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Abstract: Some of the most interesting aspects of free radical chemistry that emerged in the last
two decades are radical enzyme mechanisms, cell signaling cascades, antioxidant activities, and
free radical-induced damage of biomolecules. In addition, identification of modified biomolecules
opened the way for the evaluation of in vivo damage through biomarkers. When studying free
radical-based chemical mechanisms, it is very important to establish biomimetic models, which
allow the experiments to be performed in a simplified environment, but suitably designed to be in
strict connection with cellular conditions. The 28 papers (11 reviews and 17 articles) published in
the two Special Issues of Molecules on “Biomimetic Radical Chemistry and Applications (2019 and
2021)” show a remarkable range of research in this area. The biomimetic approach is presented with
new insights and reviews of the current knowledge in the field of radical-based processes relevant
to health, such as biomolecular damages and repair, signaling and biomarkers, biotechnological
applications, and novel synthetic approaches.

1. Introduction

Free radicals have attracted considerable attention in various research areas, including
organic synthesis, material science, atmospheric chemistry, radiation chemistry, pharmacol-
ogy, biology, and medicine [1]. Free radicals are generated in the biological environment as
a result of normal intracellular metabolism and function as physiological signaling species
that participate in the modulation of apoptosis, stress responses, and proliferation [2]. The
enormous importance of free radical chemistry for a variety of biological events, including
ageing and inflammation, has motivated studies to understanding the related mechanistic
steps at the molecular level. Therefore, the estimation of the type and extent of damages, as
well as mechanisms and efficiency of protective and repair systems, are important subjects
in life sciences.

Modelling free radical reactivity of biological systems is a crucial research area. Some
of the most interesting aspects of free radical chemistry that have emerged in the last two
decades are radical enzyme mechanisms, cell signaling cascades, antioxidant activities, and
biomarkers of free radical damage to biomolecules [1,2]. In the latter case, identification
of modified biomolecules has a diagnostic value for the evaluation of in vivo damages.
When studying free radical-based chemical mechanisms, biomimetic chemistry and the
design of related biomimetic models come into play to perform experiments in a controlled
environment, strictly connected with cellular conditions. Figure 1 shows the connections of
biomarkers identification through biomimetic radical chemistry and analytical protocols of
biomolecule modifications, as well as their extension to clinical research such as ageing,
inflammation, cancer, obesity, and other pathologies.

The papers published in the two Special Issues of Molecules on “Biomimetic Radical
Chemistry and Applications (2019 and 2021)” show the strong interdisciplinary context
with a remarkable range of research in this area. Several subjects are presented, with
17 articles and 11 reviews written by specialists in the fields.
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Figure 1. Omics technologies and the role of biomimetic radical chemistry in biomarkers discovery.

2. Reactive Oxygen/Nitrogen Species (ROS/RNS) Network

The free radical history in biology and medicine up to 1990 had three main entries: the
‘free radical theory of aging’ based on the damage and recycling involving reactive oxygen
species (ROS) [3], the properties of the enzyme superoxide dismutase (SOD) [4], and the
antioxidant network including the role of vitamins [2]. Now days, it is well documented
that ROS, reactive nitrogen species (RNS), and reactive sulfur species (RSS) are produced in
a wide range of physiological processes and are also responsible for a variety of pathological
processes. Indeed, the overproduction of ROS/RNS/RSS has been linked with the etiology
of various diseases, and antioxidant defense mechanisms are essential to protect against
them [5,6].

Figure 2 summarizes the main feature of the ROS/RNS network, including molecules
such as hydrogen peroxide (H2O2), hypochlorous acid (HOCl) and peroxynitrite (ONOO−),
as well as radicals such as superoxide radical anion (O2

•−), nitric oxide (NO•), hydroxyl
radical (HO•), nitrogen dioxide (NO2

•), and the carbonate radical anion (CO3
•−). Aerobic

life would not be possible without the enzymes SODs and catalase (CAT) that transform
superoxide to water and oxygen. Nitric oxide synthase (NOS) is a class of enzymes that
induce the formation of nitric oxide (NO•). Under physiological conditions, concentrations
of ∼0.1 nM O2

•− and ∼10 nM NO• play a role in regulating the activation of transcription
factors, cell proliferation and apoptosis. During the inflammatory response, their concentra-
tion can increase up to a 100-fold excess. These two radicals are the precursors of a variety
of other reactive species.

Figure 2 shows the main pathways by which other biologically important free radicals
can be produced, either via H2O2 or as a consequence of ONOO− formation from O2

•−

and NO• [1,2,5,6]. H2O2 is at the crossroad of several pathways; the main ones are reported
in Figure 2. Myeloperoxidase (MPO) uses H2O2 and anions like Cl−, Br−, SCN− and NO2

−

to generate hypochlorous acid (HOCl) or HOBr, HOSCN and NO2
•, respectively. H2O2

transformation to highly reactive HO• occurs by the Fenton reaction (Fe2+ and H2O2), the
Haber–Weiss reaction (O2

•− and H2O2), and reduction of previous formed HOCl by O2
•−.

ONOO− exists in equilibrium with its protonated form (pKa = 6.6), which spontaneously
decomposes to NO2

• and HO•. Other ONOO− also reacts with CO2 and the resulting
adduct rapidly decomposes to NO2

• and CO3
•−. Although O2

•− is very unreactive in
typical free radical reactions, such as hydrogen atom abstraction or addition, its successors
generate the most reactive HO•. The diffusion distance of HO• is very small because
of their high reactivity with all types of biomolecules and, consequently, there is a low
probability to be intercepted by antioxidants [7].
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Figure 2. Pathways of interaction of superoxide and nitric oxide in biological systems. NOS: nitric
oxide synthase; SOD: superoxide dismutase; CAT: catalase; MPO: myeloperoxidase.

3. Brief Overview of the Two Special Issues
3.1. Targeting DNA Damage and Repair

Three reviews dealing with oxidative DNA damage and repair appeared in the two
Special Issues [8–10]. One electron oxidation gives rise to a radical cation whose charge
(hole) can migrate through DNA covering several hundreds of Å, eventually leading to
irreversible oxidative damage; an overview of work on the dynamics of hole transfer in
DNA is reported [8]. Among the four common DNA bases (A, G, T, and C), G is the most
readily oxidized to the G radical cation (G•+), which is also the putative initial intermediate
in the oxidative DNA damage. Upon formation of G•+, fast deprotonation occurs by
loss of a proton to give the guanyl radical G(-H)•, also named the guanine radical or
neutral guanine radical. An overview of the one-electron oxidation of the GC pair and
the complex mechanism of deprotonation vs. hydration steps of GC•+ pair is given. The
role of the two G(-H)• tautomers in single- and double-stranded oligonucleotides and
the G-quadruplex, the supramolecular arrangement that attracts interest for its biological
consequences, are discussed, including the importance of biomarkers of guanine DNA
damage [9]. To maintain genomic stability and integrity, double-strand DNA has to be
replicated in a strictly regulated manner, ensuring the accuracy of its copy number and
its integrity. DNA damage-induced replication stress, the formation of DNA secondary
structures, peculiar epigenetic modifications and cellular responses to the stress and their
impact on the instability of the genome and epigenome, mainly in eukaryotic cells, have
been summarized [10].

Six articles report new experimental data on targeting DNA damage [11–16]. Guanine
radicals generated in single, double, and G-quadruplex oligonucleotides are studied by
nanosecond transient absorption spectroscopy [11]. The time needed to establish electronic
resonant conditions for charge transfer in oxidized DNA has been evaluated by molecular
dynamics simulations followed by QM/MM computations, which include counterions
and a realistic solvation shell [12]. Among the reactive oxygen species (ROS), the hydroxyl
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radical (HO•) is the most reactive toward any biomolecule including DNA (cf. Figure 2).
Although the majority of the purine DNA lesions like 8-oxo-purine (8-oxo-Pu) are generated
by various ROS (including HO•), the formation of 5′,8-cyclopurine (cPu) lesions in vitro
and in vivo relies exclusively on the HO• attack. Indeed, recent research focused on the
purine DNA damage by HO• with emphasis on mechanistic aspects for the various lesion
formation and their interconnections [17]. New insights into the reaction paths of HO• with
genetic material and the formation of 8-oxo-Pu and cPu lesions vs. oxygen concentration
have been reported in detail [13,18]. It is worth mentioning a recent article on inflammatory
bowel disorders (IBD), showing the role of cPu as a biomarker [19]. Radiosensitizing
properties of substituted uridines are of great importance for radiotherapy. The influence of
the type of halogen atom in the radio-sensitizing properties of 5-halo-4-thio-2-deoxyuridine
has been addressed; contrary to the 5-iodo derivative that is an efficient agent, the 5-bromo
does not show radio-sensitizing properties at all [14]. Several classes of copper complexes
prepared in the past were explored for their chemical nuclease activity both biologically
and chemically [20]. Two studies include the mechanism of copper artificial metallo-
nuclease to induce superoxide-mediated cleavage via the minor groove [15], and the
DNA binding and quantitative cleavage activity of the [Cu(TPMA)(N,N)]2+ class (where
TPMA = tris-2-pyridylmethylamine) using a DNA electrochemical biosensor [16].

3.2. Protein Modifications and Enzymatic Activity

In the area of proteins, four reviews contribute to the two Special Issues [21–24]. The
formation of covalently linked peptides and proteins plays a key role in many biological
processes, both physiologically and pathologically. In one review, it is summarized: the
spectrum of crosslinks currently known to be formed on proteins, including the mechanisms
of their formation, experimental approaches to the detection, and identification and charac-
terization of these species [21]. Reversible crosslinks, driven by the formation of disulfide
bridges, appear to play a key role in cell signaling events, primarily as a result of reversible
thiol–disulfide switches or related species. Irreversible protein crosslinks are mostly un-
wanted processes, occurring during metabolism, that can accumulate in aging or have been
associated with the onset and development of pathological conditions and human diseases.
Their recognition as reliable biomarkers of several pathologies, particularly neurodegenera-
tive disorders, is an important field of molecular diagnostics in medicine [21,25]. Another
review provides a thorough description of the role of phosphatidylethanolamine-derived
protein adducts and effects on membrane properties [22]. The aim was to highlight this
new area of research and to encourage a more nuanced investigation of the complex nature
of the new lipid-mediated mechanism in the modification of membrane protein functions
under oxidative stress.

When proteins are pharmaceutical compounds, such as insulin or human growth
hormone, their degradation can occur by radical species that are generated from phar-
maceutical excipients. Polysorbate is prone to generate peroxyl radicals that can trigger
oxidative degradation [26]. In this review, the involvement of thiyl radicals in pharmaceuti-
cal protein degradation through hydrogen atom transfer, electron transfer, and addition
reactions is reported [23]. Another review reports the work done in the chemical labelling
of proteins using biomimetic radical chemistry [24]. This is inspired by the occurrence of
radical reactions in an aqueous environment, such as for enzymatic catalysis or photoreac-
tions. Such reactivity occurs selectively on specific amino acids (nucleophilic residues such
as lysine or cysteine) by means of electrophilic compounds that allow site-selective protein
labeling. This is an important field of chemical biology.

An overview of reductive dihydroxylation catalyzed by IspH, an enzyme involved in
the biosynthesis of isoprenoids, has been reviewed [27]. IspH is an oxygen sensitive [4Fe-4S]
metalloenzyme that catalyzes 2H+/2e− reductions and water elimination by involving non-
conventional bioinorganic and bioorganometallic intermediates. This review focuses on the
IspH mechanism, discussing the results that have been obtained in the last decades using an
approach combining chemistry, enzymology, crystallography, spectroscopies, and docking
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calculations. A section about the inhibitors of IspH discovered up to now is also reported.
The presented results constitute a useful and rational approach to inaugurate the design
and development of new potential chemotherapeutics against pathogenic organisms.

Three original articles reported research related to biotechnological applications of
proteins: (i) Therapeutic uses of natural peptide somatostatin is limited by its very short
biological half-life of 1–2 min. The entrapment of this peptide in a lipid formulation
allowed to retard release in aqueous medium and human plasma. Furthermore, a new
radical reactivity was discovered arising from the interaction between this sulfur-containing
peptide and its liposomal formulation [28]. (ii) Physico-chemical evidence showed that
riboflavin together with hyaluronic acid play a role in the treatment of corneal cross-linking
treatment of keratoconus by UVA light. Spin trapping experiments on collagen/hyaluronic
acid/riboflavin solutions evidenced the formation of reactive oxygen species (ROS) by elec-
tron paramagnetic resonance measurements. Riboflavin under UVA irradiation generates
ROS that can induce damages, whereas hyaluronic acid has a protecting role [29]. (iii) The
formation and stabilization of gold nanoparticles in bovine serum albumin (BSA) solu-
tion has been discovered. Physico-chemical studies showed that the size of nanoparticles
increases slowly with time, resulting in nanoparticles of different morphologies, and the
stabilization is obtained through the interaction of sulfur-containing amino acid residues of
albumin [30].

3.3. Various Bioinspired Mechanistic Studies and Applications

Three reviews deal with confocal microscopy-based detection [31], mechanistic studies
of methionine (Met) oxidation [32], and recent applications of chemiluminescence (CL) [33].
One of them focuses on confocal microscopy-based detection of profound alterations in
the plasma membrane, membranes of insulin granules and lipid droplets in single beta
cells under various nutritional load conditions. The combination of whole cell lipidomics
analysis and single cell confocal imaging of fluidity and micropolarity provides insight into
stress-induced lipid turnover in subcellular organelles of pancreatic beta cells [31].

Oxidation of methionine (Met) is an important reaction that plays a key role in protein
modifications during oxidative stress and aging. An overview of the transient species
detection in one-electron oxidation of Met derivatives by various time-resolved techniques
is presented [32]. Mechanistic aspects of Met oxidation in various structural environments
(e.g., peptide) and at various pH by one-electron oxidants (including HO• radical) are
summarized and discussed. Neighboring group participation seems to be an essential
parameter which controls one-electron oxidation of methionine. The observed transient
species are precursors of final products [32].

The phenomenon of chemiluminescence (CL) can take place both in natural and
artificial chemical systems and has been utilized in a variety of applications. A review
reports on recent research in this area [33]. In this context, the CL role in the development
of efficient therapeutic platforms is also discussed in relation to the reactive oxygen species
(ROS) and singlet oxygen (1O2) produced as final products. The CL prospects in imaging,
biomimetic organic and radical chemistry, and therapeutics are critically presented in
respect to the persisting challenges and limitations of the existing strategies to date [33].

Heme iron and non-heme dimanganese catalases (CAT) protect biological systems
against oxidative damage caused by hydrogen peroxide (cf. Figure 2). In order to gain
more insight into the mechanism of these curious enzyme reactions, two original articles
reported on the metal complexes as catalase mimics: a mononuclear non-heme oxoiron(IV)
complex mediated H2O2 dismutation into O2 and H2O in aqueous solution [34], and a
non-heme diiron-peroxo complex which shows a catalase-like reactivity [35].

The conversion of ribonucleosides to 2′-deoxyribonucleosides is catalyzed by ribonu-
cleoside reductase enzymes in nature. One of the key steps in this complex radical mecha-
nism is the reduction of the 3′-ketodeoxynucleotide by a pair of cysteine residues, providing
the electrons via a disulfide radical anion (RSSR•−) in the active site of the enzyme [36].
Experimental conditions were found to obtain the bioinspired conversion of ketones to
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corresponding alcohols with high-yield by the intermediacy of disulfide radical anion of
cysteine (CysSSCys)•− in water [37].

Mechanistic studies of radical processes in pharmacological applications, which also
inspire biological mechanisms, are represented by various original articles: the oxidation
of 8-thioguanosine and 2-thiouracil by photolytic and radiolytic conditions [38,39]; bioin-
spired radical-based synthetic strategies toward anomeric spironucleosides as potential
inhibitors of glycogen phosphorylase and for the preparation of azido-derivatives via a
radical azidoalkylation of alkenes [40,41]; and the synthesis of two new iron-porphyrin-
based catalysts inspired by naturally occurring proteins, such as horseradish peroxidase,
hemoglobin, and cytochrome P450, tested for atom transfer radical polymerization (ATRP),
obtaining polymers with specific properties [42].

4. Conclusions

The two Special Issues give the reader a wide overview of biomimetic radical chem-
istry, where molecular mechanisms have been defined and molecular libraries of products
are also developed to be used for the discovery of some relevant biological processes. The
biomimetic approach is a convenient tool, since achievements in free radical mechanisms
can be easily transferred to a better comprehension of the radical-based biological pathways
in living organisms, triggering advancements in health and diseases. In addition, identifi-
cation of modified biomolecules paves the way for molecular libraries and the evaluation
of in vivo damage through biomarkers.

The two Special Issues cover aspects of free radical chemistry in biological events,
revealed using biomimetic chemical models. These include: catalytic pathways and mech-
anisms of radical enzymes, prebiotic chemistry, radical-induced DNA lesions or protein
modifications, with further development concerning analytical protocols, repair processes,
biological consequences, lipid peroxidation and isomerization, and defense systems based
on antioxidants, as well as bio-inspired synthetic strategies.
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