings fol-
lowing “target absent” judgments are commonly lower and less
aligned with objective accuracy, than following “target present”
judgments (Fig. 1; Kanai et al. 2010; Kellij et al. 2021; Mazor et al.
2020; Meuwese et al. 2014).

Metacognitive asymmetries have not only been observed for
judgments about the presence or absence of whole physical
objects and stimuli but also for the presence or absence of
cognitive variables such as memory traces. For instance, in
recognition memory, subjects typically show poor metacognitive
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Figure 1. In visual detection, subjective confidence ratings following judgments about target absence are typically lower and less correlated with
objective accuracy than following judgments about target presence. Top panel: a typical detection experiment. The participant reports whether a
visual grating was present or absent and then rates their subjective decision confidence. Bottom left: typically, mean confidence in “yes” responses
(blue) is higher than in “no” responses (red). This effect is much more pronounced in correct trials. Bottom right: the interaction between accuracy and
response type on confidence (metacognitive asymmetry) manifests as a lower area under the response conditional type 2 Receiver Operating
Characteristic (rcROC) curve for “no” responses compared with “yes” responses. Plots do not directly correspond to a specific dataset but portray
typical results in visual detection

sensitivity for judgments about the absence of memories (such
as when judging that they have not seen a study item before;
Higham et al. 2009). Unlike the absence of a visual stim-
ulus, the absence of a memory is not localized in space
and does not correspond with a specific representation of
“nothing.”

One way of conceptualizing these findings is that absence
asymmetries emerge as a function of default reasoning—absences
are considered the default, and information about perceptual
or mnemonic presence is accumulated and tested against this

default. For instance, an asymmetry may emerge in recognition

memory because the presence of memories is actively repre-

sented, and the absence of memories is assumed as the default
unless evidence is available for the contrary. In the same way,
other visual features that are not typically treated as presences
or absences may still be coded relative to a default, assuming one
state unless evidence is available for the contrary (e.g. assum-
ing that a cookie is sweet rather than salty). However, whether
a metacognitive asymmetry in processing presence and absence
generalizes to these more abstract violations of default expecta-
tions remains unknown. Here, we set out to map out the structure
of absence representations by testing for metacognitive asymme-
tries in the presence and absence of attributes at different levels
of representation—from concrete objects, to visual features, to
violations of default expectations.

Our choice of stimuli draws inspiration from visual search—
a field where asymmetries are observed for a variety of stimulus
types and features. In visual search, participants typically take
longer to search for a target that is marked by the absence of
a distinguishing feature, as compared to searching for a target
that is marked by the presence of a feature relative to distractors
(Treisman and Souther 1985; Treisman and Gormican 1988). Inter-
estingly, search asymmetries have been demonstrated not only for
the absence or presence of concrete physical features but also for
the presence or absence of deviations from a more abstract default
state, which can be based on experience, culture, and contextual
expectations (see the Methods section; Frith 1974; Von Grünau
and Dubé 1994; Wang et al. 1994; Gandolfo and Downing 2020).
Of special interest for our study are these latter asymmetries
due to expectation violations and their relation with asymmetries
induced by the presence or absence of local and global features.
Observing a metacognitive asymmetry for expectation violations
as well as for the presence and absence of object features would
support a strong link between the representation of absence and
default reasoning, where differences in metacognitive sensitivity
reflect differences in the processing of information that agrees or
contrasts with the expected default state.

While traditional accounts interpreted visual search asymme-
tries as reflecting a qualitative advantage for the cognitive repre-
sentation of presence (affording a parallel search in the case of
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Figure 2. Experiment design. Metacognitive asymmetry effects were tested for six stimulus features in six separate experiments, encompassing three
levels of abstraction: local features, global features, and expectation violations. The presented trial corresponds to the first stimulus pair, with Q and O
as the two stimuli

feature-present search only; Treisman and Gormican 1988), other
models attribute the asymmetry to differences in the distributions
of perceptual signals already at the sensory level (Dosher et al.
2004; Vincent 2011). Similarly, in the case of metacognitive asym-
metries, the idea that decisions about absence are qualitatively
different from decisions about presence has been challenged by
an excellent fit of simple models that assume unequal variance
for the signal-present and signal-absent sensory distributions,
a model that does not assume any qualitative difference between
the two decisions (Kellij et al. 2021). Deciding between these model
families is beyond the scope of this project. However, identify-
ing metacognitive asymmetries for abstract cognitive variables
such as familiarity could help refine these models, for instance,
by revealing that representing deviations from a default state is
an overarching principle of cognitive organization, one that goes
beyond specific features of visual perception.

Methods
We report how we determined our sample size, all data exclusions
(if any), all manipulations, and all measures in the study. The full
registered protocol is available at osf.io/ed8n7.

We ran six experiments that were identical except for the
identity of the two stimuli S1 and S2 (and of the stimulus used
for backward masking; see the “Deviations from pre-registration”
section for details). Our choice of stimuli for this study was based
on the visual search literature. For some stimulus pairs S1 and
S2, searching for one S1 among multiple S2s is more efficient
than searching for one S2 among multiple S1s. Such search asym-
metries have been reported for stimulus pairs that are identical
except for the presence and absence of a distinguishing fea-
ture. Importantly, distinguishing features vary in their level of
abstraction, from concrete local features (finding a Q among Os

is easier than the inverse search; Treisman and Souther 1985),
through global features (finding a curved line among straight lines
is easier than the inverse search; Treisman and Gormican 1988),
and up to the presence or absence of abstract expectation viola-
tions (searching for an upward-tilted cube among downward-tilted
cubes is easier than the inverse search, in line with a general
expectation to see objects on the ground rather than floating

in space; Von Grünau and Dubé 1994). We treat these three

types of asymmetries as reflecting a default-reasoning mode of

representation, where the absence of features and/or the adher-

ence of objects to prior expectations is tentatively accepted as a

default by the visual system, unless evidence is available for the

contrary (Treisman and Souther 1985; Treisman and Gormican

1988). In this study, we test for metacognitive asymmetries for

two stimulus features in each category, in six separate exper-

iments with different participants (Fig. 2). For each of the fol-
lowing stimulus pairs, searching for S1 among multiple instances
of S2 has been found to be more efficient than the inverse
search:

• Local feature: Addition of a stimulus part. Q and O were used
as S1 and S2, respectively (Treisman and Souther 1985).

• Local feature: Open ends. C and O were used as S1 and
S2, respectively (Treisman and Souther 1985; Treisman and
Gormican 1988; Takeda and Yagi 2000).

• Global feature: Orientation. Tilted and vertical lines were used
as S1 and S2, respectively (Treisman and Gormican 1988).

• Global feature: Curvature. Curved and straight lines were
used as S1 and S2, respectively (Treisman and Gormican 1988).

• Expectation violation: Viewing angle. Upward- and
downward-tilted cubes were used as S1 and S2, respectively
(Von Grünau and Dubé 1994).

https://osf.io/ed8n7
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• Expectation violation: Letter inversion. Flipped and normal
N were used as S1 and S2, respectively (Frith 1974; Wang et al.
1994).

The experiments quantified participants’ metacognitive sensi-
tivity for discrimination judgments between S1 and S2.

Participants
The research complied with all relevant ethical regulations and
was approved by the Research Ethics Committee of University
College London (study ID number 1260/003). Participants were
recruited via Prolific and gave informed consent prior to their
participation. They were selected based on their acceptance rate
(>95%) and for being native English speakers. For each of the
six experiments, we aimed to collect data until we reached 106
included participants (after applying our pre-registered exclusion
criteria). The entire experiment took 10–15 minutes to complete.
Participants were paid between £1.25 and £2 for their participa-
tion, maintaining a median hourly wage of £6 or higher.

Procedure
Experiments were programmed using the jsPsych and P5
JavaScript packages (De Leeuw 2015; McCarthy 2015) and were
hosted on a JATOS server (Lange et al. 2015).

After instructions, a practice phase, and a multiple-choice
comprehension check, the main part of the experiment started.
It comprised 96 trials separated into 6 blocks. Only the last five
blocks were analyzed.

On each trial, participants made discrimination judgments on
masked stimuli and rated their subjective decision confidence
on a continuous scale. After a fixation cross (500 ms), the tar-
get stimulus (S1 or S2) was presented in the center of the screen
for 50 ms, followed by a mask (100 ms). Stimulus Onset Asyn-
chrony (SOA) was calibrated online in a 1-up-2-down procedure
(Levitt 1971), with a multiplicative step factor of 0.9 and start-
ing at 30 ms. Participants then used their keyboard to make a
discrimination judgment. Stimulus-key mapping was counter-
balanced between participants. Following responses, subjective
confidence ratings were given on an analog scale by controlling
the size of a colored circle with the computer mouse. High con-
fidence was mapped to a big, blue circle, and low confidence
to a small, red circle. We chose a continuous (rather than a
more typical discrete) confidence scale in order to ensure suffi-
cient variation in confidence ratings within the dynamic range of
individual participants. This variation is useful for the extraction
of response conditional type 2 Receiver Operating Characteristic
(ROC) curves. The confidence rating phase terminated once partic-
ipants clicked their mouse but not before 2000 ms. No trial-specific
feedback was delivered about accuracy. In order to keep partici-
pants motivated and engaged, block-wise feedback was delivered
between experimental blocks about overall accuracy, mean con-
fidence in correct responses, and mean confidence in incorrect
responses. Online demos of the experiments can be accessed at
matanmazor.github.io/asymmetry.

Randomization
The order and timing of experimental events were determined
pseudo-randomly by the Mersenne Twister pseudorandom num-
ber generator, initialized in a way that ensures registration time-
locking (Mazor et al. 2019).

Data analysis
We used R (Version 3.6.0; R Core Team 2019) and the R-packages
BayesFactor (Version 0.9.12.4.2; Morey and Rouder 2018), broom
(Version 0.5.6; Robinson and Hayes 2020), cowplot (Version 1.0.0;
Wilke 2019), dplyr (Version 1.0.4; Wickham et al. 2020), ggplot2
(Version 3.3.1; Wickham 2016), lmerTest (Version 3.1.2; Kuznetsova
et al. 2017), lsr (Version 0.5; Navarro 2015), MESS (Version 0.5.6;
Ekstrøm 2019), papaja (Version 0.1.0.9997; Aust and Barth 2020),
pracma (Version 2.2.9; Borchers 2019), pwr (Version 1.3.0; Champely
2020), and tidyr (Version 1.1.0; Wickham and Henry 2020) for all
our analyses.

For each of the six stimulus pairs [S1, S2], we tested the
following hypotheses:

1. Hypothesis 1: Subjective confidence is higher for S1 responses
than for S2 responses.

For each of the six stimulus pairs, we tested the null hypoth-
esis that subjective confidence for S1 responses is equal to
or lower than subjective confidence for the S2 responses (Ho :
confS1 ≤ confS2 ).

2. Hypothesis 2: Metacognitive sensitivity, measured as the area
under the response conditional type 2 ROC curve, is higher
for S1 responses than for S2 responses.

For each of the six stimulus pairs, we tested the null hypoth-
esis that metacognitive sensitivity for S1 responses is equal
to or lower than metacognitive sensitivity for S2 responses
(Ho : auROCS1 ≤ auROCS2 ).

3. Hypothesis 3: Metacognitive sensitivity, measured as the area
under the response conditional type 2 ROC curve, is higher
for S1 responses than for S2 responses, to a greater extent
than expected from an equivalent equal-variance Signal
Detection Theory (SDT) model.

For each of the six stimulus pairs, we tested the null
hypothesis that difference between metacognitive sensitiv-
ities for S1 and S2 responses is lower than the difference
expected from an equivalent equal-variance SDT model (Ho :

(auROCS1 − auROCS2 )≤
(
âuROCS1 − âuROCS2

)
where âuROC is

the expected area under the rc-ROC curve (auROC2) under
an equal variance SDT model with equal sensitivity, cri-
terion, and distribution of confidence ratings in incorrect
responses).

4. Hypothesis 4: S1 responses are faster on average than S2

responses.

For each of the six stimulus pairs, we tested the null hypoth-
esis that log-transformed response times for S1 responses are
equal to or higher than log-transformed response times for
S2 responses (Ho : log(RTS1 )≥ log(RTS2 )).

Hypotheses 1 and 2 correspond to the effects of stimulus type
on metacognitive bias and metacognitive sensitivity, respectively.
Although these two measures are theoretically independent, both
bias and sensitivity are found to vary between detection “yes” and
“no” responses.

Based on pilot data and previous experiments examining near-
threshold perceptual detection and discrimination, we did not

https://matanmazor.github.io/asymmetry
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expect a response bias (such that the probability of responding
S1 is significantly different from 0.5 across participants). However,
such a response bias, if found, may bias metacognitive asymmetry
estimates as measured with response conditional type 2 ROC
curves. Hypothesis 3 was designed to confirm that metacognitive
asymmetry is higher than that expected from an equivalent equal-
variance SDT model with the same response bias, sensitivity, and
distribution of confidence ratings in incorrect responses as in the
actual data. We interpreted conflicting results for Hypotheses 2
and 3 as evidence for a metacognitive asymmetry that is driven or
masked by a response bias.

Hypothesis 4 is motivated by two observations from previous
studies. First, detection “yes” responses are faster than detection
“no” responses (Mazor et al. 2020). Second, when participants are
not under strict time pressure, reaction time inversely scales with
confidence (Henmon 1911; Pleskac and Busemeyer 2010; Moran
et al. 2015; Calder-Travis et al. 2020). Based on these findings, if S1

and S2 responses are similar to detection “yes” and “no” responses
not only in explicit confidence judgments but also in response
times, we should also expect a response time difference for these
stimulus pairs.

Dependent variables and analysis plan
Response conditional type 2 ROC curves were extracted by plot-
ting the empirical cumulative distribution of confidence ratings
for correct responses against the same cumulative distribution
for incorrect responses. This was done separately for the two
responses S1 and S2, resulting in two curves. The area under the
response conditional type 2 ROC curve is a measure of metacog-
nitive sensitivity (Fleming and Lau 2014). The difference between
the areas for the two responses is a measure of metacognitive
asymmetry (Meuwese et al. 2014). This difference was used to test
Hypothesis 2.

In order to test Hypothesis 3, SDT-derived response condi-
tional type 2 ROC curves were plotted in the following way. For
each response, we plotted the empirical cumulative distribu-
tion for incorrect responses on the x-axis against the cumula-
tive distribution for correct responses that would be expected
in an equal-variance SDT model with matching sensitivity and
response bias on the y-axis. The difference between the areas of
these theoretically derived response conditional type 2 ROC curves
was compared against the difference between the true response
conditional type 2 ROC curves.

For visualization purposes only, confidence ratings were
divided into 20 bins, tailored for each participant to cover their
dynamic range of confidence ratings.

For each of the six experiments, Hypotheses 1–4 were tested
using a one-tailed t-test at the group level with α= 0.05. The
summary statistic at the single-subject level was difference in
mean confidence between S1 and S2 responses for Hypothesis
1, difference in area under the response conditional type 2 ROC
curves between S1 and S2 responses (∆AUC) for Hypothesis 2,
difference in ∆AUC between true confidence distributions and
SDT-derived confidence distributions for hypothesis 3, and differ-
ence in mean log response time between S1 and S2 responses for
Hypothesis 4.

In addition, a Bayes factor was computed using the BayesFac-
tor R package (Morey et al. 2015) and using a Jeffrey–Zellner–Siow
(Cauchy) Prior with an rscale parameter of 0.65, representative of
the similar standardized effect sizes we observe for Hypotheses
1–4 in our pilot data.

We based our inference on the resulting Bayes factors.

Statistical power
Statistical power calculations were performed using the R-pwr
packages pwr (Champely 2020) and PowerTOST (Labes et al. 2020).

• Hypothesis 1 (mean confidence): With 106 participants, we
had a statistical power of 95% to detect effects of size 0.32,
which is less than the standardized effect size we observed for
confidence in our pilot sample (d= 0.66).

• Hypothesis 2 (metacognitive asymmetry): With 106 partici-
pants, we had a statistical power of 95% to detect effects
of size 0.32, which is less than the standardized effect size
we observed for metacognitive sensitivity in our pilot sample
(d= 0.73).

• Hypothesis 3 (metacognitive asymmetry: control): With 106
participants, we had a statistical power of 95% to detect
effects of size 0.32, which is less than the standardized effect
size we observed for metacognitive sensitivity, controlling for
response bias, in our pilot sample (d= 0.81).

• Hypothesis 4 (response time): With 106 participants, we had a
statistical power of 95% to detect effects of size 0.32, which is
less than the standardized effect size we observed for response
time in our pilot sample (d= 0.61).

Finally, in case that the true effect size equals 0, a Bayes factor
with our chosen prior for the alternative hypothesis will support
the null in 95 out of 100 repetitions and will support the null with
a BF01 higher than 3 in 79 out of 100 repetitions. In a case where
the true effect size is sampled from a Cauchy distribution with a
scale factor of 0.65, a Bayes factor with our chosen prior for the
alternative hypothesis will support the alternative hypothesis in
76 out of 100 repetitions, support the alternative hypothesis with a
BF10 higher than 3 in 70 out of 100 repetitions, and support the null
hypothesis with a BF01 higher than 3 in 15 out of 100 hypotheses
(based on an adaptation of simulation code from Lakens 2016).

Rejection criteria
Participants were excluded for performing below 60% accuracy,
for having extremely fast or slow reaction times (below 250 ms or
above 5 s in more than 25% of the trials), and for failing the com-
prehension check. Finally, for type-2 ROC curves to be generated,
some responses must be incorrect, and for them to be informa-
tive, some variability in confidence ratings is necessary. Thus,
participants who committed less than two of each error type (e.g.
mistaking a Q of O and mistaking an O for Q) or who reported less
than two different confidence levels for each of the two responses
were excluded from all analyses.

Trials with response time below 250 ms or above 5 s were
excluded.

Deviations from pre-registration
• Stimulus used for backwardmasking: We planned to use the same

stimulus (the letter Z) for backward masking in all six experi-
ments. This mask was effective in Experiments 1 and 2, but in
Experiment 3, overly high accuracy levels indicated that for
these stimuli the mask was not salient enough. For a sub-
set of participants in Experiment 3, an overlay of all seven
stimuli from Experiments 3–6 (vertical, tilted, and curved
lines, upward-tilted and downward-tilted cubes, and normal
and flipped Ns) was used. For the remaining participants and
experiments, we used four dollar signs as our mask. See Fig. 2
for depictions of the three masks.
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Figure 3. Reaction time and confidence distributions for Experiments 1–6. Box edges and central lines represent the 25, 50, and 75 quantiles. Whiskers
cover data points within four inter-quartile ranges around the median. Black lines connect the median values for the two responses. Stars represent
significance in a two-sided t-test: **p< 0.01, ***p< 0.001

• Rejection criteria: In our pre-registration, we explain that infor-
mative response conditional type 2 ROC curves can only be
generated if participants make errors. When analyzing the
data, we came to realize that an additional prerequisite for
response conditional type 2 ROC curves to be informative is
that the variance in confidence ratings is higher than zero,
otherwise the curve is diagonal. We therefore required that
participants report at least two different confidence levels for
each response. Participants who did not meet this additional
criterion were excluded from all analyses.

• Monetary compensation: For some of the experiments, we
noticed that participants completed the experiment more
quickly than what we had originally estimated. We therefore
reduced our offered payment for some of the experi-
ments, while maintaining a median hourly wage of £6 or
higher.

Results
A summary of the results from all six experiments is available in
the “Experiments 1–6: summary” and in Figs. 3–5.

Experiment 1: Q versus O
In Experiment 1, we examined discrimination judgments between
the two letters Q and O. Based on a search asymmetry for these
letters (Qs are found faster than Os than vice versa; Treisman and
Souther 1985), we hypothesized that a similar asymmetry would

emerge in subjective confidence judgments, such that metacogni-
tive sensitivity for Q responses will be higher than for O responses.
We used the letter Z as our backward mask.

Two hundred and five participants were recruited from Prolific
for Experiment 1.

Median completion time was 13.12 minutes. Mean accuracy
was 0.74. Participants reported seeing an O on 47% of trials. In
a deviation from our pre-registration, we excluded nine partic-

ipants for having zero variance in their confidence ratings for

at least one of the two responses (see the “Deviations from pre-

registration” section). Overall, we excluded 71 participants based

on our exclusion criteria, leaving 134 participants for the main

analysis. Due to a technical error in data collection, this figure

is higher than that specified in our preregistration document
(n=106). Going forward, only data from included participants are
analyzed.

Mean accuracy among the included participants was M= 0.74,
95% CI [0.73, 0.75]. Mean SOA in the last trial was M= 47.50, 95%
CI [39.39, 55.61]. Participants showed no consistent bias in their
responses (quantified as the probability of a Q response minus 0.5;
M= 0.02, 95% CI [0.00, 0.04]). On a scale of 0–1, mean confidence
level was M= 0.49, 95% CI [0.45, 0.53]. Confidence was higher for
correct than for incorrect responses (Md = 0.15, 95% CI [0.13, 0.17],
t(133) = 14.85, p < 0.001).

Hypothesis 1: In line with our hypothesis, confidence was gen-
erally higher for Q (feature present) responses than for O (fea-
ture absent) responses (t(133) = 7.52, p < 0.001; Cohen’s d=0.65;
BF10 = 1.07× 109; see Fig. 3, panel 1).
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Figure 4. Response conditional type 2 ROC curves for Experiments 1–6. The area under the curve is a measure of metacognitive sensitivity. Error bars
stand for the standard error of the mean. For illustration, the curves of the first 20 participants of each experiment are plotted in low opacity. Below
each ROC: distributions of the area under the curve for the two responses, across participants. Same conventions as in Fig. 3. Stars represent
significance in a two-sided t-test: *p< 0.05, **p< 0.01, ***p< 0.001

Hypothesis 2: In order to measure metacognitive asymme-
try, we extracted the response conditional type 2 ROC (rc-ROC)
curves for the two responses (Q and O) in the discrimina-
tion task. This was done by plotting the cumulative distribu-
tion of confidence ratings (high to low) for correct responses
against the same distribution for incorrect responses. The
auROC2 was then taken as a measure of metacognitive sensitivity
(Kanai et al. 2010; Meuwese et al. 2014). In line with our hypothesis,
auROC2 for Q responses (M= 0.72, 95% CI [0.70, 0.74]) was higher
than for O responses (M= 0.68, 95% CI [0.66, 0.70]; t(133) = 2.96,
p= .002; Cohen’s d=0.26; BF10 = 6.56; see Fig. 4, panel 1), sim-
ilar to the documented metacognitive asymmetry for detection
judgments.

Hypothesis 3: Metacognitive asymmetry was not significantly
higher than what is expected based on an equal-variance SDT
model with the same response bias and sensitivity as the subjects
(t(133) = 0.97, p= .167; Cohen’s d=0.08). A Bayes factor indicated
that our results are more likely under a model that assumes no
additional metacognitive asymmetry (BF01 = 6.07).

Hypothesis 4: In line with our hypothesis, Q responses were
faster on average than O responses by 37 ms (t(133) =−2.99,
p= .002; Cohen’s d=0.26; BF10 = 7.05; see Fig. 3, panel 1).

In summary, in Experiment 1, we found that Q responses were
faster and accompanied by higher subjective confidence, in line
with a processing advantage for feature-presence. Metacognitive
asymmetry however did not go beyond what is expected from an

equal-variance SDT model for these stimuli, taking into account
response biases.

Experiment 2: C versus O
In Experiment 2, we examined discrimination judgments between
the two letters C and O. Based on a search asymmetry for these
letters (Cs are found faster among Os than vice versa; Treisman
and Souther 1985; Treisman and Gormican 1988; Takeda and Yagi
2000), we hypothesized that a similar asymmetry would emerge
in subjective confidence judgments, such that metacognitive sen-
sitivity for perceiving a C will be higher than for perceiving an O.
We used the letter Z as our backward mask.

One hundred and forty-three participants were recruited from
Prolific for Experiment 2.

Median completion time was 12.80 minutes. Mean accuracy
was 0.75, and participants reported seeing an O on 43% of
trials. In a deviation from our pre-registration, we excluded
eight participants for having zero variance in their confidence
ratings for at least one of the two responses (see the “Devi-
ations from pre-registration” section). Overall, we excluded
37 participants, leaving 106 participants for the main analy-
sis. Going forward, only data from included participants are
analyzed.

Mean accuracy 47% of trials among included participants was
M= 0.74, 95% CI [0.73, 0.75]. The mean SOA of the last trial was
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M= 40.18, 95% CI [34.37, 46.00]. Participants showed a consistent
bias toward reporting a C rather than an O (M= 0.07, 95% CI [0.05,
0.08]). On a scale of 0–1, mean confidence level was M= 0.52, 95%
CI [0.48, 0.56]. Confidence was higher for correct than for incorrect
responses (Md = 0.17, 95% CI [0.15, 0.19], t(105) = 15.05, p< .001).

Hypothesis 1: In line with our hypothesis, confidence was gen-
erally higher for C (feature present) responses than for O (feature
absent) responses (Md = 0.05, 95% CI [0.03, ∞), t(105) = 3.59, p<

.001; Cohen’s d=0.35; BF10 = 42.62; see Fig. 3, panel 2).
Hypothesis 2: Opposite to our prediction, auROC2 for C

responses (M= 0.70, 95% CI [0.68, 0.72]) was lower than for O
responses (M= 0.75, 95% CI [0.73, 0.78]; t(105) =−3.53, p> .999;
Cohen’s d=0.34; see Fig. 4, panel 2). Bayes factor strongly sup-
ported the alternative (BF10 = 35.19). Note that our prior on effect
sizes was symmetric around zero, such that support for the
alternative is obtained for negative, as well as positive effects.

Hypothesis 3: Metacognitive sensitivity for C responses was still
higher than for O responses after controlling for bias (Cohen’s
d=0.49; BF10 = 6.46× 103).

Hypothesis 4: Contrary to our hypothesis, response times for C
and for O responses were highly similar, with a median difference
of 6 ms (t(105) = 0.01, p= .504; Cohen’s d=0.00; BF01 = 8.57; see
Fig. 3, panel 2).

In summary, in Experiment 2, we found a dissociation between
our two confidence-related measures. As we hypothesized, partic-
ipants were generally more confident in their C (feature present)
responses, but their metacognitive sensitivity was higher follow-
ing O (feature absent) responses. We found no reliable difference
in response times between these two responses.

Experiment 3: tilted versus vertical lines
In Experiment 3, we examined discrimination judgments between
tilted and vertical lines. Based on a search asymmetry for these
stimuli (tilted lines are found faster among vertical lines than
vice versa; Treisman and Gormican 1988), we hypothesized that
a similar asymmetry would emerge in subjective confidence
judgments, such that metacognitive sensitivity for perceiving a
tilted line will be higher than for perceiving a vertical line. As
described in the “Deviations from pre-registration” section, overly
high accuracy in the first few participants led us to change our
masking stimulus, first to an overlay of all stimuli and then to
four dollar signs. We present here the combined results from
these last two cohorts of participants (94 and 210 participants,
respectively). The results were qualitatively similar in the two
cohorts.

Three hundred and four participants were recruited from Pro-
lific for Experiment 3. Due to shorter than expected completion
times in the first 94 participants, the remaining participants were
paid £1.25, equivalent to an hourly wage of £6.

Median completion time was 12.43 minutes. Mean accuracy
was 0.86, and participants reported seeing a vertical line on 44%
of trials. In a deviation from our pre-registration, we excluded 14
participants for having zero variance in their confidence ratings
for at least one of the two responses (see the “Deviations from
pre-registration” section). Overall, we excluded 198 participants,
leaving 106 participants for the main analysis. Going forward, only
data from included participants are analyzed.

Mean accuracy 47% of trials among included participants was
M= 0.79, 95% CI [0.78, 0.81]. The mean SOA of the last trial was
M= 30.83, 95% CI [25.99, 35.68]. Participants showed a consistent
bias toward reporting a tilted rather than a vertical line (M= 0.06,
95% CI [0.04, 0.08]). On a scale of 0–1, mean confidence level

was M= 0.61, 95% CI [0.56, 0.65]. Confidence was higher for cor-
rect than for incorrect responses (Md = 0.18, 95% CI [0.15, 0.20],
t(105) = 13.42, p< .001).

Hypothesis 1: In line with our hypothesis, confidence was gen-
erally higher for tilted lines (feature present) responses than for
vertical lines (feature absent) responses (Md = 0.12, 95% CI [0.09,
∞), t(105) = 7.18, p< .001; Cohen’s d=0.70; BF10 = 8.89× 107; see
Fig. 3, panel 3).

Hypothesis 2: Contrary to our prediction, Bayes factor analy-
sis did not provide evidence for or against a difference in auROC2

between reports of seeing a tilted line (M= 0.76, 95% CI [0.74, 0.78])
and reports of seeing a vertical line (M= 0.73, 95% CI [0.70, 0.75];
Cohen’s d=0.18; BF01 = 1.59; see Fig. 4, panel 3.). A difference in
metacognitive sensitivity was however significant in a standard
t-test (t(105) = 1.88, p= .031). With a sample size of 106, a one-
tailed t-test is significant for observed effect sizes of 0.16 standard
deviations or higher. In contrast, for our choice of a scale factor, a
Bayes factor is higher than 3 for observed standardized effect sizes
of 0.26 standard deviations or higher. Effect sizes that fall between
0.16 and 0.26 are then significant in a t-test, with no conclusive
evidence in a Bayes factor analysis. A robustness region analy-
sis revealed that no scale factor would have led to the conclusion
that auROC2s for the two responses are different with BF10 > 3. See
Supplementary Fig. S1 for a full Robustness Region plot (Dienes
2019).

Hypothesis 3: A Bayes factor analysis did not provide evidence
for or against metacognitive asymmetry when controlling for
response bias and sensitivity (t(105) =−0.70, p= .759; Cohen’s
d=0.07; BF10 = 6.74).

Hypothesis 4: In line with our hypothesis, response times
for “tilted” responses were faster than response times for “ver-
tical” responses, with a median difference of 68 ms (t(105) =
−5.82, p< .001; Cohen’s d=0.56; BF10 = 1.83× 105; see Fig. 3,
panel 3).

In summary, in Experiment 3, we found that “tilted” (feature
present) responses were faster and accompanied by higher subjec-
tive confidence than “vertical” (feature absent) responses, with no
difference in metacognitive sensitivity between the two responses.

Experiment 4: curved versus straight lines
In Experiment 4, we examined discrimination judgments between
curved and vertical lines. Based on a search asymmetry for these
stimuli (curved lines are found faster among vertical lines than
vice versa; Treisman and Gormican 1988), we hypothesized that a
similar asymmetry would emerge in subjective confidence judg-
ments, such that metacognitive sensitivity for perceiving a tilted
line will be higher than for perceiving a vertical line. We used four
dollar signs ($$$$) as our mask.

Two hundred and eleven participants were recruited from Pro-
lific for Experiment 4. Due to shorter than expected comple-
tion times in previous experiments, participants were paid £1.25,
equivalent to an hourly wage of £6.

Median completion time was 12.08 minutes. Mean accuracy
was 0.84, and participants reported seeing a straight line on 44%
of trials. In a deviation from our pre-registration, we excluded 11
participants for having zero variance in their confidence ratings
for at least one of the two responses (see the “Deviations from
pre-registration” section). Overall, we excluded 104 participants,
leaving 107 participants for the main analysis. Going forward, only
data from included participants are analyzed.

Mean accuracy among included participants was M= 0.79,
95% CI [0.77, 0.80]. The mean SOA of the last trial was M= 28.01,
95% CI [24.22, 31.79]. Participants showed a consistent bias toward
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reporting a curved rather than a vertical line (M= 0.06, 95% CI
[0.04, 0.07]). On a scale of 0–1, mean confidence level wasM= 0.57,
95% CI [0.53, 0.61]. Confidence was higher for correct than for
incorrect responses (Md = 0.21, 95% CI [0.18, 0.24], t(106) = 14.96,
p< .001).

Hypothesis 1: In line with our hypothesis, confidence was gen-
erally higher for curved lines (feature present) responses than for
straight lines (feature absent) responses (Md = 0.12, 95% CI [0.09,
∞), t(106) = 8.25, p< .001; Cohen’s d=0.80; BF10 = 1.61× 1010;
see Fig. 3, panel 4).

Hypothesis 2: Contrary to our prediction, auROC2 for reports of
seeing a curved line (M= 0.76, 95% CI [0.73, 0.78]) was similar
to auROC2 for reports of seeing a straight line (M= 0.75, 95% CI
[0.73, 0.78]; t(106) = 0.30, p= .382; Cohen’s d=0.03; BF01 = 8.23;
see Fig. 4, panel 4).

Hypothesis 3: (The lack of) metacognitive asymmetry was not
different from what would be expected based on an equal-
variance SDT model with the same response bias and sensitivity
(t(106) =−1.93, p= .972; Cohen’s d=0.19; BF01 = 1.45).

Hypothesis 4: In line with our hypothesis, response times for
“curved” responses were faster than response times for “straight”
responses, with a median difference of 51 ms (t(106) =−4.36,
p< .001; Cohen’s d=0.42; BF10 = 558.55; see Fig. 3, panel 4).

In summary, similar to Experiment 3, “curved” (feature-
present) responses were faster and accompanied by higher sub-
jective confidence than “straight” (feature absent) responses.
However, similar to the results of Experiment 3, here also we did
not find a metacognitive asymmetry for these stimuli.

Experiment 5: upward-tilted versus
downward-tilted cubes
In Experiment 5, we examined discrimination judgments between
upward-tilted and downward-tilted cubes. Based on a search
asymmetry for these stimuli (upward-tilted cubes are found faster
among downward-tilted cubes than vice versa, in line with an
expectation to see objects on the ground and not floating in space;
Von Grünau and Dubé 1994), we hypothesized that a similar
asymmetry would emerge in subjective confidence judgments,
such that metacognitive sensitivity for perceiving an upward-
tilted cube will be higher than for perceiving a downward-tilted
cube. We used four dollar signs ($$$$) as our mask.

One hundred and sixty-two participants were recruited from
Prolific for Experiment 5.

Median completion time was 13.30 minutes. Mean accuracy
was 0.79, and participants reported seeing a downward-tilted cube
on 51% of trials. In a deviation from our pre-registration, we
excluded 11 participants for having zero variance in their con-
fidence ratings for at least one of the two responses (see the
“Deviations from pre-registration” section). Overall, we excluded
56 participants, leaving 106 participants for the main analysis.
Going forward, only data from included participants are analyzed.

Mean accuracy among included participants was M= 0.77,
95% CI [0.76, 0.78]. The mean SOA of the last trial was M= 29.51,
95% CI [23.20, 35.81]. Participants showed no consistent response
bias (M=−0.01, 95% CI [−0.03, 0.00]). On a scale of 0–1, mean
confidence level was M= 0.55, 95% CI [0.51, 0.59]. Confidence was
higher for correct than for incorrect responses (Md = 0.23, 95% CI
[0.20, 0.26], t(105) = 13.89, p< .001).

Hypothesis 1: Contrary to our hypothesis, confidence was simi-
lar for upward-tilted (feature present) responses and downward-
tilted (feature absent) responses (Md = 0.00, 95% CI [−0.02, ∞),
t(105) = 0.12, p= .452; Cohen’s d=0.01; BF01 = 8.51; see Fig. 3,
panel 5).

Hypothesis 2: Contrary to our hypothesis, a Bayes factor analy-
sis did not provide evidence for or against a difference in auROC2

for reports of seeing an upward-tilted cube (M= 0.75, 95% CI
[0.73, 0.77]) and reports of seeing a downward-tilted cube (M=

0.72, 95% CI [0.70, 0.75]; Cohen’s d=0.22; BF10 = 1.38; see Fig. 4,
panel 5). In contrast, a t-test revealed a significant metacogni-
tive asymmetry, with a higher metacognitive sensitivity for per-
ceiving an upward-tilted (default-violating) cube (t(105) = 2.29,
p= .012). See Supplementary Fig. S1 for a full Robustness Region
plot (Dienes 2019).

Hypothesis 3: (The lack of) metacognitive asymmetry was not
different from what would be expected based on an equal-
variance SDT model with the same response bias and sensitivity
(Cohen’s d=0.22; BF10 = 1.28). Here also, frequentist and Bayesian
analyses conflicted, with a t-test revealing a significant metacog-
nitive advantage for upward-tilted (default violating) responses
when controlling for bias (t(105) = 2.25, p= .013).

Hypothesis 4: Contrary to our hypothesis, response times for
“upward-tilted” responses were similar to response times for
“downward-tilted” responses with a median difference of 9 ms
(t(105) =−0.82, p= .207; Cohen’s d=0.08; BF01 = 6.19; see Fig. 3,
panel 5).

In summary, in Experiment 5, we found no sign of process-
ing asymmetry between upward- and downward-tilted cubes in
response times and confidence. A significant metacognitive asym-
metry was observed when using null-hypothesis significance test-
ing but was not supported by our Bayes factor analysis. In accor-
dance with our pre-registered plan to commit to the Bayes factor
analysis in interpreting the results, in what follows we inter-
pret these findings as providing no support for a metacognitive
asymmetry for upward- and downward-tilted cubes.

Experiment 6: flipped versus normal letters
In Experiment 6, we examined discrimination judgments between
flipped and normal N stimuli. Based on a search asymmetry for
these stimuli (flipped Ns are found faster among normal Ns than
vice versa; Frith 1974; Wang et al. 1994), we hypothesized that a
similar asymmetry would emerge in subjective confidence judg-
ments, such that metacognitive sensitivity for perceiving a flipped
N will be higher than for perceiving a normal N. We used four
dollar signs ($$$$) as our mask.

One hundred and twenty-seven participants were recruited
from Prolific for Experiment 6. Due to shorter than expected com-
pletion times in previous experiments, participants were paid
£1.25, equivalent to an hourly wage of £6.

Median completion time was 12.76 minutes. Mean accuracy
was 0.74, and participants reported seeing a normal N on 50% of
trials. In a deviation from our pre-registration, we excluded four
participants for having zero variance in their confidence ratings
for at least one of the two responses (see the “Deviations from
pre-registration” section). Overall, we excluded 21 participants,
leaving 106 participants for the main analysis. Going forward, only
data from included participants are analyzed.

Mean accuracy among included participants was M= 0.73,
95% CI [0.72, 0.74]. The mean SOA in the last trial was M= 37.26,
95% CI [33.07, 41.46]. Participants showed no consistent response
bias (M= 0.00, 95% CI [−0.02, 0.02]). On a scale of 0–1, mean con-
fidence level was M= 0.53, 95% CI [0.49, 0.57]. Confidence was
higher for correct than for incorrect responses (Md = 0.17, 95% CI
[0.15, 0.20], t(105) = 16.45, p< .001).

Hypothesis 1: Contrary to our hypothesis, confidence was lower
for flipped (feature present) responses than for normal (feature
absent) responses. This result was in the opposite direction to
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what we had expected, so was not significant in a one-tailed t-test
(Md =−0.04, 95% CI [−0.06, ∞), t(105) =−3.32, p= .999; Cohen’s
d=0.32). However, a Bayes factor favored the alternative over the
null BF10 (= 18.92; see Fig. 3, panel 6).

Hypothesis 2: Contrary to our hypothesis, auROC2 for reports
of seeing a flipped N (M= 0.71, 95% CI [0.69, 0.73]) was similar
to auROC2 for reports of seeing a normal N (M= 0.71, 95% CI
[0.69, 0.73]; t(105) = 0.08, p= .468; Cohen’s d=0.01; BF01= 8.54;
see Fig. 4, panel 6).

Hypothesis 3: (The lack of) metacognitive asymmetry was not
different from what would be expected based on an equal-
variance SDT model with the same response bias and sensitivity
(t(105) = 0.26, p= .396; Cohen’s d=0.03; BF01= 8.28).

Hypothesis 4: Contrary to our hypothesis, response times for
“flipped” responses were slower than response times for “nor-
mal” responses, with a median difference of 30 ms (t(105) = 2.81,
p= .997; Cohen’s d=0.27; BF10 = 4.66; see Fig. 3, panel 6).

In summary, in Experiment 6, we found a difference in
response speed and subjective confidence in the opposite direc-
tion to what we expected, with a processing advantage for the
default-complying stimulus (N) compared to the default-violating
stimulus (flipped N). We found no metacognitive asymmetry for
these stimuli.

Experiments 1–6: summary
Overall, the pattern of results from Experiments 1–6 only partly
matched our hypotheses in some cases and stood in direct con-
trast to them in other cases (see Fig. 5). A reliable metacog-
nitive asymmetry was observed only in Experiment 2, and this
asymmetry was in the opposite direction to what we had pre-
dicted, with a metacognitive advantage for O (feature absent)
over C (feature present) responses. A metacognitive advan-
tage for reporting Q over Os (Exp. 1) was not reliably above
what is expected based on an equal-variance signal detection
model.

For both local and global visual features (Experiments 1–4), we
observed differences in mean confidence and response times that
were consistent with our hypothesis of a processing advantage for
the representation of the presence compared to the absence of
visual features. In Experiments 5 and 6, we tested more abstract
expectation violations. In Experiment 5, discrimination between
upward-tilted and downward-tilted cubes showed no asymme-
try in response time and confidence. In Experiment 6, partici-
pants were less confident and slower in their reports of seeing
a flipped N, contrary to our prediction that default-violating sig-
nals should be easier to perceive. We found no evidence for or

against a difference in metacognitive sensitivity in either of the
experiments.

Experiment 7 (exploratory): grating versus noise
Results from Experiments 1–6 revealed that search asymmetry
is not always accompanied by an asymmetry in metacognitive
sensitivity. Given that we did not observe a true metacognitive
asymmetry in the expected direction for any of our stimulus
pairs, we were concerned that our experimental design may
have been unsuitable for detecting classical metacognitive asym-
metries in detection, for example, due to an insufficient num-
ber of trials, the masking procedure or the confidence report
scheme. As a positive control, we collected data for an additional
experiment that more closely resembled typical detection exper-
iments. In this experiment, participants discriminated between
two stimuli: random noise and a noisy grating (presented to par-
ticipants as a “zebra” stimulus; see Fig. 6). In a previous lab-based
study, similar stimuli produced a robust metacognitive asym-
metry between target-absent (noise) and target-present (noisy
grating) responses (Mazor et al. 2020). We used black and white
concentric circles as a mask. Apart from the choice of stimuli and
mask, the procedure was identical to that of our pre-registered
experiments.

One hundred and twenty-seven participants were recruited
from Prolific for exploratory Experiment 7. For this positive con-
trol, all four hypotheses were fulfilled.

Median completion time was 10.70 minutes. Mean accuracy
was 0.73, and participants reported seeing a grating on 48% of tri-
als. Overall, we excluded 36 participants, leaving 105 participants
for the main analysis. Going forward, only data from included
participants are analyzed.

Mean accuracy among included participants was M= 0.76,
95% CI [0.74, 0.77]. The mean SOA of the last trial was M= 53.87,
95% CI [38.85, 68.89]. Participants showed no consistent response
bias (M= 0.01, 95% CI [0.00, 0.03]). On a scale of 0–1, mean con-
fidence level was M= 0.55, 95% CI [0.51, 0.59]. Confidence was
higher for correct than for incorrect responses (Md = 0.15, 95% CI
[0.13, 0.17], t(104) = 12.58, p< .001).

Hypothesis 1: In line with our hypothesis, confidence was higher
for reports of target presence than for reports of target absence
(Md = 0.20, 95% CI [0.17, ∞), t(104) = 14.07, p< .001; Cohen’s
d=1.37; BF10 = 4.39× 1022; see Fig. 6, right panel).

Hypothesis 2: In line with our hypothesis, auROC2 for reports of
target presence (M= 0.75, 95% CI [0.73, 0.77]) was higher than for
reports of target absence (M= 0.68, 95% CI [0.66, 0.70]; t(104) =

Figure 5. Summary of results from Experiments 1–6 and exploratory Experiment 7. Rows correspond to our four pre-registered hypotheses: a
difference in confidence, a difference in metacognitive sensitivity, a difference in metacognitive sensitivity when controlling for response and
confidence bias, and a difference in response times
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Figure 6. Response conditional type 2 ROC curves (left panel) and confidence and reaction time distributions (right panel) for Experiment 7 (detection
positive control). The structure of this figure is similar to Figures 3 and 4: ***p< 0.001

5.20, p< .001; Cohen’s d=0.51; BF10 = 1.42× 104; see Fig. 6, left
panel).

Hypothesis 3: In line with our hypothesis, this metacognitive
asymmetry was stronger than what is expected based on an equal-
variance SDT model with the same response bias and sensitivity
(t(104) = 3.49, p< .001; Cohen’s d=0.34; BF10 = 31.40).

Hypothesis 4: In line with our hypothesis, reports of target pres-
ence were faster than reports of target absence, with a median
difference of 124 ms (t(104) =−8.84, p< .001; Cohen’s d=0.86;
BF10 = 2.63× 1011; see Fig. 6, right panel).

Exploratory analysis
zROC analysis
In a signal-detection framework, metacognitive asymmetry
appears when the signal distribution has both a higher mean and a
higher variance than that of the noise distribution. This unequal
variance setting produces a higher metacognitive sensitivity for
judgments of signal presence, compared to judgments of signal
absence. A direct measure for the ratio between the variances
of the two distributions is the slope of the type-1 zROC curve. A
zROC curve is constructed by applying the inverse of the normal
cumulative density function to false alarm and hit rates for differ-
ent confidence thresholds. The slope of the zROC curve equals 1
exactly when the variance of the signal and noise distributions is
equal. In detection experiments, the slope is often shallower than
1, indicating a wider signal distribution. Indeed, in our positive
control experiment (Experiment 7), the median zROC slope was
0.86 and significantly shallower than 1 (t(103) =−5.08, p< .001
for a t-test on the log-slope against zero). Measuring the slope of
the zROC curve in our six pre-registered experiments, we asked
whether our “feature-present” distributions had higher variance
than our “feature-absent” distributions. We used the standard-
ized effect size obtained from Experiment 7 as a scaling factor
for the prior distribution over effect sizes, reflecting a belief that
a difference in slopes should be similar in magnitude to what is
observed in a detection task. zROC slopes were numerically shal-
lower than one in Experiments 1 (Q versusO; median slope=0.95),
3 (line tilt; median slope=0.94), 4 (line curvature; 0.97) and 5
(cube orientation; 0.95). This was significant only in Experiment
5 (t(101) =−2.09, p= .039). In agreement with the results of our

rc-ROC analysis, the zROC slope in Experiment 2 (‘C’ versus ‘O’)
was significantly higher than 1, suggesting that the representa-
tion of the letter ‘O’ was more variable than that of the letter ‘C’
(median slope=1.09; t(104) = 2.29, p= .024). A Bayes factor anal-
ysis did not provide support for or against the null hypothesis for
any of the six experiments (all Bayes factors between 1/3 and 3).

Previous studies reported similar variance structures for these
stimuli when presented in visual search arrays. For example, con-
fidence in a vertical/tilted visual search task revealed a higher
variance in the representation of tilted (feature positive) compared
to vertical (feature negative) stimuli (Vincent 2011). Similarly,
reverse correlation analysis revealed a higher variance in the
representation of Q (feature positive) compared to O (feature neg-
ative) stimuli (Saiki 2008). Finally, and in agreement with our
results, variance in the representation of O (feature negative) was
found to be higher than in the representation of C (feature pos-
itive) (Dosher et al. 2004). Note that for the case of line tilt and
Q versus O, finding a high-variance target among low-variance
distractors is easier than finding a low-variance target among
high-variance distractors. However, the opposite is true for C
versus O, where a low-variance target (C) renders the search eas-
ier. This last observation challenges the suggestion that variance
structure is the determining factor for visual search asymme-
tries (Treisman and Gormican 1988; Dosher et al. 2004; Saiki 2008;
Vincent 2011).

Inter-subject correlations
Across experiments, asymmetry in mean confidence (Hypothesis
1) and in response time (RT; Hypothesis 4) was mostly aligned.
This is consistent with previous reports of a negative correla-
tion between response times and confidence across trials within
participants (Henmon 1911; Pleskac and Busemeyer 2010; Moran
et al. 2015; Calder-Travis et al. 2020). To test if this was the case
across participants too, and not only across experiments, we fitted
a mixed-effects regression model to data from all seven experi-
ments with experiment as a random effect (∆RT∼∆conf+(1+

∆conf|exp)). The association between confidence and RT effects
was significant in this model (p< 0.001; see Fig. 7; upper panel). In
contrast, metacognitive asymmetry (difference between the area
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Figure 7. Upper panel: Difference in mean confidence between S1 and S2
responses plotted against difference in mean response time between S1
and S2 responses across the seven experiments. Lower panel: Difference
in mean confidence between S1 and S2 responses plotted against
difference in metacognitive sensitivity, controlling for response bias,
across the seven experiments. Semi-transparent circles represent
individual subjects. Opaque circles are the means for each of the seven
experiments, across participants. Lines indicate the best-fitting linear
regression line for Experiments 1–7

under the response conditional type 2 ROC curves, controlling for
response bias) was not significantly associated with asymmetry
in either confidence ratings (p= 0.41; see Fig. 7; lower panel) or
reaction time (p= 0.54).

Discussion
In perceptual detection, judgments about the presence or absence
of a target stimulus differ in several ways. First, participants are
more confident in stimulus presence than in stimulus absence
(e.g. Meuwese et al. 2014; Kellij et al. 2021). Second, confidence
ratings in judgments of stimulus presence are more aligned with
objective accuracy (Meuwese et al. 2014; Kellij et al. 2021; Mazor
et al. 2020). Finally, participants are faster to report stimulus pres-
ence (Mazor et al. 2020). In our positive control detection experi-
ment (Experiment 7), we replicated these detection asymmetries.
We found a mean difference of 20% confidence between decisions
about the presence or absence of a grating, a metacognitive asym-
metry of 0.07 in area under the curve (AUC) units (ranging from 0
to 1), and a median difference of 124 ms in response time between
reports of target presence and absence.

In six pre-registered experiments, we focused on these three
behavioral signatures of decisions about the presence and absence
of a stimulus and asked whether they extend to discrimination
tasks where stimuli are distinct in the presence or absence of sub-
stimulus features such as the presence of an additional line in a
letter, the curvature of a line, or, more abstractly, the presence of
a surprising default-violating signal. Our six stimulus pairs have
been shown in previous studies to produce asymmetries in visual
search, potentially reflecting differences in the processing of pres-
ences and absences of visual features and of default-complying
versus default-violating stimuli. If detection asymmetries also
reflect differences in the abstract processing of presences and
absences, or of default-complying versus default-violating sen-
sory input, one would expect to find detection-like asymmetries
in response time, confidence, and metacognitive sensitivity for
discrimination between stimuli that produce asymmetries in a
visual search task.

Starting from the end, Experiments 5 and 6 provide evidence
against the proposal that asymmetries in confidence, reaction
time, and metacognitive sensitivity emerge for default-violating
signals at all levels of representation. Stimulus pairs in Exper-
iments 5 (cube orientation) and 6 (letter inversion) produced
response conditional type 2 ROC curves that were more consis-
tent with the absence of metacognitive asymmetry than with
our prior distribution on effect sizes (see the “Dependent vari-
ables and analysis plan” section for the specifics of our Bayesian
hypothesis testing, including our prior on effect sizes). Given that
these stimuli have been shown to produce reliable asymmetries
in visual search (Frith 1974; Von Grünau and Dubé 1994; Wang
et al. 1994; Malinowski and Hübner 2001; Shen and Reingold 2001),
we can safely conclude that not all default violations that pro-
duce an asymmetry in visual search also produce an asymmetry
in metacognitive sensitivity.

Moreover, in Experiment 6, default-complying N responses
were faster, and accompanied by higher levels of subjective con-
fidence, than default-violating flipped-N responses. This is in
contrast to our prediction of a processing advantage for default-
violating signals and in line with previous reports of a processing
advantage for familiar over unfamiliar stimuli in the context of
face perception and reading. For example, in a breaking con-
tinuous flash suppression paradigm, inverted faces took longer
to break into awareness than upright faces (Stein and Peelen
2021). A similar processing advantage for familiar stimuli has
been documented for the perception of words (Albonico et al.
2018) and Chinese letters (Xue et al. 2006). One possibility is
that the perception of highly familiar stimuli such as letters and
faces is supported by specific expert brain systems, affording a
processing advantage beyond the general superior processing of
default-violating signals (Yovel and Kanwisher 2005; Xue et al.
2006). Indeed, Experiment 6 was the only experiment in which
we observed a processing advantage for familiar over unfamiliar
stimuli.

Next, in Experiments 3 and 4, we looked at two features that
have a global effect on stimulus appearance: tilt and curvature.
Based on visual search asymmetries, Treisman and Gormican
(1988) proposed that tilt and curvature are represented as posi-
tive features in the visual system. This takes us one step closer to
typical detection experiments: participants now detect the pres-
ence or absence of a basic visual feature. In agreement with our
Hypotheses 1 and 4, participants were more confident in identify-
ing tilted and curved lines (mean differences of 0.12 and 0.12 on a
0–1 confidence scale) and were faster in giving these responses
(mean differences of 67.67 and 50.57 ms). However, we did not
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find evidence for or against a metacognitive asymmetry for these
global visual features.

Our strongest candidate for a stimulus pair for which we
expected to find a presence-absence asymmetry was Q versus O
(Experiment 1). The difference between these two letters is the
presence of an additional line stroke: a concrete stimulus part that
is localized in space and is independent of the rest of the stimulus.
Theoretically, participants could approach this task as a detection
task: ignore the common denominator (O) and focus on the pres-
ence or absence of the distinctive feature (“,”). As we hypothesized,
participants were more confident in their Q responses (mean dif-
ference of 0.11 on a 0–1 confidence scale). Participants were also
faster in their Q responses (median difference of 37 ms). However,
unlike a stimulus-level detection, a small difference of 0.04 units
in the area under the response conditional ROC curves was not
different than what is expected based on a null SDT model.

Finally, In Experiment 2, we looked at discrimination between
C and Os based on evidence from the visual search that open
edges are represented as a positive feature in the visual sys-
tem (Treisman and Souther 1985; Treisman and Gormican 1988;
Takeda and Yagi 2000). As we hypothesized, C responses were
accompanied by higher levels of subjective confidence (mean dif-
ference of 0.05 on a 0–1 confidence scale) and were delivered
faster than O responses (with a modest but significant difference
of 6 ms between the two responses). However, in striking contrast
to our original hypothesis, metacognitive sensitivity was lower for
C responses (mean difference of 0.05 AUC units), even when con-
trolling for response bias. This result strongly supports different
underlying mechanisms behind search and metacognitive asym-
metries. Furthermore, the results of Experiment 2 suggest dis-
tinct factors mediate the processing advantage for presence over
absence (as reflected in shorter response times and higher confi-
dence for C responses) and the metacognitive asymmetry between
presence and absence (as reflected in improved metacognitive
sensitivity for O responses).

C and O are unique in that the difference between them cor-
responds to two contrasting notions of presence and absence.
On the one hand, C is marked by the presence of one additional
feature—open edges (Treisman and Souther 1985; Treisman and
Gormican 1988). On the other hand, it is marked by the absence
of a piece: there is simply less of it relative to O. These two notions
of presence and absence are typically coupled in detection. For
example, the presence of a grating on a screen corresponds to
the presence of additional features (such as orientation, contrast,
and phase) as well as of more “visual stuff,” relative to the blank
background. A compelling interpretation of the results of Exper-
iment 2 is that it is the presence or absence of visual features
such as open edges that is driving the difference in confidence
and response time, whereas a more quantitative notion of pres-
ence or absence (the amount of “visual stuff” presented) is driving
the metacognitive asymmetry between these two responses. We
note however that based on this interpretation, we would expect
a metacognitive sensitivity to operate also in Experiment 1, where
O is missing a piece relative to Q. As described above, Experi-
ment 1 provided no evidence for such a metacognitive asymmetry
beyond what is expected from an equal-variance signal-detection
model.

Notably, not one of the six pre-registered experiments pro-
duced a metacognitive asymmetry in the expected direction.
This was in contrast to Experiment 7 (grating versus noise),
where metacognitive sensitivity for reporting noise was lower

than for reporting a noisy grating (with a difference of 0.07

auROC2 units, BF10 = 31.40). Positive control Experiment 7 was

also the only experiment in which we found a higher variance
for stimulus S1 than for stimulus S2 (with a median variance
ratio of 0.86). These two observations are likely to be related:
across participants, metacognitive asymmetry and variance ratio
were highly correlated (r= .64, 95% CI [.51, .74], t(102) = 8.42,
p< .001). Indeed, previous theoretical work has pointed out that
response-dependent asymmetries in metacognition may be driven

by an underlying unequal-variance SDT model and, vice versa,
that findings of unequal variance might be due to a response-
dependent metacognitive asymmetry. These two perspectives are
interchangeable (Maniscalco and Lau 2014). However, a correla-

tion between metacognitive asymmetry and variance structure,
both estimated from confidence ratings, is not a satisfactory
answer for why noise and gratings should exhibit a unique asym-
metry in metacognitive sensitivity or in a variance structure.
More theoretical and experimental work is needed to identify the
sources of this asymmetry, perhaps focusing on the role of stimu-
lus complexity and perceptual uncertainty as potential drivers of
this effect.

When interpreting our findings in a broader context, it is use-
ful to note that in all six experiments we used backward masking
for controlling the visibility level of our stimuli. Different visibility
manipulations have been shown to affect detection metacognitive
sensitivity in different ways. For example, whereas metacogni-
tive sensitivity in detection of “no” responses is at chance when
backward masking is used, it is significantly higher than chance
when the attentional blink is used to control the stimulus visibility
(Kanai et al. 2010). Similarly, phase scrambling but not attentional
blink produces a metacognitive advantage for “yes” responses
(Kellij et al. 2021). While our positive control (Experiment 7) pro-
duced a reliable metacognitive asymmetry between judgments
of target presence and absence, it was also the only experiment
where stimulus visibility was controlled with low contrast, in addi-
tion to backward masking (for the purpose of compatibility with
previous experiments; see Fig. 6). Based on our findings alone, we
cannot rule out the possibility that using other visibility manip-
ulations may reveal metacognitive asymmetries for the presence
or absence of abstract default violations. Furthermore, it is possi-
ble that some of the observed asymmetries for low-level features
may reflect asymmetries in the joint perception of target stimu-
lus and backward mask, rather than in the perception of the target
stimulus by itself (Kahneman 1968; Jannati and Di Lollo 2012).

Together, our findings weigh against our original proposal that
metacognitive asymmetries in perceptual detection are a signa-
ture of higher-order default reasoning. Unlike search asymmetries
that extend to abstract levels of representations such as familiar-
ity (Wang et al. 1994; Wolfe 2001) and even social features such
as ethnicity and gender (Levin and Angelone 2001; Gandolfo and
Downing 2020), metacognitive asymmetries in visual discrimina-
tion are grounded in concrete visual processing. Furthermore,
we provide evidence for a dissociation between asymmetries in
metacognition and in response time and confidence, where the
latter is linked to activation of basic feature detectors, for exam-
ple, of orientation, open ends, or curvature.

Conclusion
In a set of six experiments, we sought to test the proposal
that a metacognitive asymmetry between the representation of
stimulus presence and absence is one instance of a more gen-
eral asymmetry between the representation of default states and
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default-violating surprises. Our findings provide evidence against
this idea. A metacognitive asymmetry was not observed in near-
threshold discrimination between stimulus pairs that differ in
their alignment with default expectations. This was the case even
in pairs that showed substantial asymmetries in response time
and overall confidence levels. Results from our pre-registered set
of analyses are most consistent with a narrow interpretation of the
presence/absence metacognitive asymmetry in visual detection,
that is limited to concrete, spatially localized presences. Further-
more, a metacognitive asymmetry between Cs and Os in the oppo-
site direction to what is observed in visual search indicates that
different cognitive and perceptual mechanisms underlie these two
apparently similar phenomena.
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