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Abstract: For analyzing the traffic anomaly within dashcam videos from the perspective of
ego-vehicles, the agent should spatial-temporally localize the abnormal occasion and regions and
give a semantically recounting of what happened. Most existing formulations concentrate on
the former spatial-temporal aspect and mainly approach this goal by training normal pattern
classifiers/regressors/dictionaries with large-scale availably labeled data. However, anomalies are
context-related, and it is difficult to distinguish the margin of abnormal and normal clearly. This paper
proposes a progressive unsupervised driving anomaly detection and recounting (D&R) framework.
The highlights are three-fold: (1) We formulate driving anomaly D&R as a temporal-spatial-semantic
(TSS) model, which achieves a coarse-to-fine focusing and generates convincing driving anomaly
D&R. (2) This work contributes an unsupervised D&R without any training data while performing an
effective performance. (3) We novelly introduce the traffic saliency, isolation forest, visual semantic
causal relations of driving scene to effectively construct the TSS model. Extensive experiments on
a driving anomaly dataset with 106 video clips (temporal-spatial-semantically labeled carefully by
ourselves) demonstrate superior performance over existing techniques.

Keywords: driving anomaly; temporal-spatial-semantic analysis; isolation forest; semantic
causal relation

1. Introduction

The main goal of this paper is to detect and recount (D&R) the driving anomaly recorded by
dashcam videos in the perspective of ego-vehicle (driving vehicle itself). “Detect” means to localize
the anomaly occasion (reflected by video frame interval) and local anomaly region (target region of the
anomaly). “Recount” aims to fulfill a reasonable semantic explanation of driving anomaly as much
as possible, such as “what hits what”. The “Detect and Recount” framework is more useful for the
automatic driving anomaly explanation. Analyzing the process of driving anomaly may pave the
anticipation of accident and disclose the potential state-chain from a driving anomaly to an accident.

Most related works to this paper mainly concentrate on the anomaly detection [1-10] in
surveillance. Most of them are devoted to spatial (pixel-level) and temporal (frame-level) localization
of anomalies accurately, and adopt large-scale normal data to train normal discriminators (classifiers,
regressors, or dictionaries) for detecting the abnormal patterns (features extracted) deviating from the
trained discriminators. However, spatial-temporal localization is difficult because of the ambiguous
margin of abnormal and normal situation. Actually, this is the same for our driving anomaly
while needing a further semantic explanation for the evolution process. Because the anomaly is
context-related [11] and difficult to tag, this paper presents an unsupervised driving anomaly D&R,
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and the proposed temporal-spatial-semantic (TSS) model can fulfill a coarse-to-fine focusing of driving
anomaly from temporal-spatial to semantic, and achieve a convincing D&R.

Different from traditional anomaly detection in surveillance, driving anomalies generally have
more explicit context, but more complicated motion, challenging situations and weather conditions, as
shown in Figure 1, which may cause hazards for the ego-vehicle or a driving accident. Although most
of the driving anomalies are related to the moveable targets (pedestrians or vehicles), which cannot
cover all causations in the driving anomaly, e.g., the falling tire shown in Figure 1f.
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Figure 1. Typical driving anomalies of (a) vehicle-to-vehicle crash, (b) motorbike-to-vehicle crash,

(c) vehicle crossing, (d) vehicle roof throwing, (e) vehicle catching fire, and (f) falling tire.

The coarse-to-fine TSS model aims to contain most of the anomaly elements in the beginning
temporal module, and focalizes the anomaly elements by following spatial and semantic modules.
The flowchart is illustrated in Figure 2 and expressed as follows.
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Figure 2. The temporal-spatial-semantic (TSS) model for driving anomaly detection and recounting.

Temporal module. In the temporal module, we novelly introduce the top-down traffic saliency
to represent the eye fixation variation caused by varying driving scenes. The underlying meaning is
that traffic saliency reflects the driving context promisingly [12-14], which tells where the drivers look
in different scenarios, and anomalies usually generate sudden eye fixation variation. We extract the
frames with sudden eye fixation variation to provide temporal anomaly candidates.

Temporal-spatial module. Temporal-spatial module aims to detect the local anomaly regions
within the extracted temporal window. In this step, we introduce the isolation forest (iForest) for an
unsupervised abnormal point separation. Differently, we contribute a multi-scale temporal-spatial
isolation forest (MSTS-iForest), and enforce the optical flow to represent the element behavior.
MSTS-iForest can restrict the estimation error of the optical flow, and make the anomaly region
more obvious. Different from surveillance scenarios, motion anomaly is the primary in this work.

Temporal-spatial-semantic module. Temporal-spatial-semantic module focuses on associating
the detected local anomaly regions with generic semantic knowledge oriented by the special driving
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environment, correlating to the elements on the road scene (e.g., person, cyclist, motorbike, vehicle,
road, sidewalk, etc.). For embedding the generic semantic knowledge, this work encodes the video
frame by fully convolutional networks (FCN) [15] fine-tuned by Cityscapes’ semantic segmentation
benchmarks [16], and generates the semantic class possibility of each pixel. Then, we recount the
semantic variation of the pixels within the detected anomaly regions and determine the potential
causal relations of those anomaly semantic variations.

Based on the aforementioned content, the contributions are as follows:

e  This paper contributes an unsupervised driving anomaly detection and recounting (D&R) while
performing an effective performance, which does not need any training data.

e A temporal-spatial-semantic (TSS) model is constructed to fulfill a coarse-to-fine focusing of the
driving anomaly D&R. For each module, we design the procedure meticulously to find temporal,
spatial, semantic cues for driving anomaly D&R.

e  We validated the superiority of the proposed method by a dataset containing 106 video clips
(100 frames/clip) temporal-spatial-semantically labeled by ourselves carefully.

2. Related Works

Detecting driving anomalies is of great significance for promoting driving safety and reducing risk.
The development of an on-board monitoring system has made it feasible to detect driving anomalies
by multiple vehicle sensors [17-19], such as GPS, video, and 3D-LiDAR, etc. For ego-vehicles, anomaly
detection plays a major component in video analysis [20,21]. Video anomaly is commonly defined
as the target behavior which occurs rarely, inconsistent with pre-defined normal model/rules and
context-deviated [4,11]. Many efforts are devoted to involve the model of the distribution of majority
normal behavior, spatial, and temporal consistency/dependency of behaviors. It is worth noting
that this is similar for generic anomaly detection in surveillance and driving anomaly detection [22].
Therefore, the approaches for anomaly detection can be categorized as normal behavior modeling and
spatial-temporal consistency. For this work, we also review anomaly recounting.

Normal behavior modeling. For modeling the normal behavior, exploring the normal rules
contained in the trajectories is a standard approach [23,24], which can capture the long-term
semantics of objects while often failing to track accurately because of various disturbing factors,
e.g., occlusion, fast motion, similar object surrounded, and so on. Hence, the alternatively recent
approaches unitized the hand-craft low-level features (e.g., HOG, HOF, STIPs, etc.) extracted from
2D or 3D frame region(s). Commonly, these locally low-level features are feeded into various
detectors trained by normal samples, such as distance-based [25], sparse-coding [1,26], domain-based
(one class SVM) [27], probabilistic-based (e.g., mixture of probabilistic PCA (MPPCA) [28], and
Gaussian process regressor [25]), Graph-based inference machines [29], and physical-inspired
models [30]. Some recent models adopted the deep features or original images to learn
autoencoders [2], expressive normal CNNs [3,31] or predictive RNNs [32-34], and minimized
the reconstruction/expression/prediction error of the input samples. Most related to this paper,
Chan et al. [32] proposed a dynamic-spatial-attention (DSA) recurrent neural network (RNN) for
anticipating accidents in dashcam videos, where soft-attention was distributed to candidate objects
and utilized a temporal dependency. Normal behavior modeling needs training data prepared, whereas
it is difficult to mask the margin of abnormal and normal clearly.

Spatial and temporal consistency. Spatial-temporal consistency is mainly inspired by
the co-occurrence of appearance or motion pattern in local spatial region and over temporal
frames, and filters the local anomaly scores obtained by aforementioned normal discriminators.
For example, Kratz and Nishino [5] involved the correlation of appearance and motion behavior with
a state-variation matrix, and transferred the state by hidden Markov model (HMM). Basharat et al. [35]
placed emphasis on the sequential evolution of tracklets and object scale variation between frames,
and inferred the consistency by Gaussian mixture model (GMM). Spatial-temporal mixture of dynamic
texture (MDT) [6] was adopted to build the appearance variation of local regions over frames. Gaussian
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process regression (GPR) [25] was also taken to smooth the local anomaly scores and obtain the global
frame-level anomaly. Yuan et al. involved spatial-temporal context consistency of pedestrians to
conduct the crowd anomaly [36], and had addressed the driving anomaly by motion consistency [37].
For representing the spatial-temporal consistency, some works embedded the high-level structure
consistency for anomaly detection in videos, such as the feature grouping of individuals by manifold
learning [38—-40]. In addition, because of the great success of CNN or RNN approaches in many
visual tasks, the most recent approaches approximated the spatial-temporal consistency by exploiting
the dependency of the behaviors between frames, such as LSTM predictor [34] and sequential
generator [41]. For instance, Liu et al. [41] leveraged a future frame prediction based framework for
anomaly detection by generative adversarial networks (GANSs).

Anomaly recounting. The main goal of anomaly recounting is to explain the semantic evidence in
detecting anomaly. Different from the mostly investigated multi-media event recounting (MER) [42,43]
focusing on the activity of all the individuals in the scene, anomaly recounting concentrates on the
abnormal elements. For anomaly recounting, there is only one work established by Hinami et al. [44]
incorporated the object, action, and attribute (e.g., color) together by a multi-task Fast RCNN, by which
the environment-dependent knowledge was learned. However, as aforementioned, it is difficult to
cover all the abnormal elements in driving environment.

3. Driving Anomaly Detection and Recounting

3.1. Problem Formulation

In this work, we want to contribute a human-like driving anomaly detection, i.e., temporal
anomaly window determination, detect the spatial anomaly regions in the temporal anomaly window,
and give a recounting for the temporal-spatial anomaly. The purpose is to find more details about the
driving anomaly. Therefore, we fulfill a coarse-to-fine setting for this work.

Given a video clip V = {Xy, Xy, ..., X¢, ..., X7} captured in a driving scenario, where X, t € 1, T|
denotes the t" frame in V), the driving anomaly detection problem in this paper can be formulated
as an unsupervised search of K abnormal sub-clips {Cj, ..., C, ...,Cx} € V, where abnormal regions
truly exist in Cy, and are accurately localized. Here, we denote the frames in Cy as {X%}mzl: mMLT.
The recounting problem aims to express the semantic evolution process within Cy. To be clearer, we
formulate driving detection and recounting by a temporal-spatial-semantic (TSS) model, which is a nest
structure, i.e., (1) temporally searching K abnormal sub-clips {C4, ..., Cy, ..., Ck }; (2) temporal-spatially
localizing abnormal regions A’fn of each frame X’fﬂ in abnormal sub-clip C, k = 1,..,K; (3)
temporal-spatial-semantically recounting the evolution process of Ak, n = 1, ..., M. This TSS model
fulfills a coarse-to-fine focusing of driving anomaly. Actually, this structure is coincident with human
cognition when finding anomaly from a video clip, and is presented as follows.

3.2. Temporally Abnormal Sub-Clip Detection

Temporal anomaly detection aims to extract the abnormal frames (frame-level anomaly). This
is commonly fulfilled by frame-level consistency measurement of features or anomaly score, which
does not consider the scene properties adequately. In driving scenarios, driving has a clear destination
and path, and is manifestly a task-driven case. The investigations by [13,45] conclude that eye fixation
of drivers is different corresponding to distinct semantic categories and reflects the driving context
comprehensively. If an anomaly occurs, the eye fixation is destined to appear as a sudden change
for the timely avoidance. Therefore, eye fixation correlates with driving anomaly directly. In this
paper, we novelly introduce the top-down task-driven traffic saliency into the representation of the eye
fixation, and design a simple but effective strategy to find the temporal anomaly. The work of [13]
is employed as an attempt, which built a coarse-to-fine convolutional network on short sequences
extracted from the DR(eye)VE dataset [45].
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Specifically, assume the saliency maps at t* frame and (¢ + 1) frame are S; and S, . Firstly,
this work projects S; and S in horizontal and vertical directions and generates the histograms of
{s]},s%} and {si’H, sy, 1}, respectively. Then, the difference D(S;,S;11) of St and Sy is defined as:

D(St,St41) = X2(s1,8111) - X (87, 8711), ey

st(i)+st11(7)
frames in the given video clip, we normalize the difference into [0, 1]. The between-frame computation

b : (2
where x?(st,8¢41) = % b w is with b number of bins. After this computation for all of the
i=1

is more perceptible to sudden change of fixation than incremental manners and easily partitions the
clips. Taking Figure 3 as an example, the difference of saliency maps can reflect the temporal driving
anomaly effectively. In order to contain most of the anomaly elements in the temporal module and
adopt the role of traffic saliency, simultaneously, we set the frame windows centered as the frames with
the top four largest D(S¢, S¢11) as temporal candidates {Cy }X_, for following detection and recounting
procedure, where the window width is set as d frames. In this paper, we employ 40 video clips for
training the best d and put this configuration into other clips. Note that, if the selected windows for
the temporal candidates overlap, we merge them as one sub-clip, as illustrated in Figure 3.
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Figure 3. Illustration of temporally abnormal sub-clip detection. (a) a typical example; (b) the AUC
value w.r.t. d when K is set as 4. We find that d = 36 generates the best AUC value for training.

3.3. Temporal-Spatially Local Anomaly Detection

After providing temporal candidates {C;}X_, , this paper further detects the local anomaly within
them. In [46], anomaly is defined as suspicious and deviated observation from the others, so anomaly
detection is generally formulated as finding the outlier deviating from the majority of observations.
Within this field, isolation forest (iForest) [29] is a novel and unsupervised approach, which judges the
anomaly by partitioning the samples with isolation trees (iTrees) and treats the samples with short
average path lengths (APL) on the iTrees as anomaly. This is because it is easy for the anomaly to be
partitioned earlier when iTree grows. Because of its efficiency and simplicity, we introduce it into this
work while performing a new and effective ensemble.

To be specific, we propose a multi-scale temporal-spatial isolation forest (MSTS-iForest) to
detect the local anomaly within each frame. The detailed flowchart is demonstrated in Figure 4.
The advantages of this ensemble have two aspects: (1) making the obtained local anomalies consistent
in temporal dimension; and (2) manifesting the local anomaly in spatial dimension. In this paper, we
enforce the histogram of optical flow (HOF) to represent the image, and we claim that the efficient
method contributed by Liu [47] is enough to evaluate. The detailed flowchart is explained as follows.

Multi-scale motion feature generation. This work adopts the HOF to represent the motion
feature of images. Specifically, we resize the image into 220x220, and compute the optical flow field
[V, € R?20x220, Vv, € R?20%220] For the multi-scale representation, we partition the motion field as
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non-overlapping 44 x 44, 20 x 20, and 10 x 10 blocks and calculate HOF of each block. Here, we set the
bin number of HOF as 128. Consequently, we can obtain N; x 128-dim, Np x 128-dim, and N3 x 128
feature matrixes, where Ny, Np and N3 are 1936, 400, and 100, respectively, denoted in Figure 4.
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Figure 4. The flowchart of temporal-spatially local anomaly detection, wherein “T” represents the
temporal iForest ensemble, “S” is the spatial iForest ensemble, and “E” specifies the module for testing
the spatial features (obtained by “S” on the current scale) by “T” obtained by smaller scale. In the
beginning, we only have the S module which detects the abnormal image part with an ensemble
of multiple isolation forest in different scales. Then, the “T” module (also an ensemble of multiple
isolation forest) aims to associate the detected spatial anomaly to subsequent frames, so as to obtain a
consistent spatial anomaly results over different frames, and resist the error of optical flow. “E” module
serves as a bridge over different scales, involving testing the results of “T” module from smaller scales
by the “S” module on the current scale, which wants to leverage the supervision role of smaller scales
to the current scale, and make a refined spatial anomaly detection.

Spatial iForest ensemble. For one sample, it is better to utilize multiple iForests to boost the
accuracy of isolating process [29], i.e., obtaining accurate APL for each sample. Therefore, this work
makes an ensemble of multiple iForests to spatially detect the local anomaly, and each forest has
multiple iTrees, denoted by “S” module in Figure 4. We take the max-APL and mean-APL of each
sample on each iForest to represent the anomaly degree, which is inspired by the fact that max-APL
denotes the distribution representing the densest attribute of input samples, and mean-APL specifies
the average distribution of attribute. Attribute means the values belonging to the range of the
[minimum, maximum] of samples. This work sets the number of iForests as 20, and each iForest has 25
iTrees. Consequently, there is a 40-dim vector generated for one sample. Note that, in the “S” module,
the input sample is the HOF feature vector with 128-dim.

Temporal iForest ensemble. In order to involve the problem of estimation error of optical flow and
make the obtained local anomaly consistent and more obvious, this work designs the temporal module,
denoted by “T” in Figure 4. This module further trains multiple iForests by anomaly distributions in
the previous frame, and has a role of memory learning, by which the temporal anomaly consistency
can be guaranteed, and make the local anomaly more obvious by temporal-spatially memory learning,
which is validated as the key module in MSTS-iForest.

Multi-scale temporal-spatial ensemble. With the “S” module and “T” module in different scales,
we ensemble them by bridging the “T” module on a smaller scale with “S” module on the current
scale. This is because the smaller scale can play a supervision role for the larger scale because of the
smoothness effect of the larger block. To be specific, we clone the 40-dim vector generated by “S” of
current scale to triplet, and concatenate them together as 120-dim, then feed it into the “T” module
on a smaller scale to generate a new 40-dim vector, denoted as “E” module. Incorporating with the
“S”,”T” module, and the “E” module, we can generate a new 120-dim vector for representing the
anomaly distribution of a new frame temporal-spatially learned. For the first frame, we only have
the “S” module for each scale. Implementation details: The sub-sample size for training iForest is 256
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for large and middle scales, and is set as 80 for the small scale because of the total sample number
limitation. This configuration performs best in this work.

By the aforementioned modules, the anomaly score of each sample is generated by the “T” module
in the highest scale, and computed by:

_ Ave(APL(HOF))

s(HOF,N;) =2~ ™) @)

where c(Np) is average path length of unsuccessful search, HOF is the input sample, and ¢(N;) =
2H(N; — 1) — (2(N; — 1)/Ny), where Nj is the sample number of the large scale, i.e., 1936 in this
work, and H(i) is harmonic number and estimated by In(i) 4 0.5772156649 (Euler’s constant), which
is borrowed from [29]. Ave(APL(HOF)) denotes the average APL of HOF on all of the iForests in
“T”. After obtaining the anomaly score for each sample, we reshape the sample matrix back into a
44 x 44 grid, and enlarge it into original image size, i.e., 220 x 220, by bilinear interpolation, which is
denoted as the anomaly map, wherein the anomaly regions are denoted as A, for a frame X, in Cj.

3.4. Temporal-Spatial-Semantical Anomaly Recounting

As for the final temporal-spatial-semantic module for driving anomaly analysis, this work novelly
recounts the causal relationship between anomaly and potential causes, which is different from the
direct perceiving for object, attribute, and action learning [44]. This work gives an unsupervised
reasoning by learning perceptual causality, which is inspired by the work [48] contributed by Fire and
Zhu. They learned the perceptual causality of “actions” and “effect” by electing the most informative
causal relations sequentially in terms of maximizing the information gain. In this paper, the “effect” is
represented as the anomaly regions. As for the “action”, we denote them as the semantic variation

Zai

within the anomaly regions. For example, for an anomaly of “car hits person”, “car changed into
person”, “person changed into road”, and “car changed into road” can potentially make a useful
representation. Even so, the accurate learning of the most informative semantic variation in the
anomaly regions remains challenging. The difficulties are mainly: (1) the accurate traffic element
segmentation of an image; and (2) the robust perceptual causality learning. In addition, the rarity of
anomaly makes the training frameworks (e.g., RNNs and CNNs) rather difficult for causality analysis.

Specifically, we introduce the fully convolutional networks (FCN) utilizing VGG-16 [15] fine-tuned
by the Cityscapes dataset [16] to segment each frame X’,§1 eC,m=1,.,M,k=1,..,Kinto F’,§1
Then, we prepare the basic units of traffic element variation in frame X;,; by collecting the semantic
variation of pixels within AX, and A’fn_l corresponding to Flfn_l and F,. With the obtained basic
units, this paper learns the perceptual causality between them with the anomaly by measuring the
temporal-spatial co-occurrence and the information gain of each unit. Suppose there are W basic
units (W = C2, where C = 30 is the traffic element classes in Cityscapes dataset) representing different
semantic variations. We calculate their co-occurrence in spatial dimension by counting the frequency
f,-1={ f1}1—1' f%fl, e n‘i‘ll} relatively to all the basic unit number, which is fed into the historical
co-occurrence distribution, defined as:

Hy = aH;; 1 + (1 - D‘)fm—l/ 3)

where H € R is the temporal-spatial co-occurrence distribution of all kinds of semantic variation,
each bin of H correlates to a semantic variation, and a is the learning rate set as 0.3 in all experiments.
Based on [48], the most informative causal relation is defined as the one with the max information
gain. This is referential to this work because anomaly usually causes a sudden change of distribution
of spatial co-occurrence. Hence, we treat Hy; as the current model, and evaluate the information gain



Sensors 2019, 19, 5098 8 of 16

of fi, in newly observed data f,, to H,, by computing the ratio of Kullback-Leibler (KL) divergences
with and without fi:

f = arg max KL(Hm*lem)
for KL(Hpa|[f0/ fin)

4)

where KL(-||-) is the KL divergence, and ? is the elected most informative causal relation in the tth
frame. To recount the anomaly regions in each frame, we select the semantic variations with top three

?. Then, we aggregate the primary semantic variations in each frame and treat the ones with top three
frequency over all frames as the clip recounting.

4. Experiments and Analysis

4.1. Dataset

Based on the investigation, there is no publicly available dataset for validating the proposed
method requiring a temporal-spatial-semantical labeling. The most related one is the crowd-sourced
dashcam video dataset for accident anticipation (http:/ /aliensunmin.github.io/project/dashcam/)
contributed by [32], which only labeled the temporal occasion of the accident. Actually, the anomaly
may appear earlier than the accident. Therefore, this paper constructs a new driving anomaly
video dataset (Drive-Anomaly106, https://github.com/ZHU912010/Driving- Anomaly-Detection)
containing 106 video clips (each one has 100 frames), which are temporal-spatial-semantically labeled
carefully by ourselves, some of which are collected from [32]. The resolution of the frame in the clips
are 1280 x 720 or 476 x 265, which are normalized to 360 x 200. The anomaly regions are masked by
their instance-level contours. For anomaly labeling, we recommended two principles: (1) The anomaly
is object-oriented and threatening to the ego-vehicle, such as vehicle crossing, overtaking, and so on;
(2) The anomaly owns a manifest trend to cause an accident with ego-vehicle or other objects.

Figure 5a demonstrates the distribution of driving anomaly situations, and typical frames in the
top five kinds are successively shown. From these statistics, the driving anomaly may exhibit various
forms and the difference of some situations is ambiguous, such as “car crosses and hits ego-vehicle”
and “car hits ego-vehicle” because of the complicated motion condition. In addition, we also show the
abnormal frame ratio (AFR) statistics for all the clips in Figure 5c. It can be observed that there are
almost half of the clips whose AFRs are larger than 20%, which to some extent violates the temporal
rarity of anomaly, e.g., [4]. In addition, distinct weather and light conditions further strengthen the
challenge. Drive-Anomaly106 is the first large-scale driving anomaly dataset fully labeled as far as we
know, and will be released in the near future.
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Figure 5. The statistics of Drive-Anomaly106. (a) the situation distribution; (b) the typical frames in the
top five kinds of situations, where the anomaly regions are marked by red contour; (c) the abnormal
frame ratio of the clips in Drive-Anomaly106.
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4.2. Implementation Details

For proving the effectiveness of this work, this paper firstly compares the detection performance
on different components in this work and with state-of-the-art unsupervised anomaly detectors. Then,
we give an analysis for the driving anomaly recounting.

Comparison of different components for detection. Since this work proposes a progressive
temporal-spatial-semantic analysis framework, this paper will evaluate the detection performance in
each module. In order to examine the ability for finding the abnormal frames, Precision and Recall of
the detected abnormal frame are employed, where Precision = TPR% and Recall = TPTifFP' where
TP, FP, and FN specify the numbers of truly detected abnormal frames, undetected abnormal frames
and wrongly detected abnormal frames, respectively. Albeit some other metrics, e.g., ROC and AUC,
commonly adopted in existing anomaly detection methods, can also be used for evaluation, Recall
value in this work is treated as the index for qualifying the temporal anomaly candidates because we
want all of the abnormal frames in each video clip to be able to be fed into the following modules.
In terms of temporal-spatial modules, this paper employs the standard pixel-level ROC and AUC
metrics to evaluate the performance.

Detection comparison with the state-of-the-art. Because most of the anomaly detectors are
supervised modules, this paper validates the superior performance with other unsupervised anomaly
detectors, viz., basic iForest [29], one-class-SVM (OC-SVM) [49], and robust deep auto-encoder
(RDA) [50]. The entire pipeline, putting all frames in each clip into evaluation, is compared here.
In addition, for driving anomaly detection, we also compare our method with the incremental
graph regularized least soft-threshold squares (iGRLSS), which is used for the motion consistency
measurement in the work of [37] for driving scenarios. The detailed implementations for these
methods are:

(1) iForest: We perform the iForest spatially on the large scale channel, with the same configuration
for number of iForests, iTrees, and partitioning blocks;

(2) OC-SVM: The partitioned optical flow field in each frame is used to train the boundaries with an
RBF kernel, and the anomaly score of each sample is determined by the distance to the decision
boundary;

(3) RDA: RDA aims to find the principal component with a detection of outlier using a multi-layer
structure. This work introduces the ¢ 1 penalty, and compared several parameter combinations
and used parameters that performed best (A = 0.00056 and layer size is 128, 80, and 100).
The anomaly is determined by checking the reconstruction error of the partitioned 44 x 44
blocks of optical flow field, where the instance dimension (HOF feature) is 128, the same as the
proposed method;

(4) iGRLSS: Strictly speaking, iGRLSS is a weak-supervised method, which first segmented the frame
into many superpixels, and treated the first 10 frames of each clips as normal. Then, the temporal
consistency with the pre-defined normal patterns in each clip was examined. This paper sets
the superpixel number as 125 following its setting of [37], and adopts five frames to update the
dictionaries in iGRLSS.

For comparing the performance, this work focuses on the standard pixel-level ROC and AUC
values to evaluate because of its more attractive attention for boosting. These methods can be treated
as the state-of-the-art for unsupervised anomaly detection.

4.3. Evaluation on Different Detection Components

Evaluation on temporal abnormal sub-clips. For the temporal module, we employ the qualitative
and quantitative evaluations, wherein qualitative evaluation is provided by demonstrating the anomaly
curves of some typical video clips, and the number of clips obtaining larger precision and recall value
than a pre-defined threshold is utilized for quantitative evaluation. The detailed results are shown in
Figure 6, where the beginning frame of driving anomaly can be localized effectively, such as the 70th
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frame, 60th frame and 74th frame in the clips in Figure 6a, and the anomaly frames can be contained to
a large extent for these clips. Actually, this phenomenon is universal for most of the clips, and almost
all of the abnormal sub-clips can be localized by the temporal module, proved by the consistent Recall
value in Figure 6b under different thresholds. In other words, the temporal module can remove a large
proportion of frames while recalling the anomaly frames. From this figure, we can observe that the
traffic saliency can provide promising guidance for temporal anomaly.

T T
raffic saliency variation pury
u
Motorbike hits motorbike, | | | |

0 10 20 3 100 120 T T T
) “Frlmes [ T
— traffi

rv Elrcccision
Car overtakes and hits pedestrian A ,\
—_—— A i [ 7
0=

#Frames

Anomaly score

o

Anomaly score

Number of Clips

Anomaly score

I I
40 50 60 70 80 90 100
#Frames

| 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
\ Threshold of Precision or Recall

Anomaly score

0 10 20 30 40 50 60 70 80 90 100
#Frames

(a) (b)
Figure 6. Evaluation on temporal module. (a) are typical clips demonstrating the frame-level
anomaly results and (b) presents the number of clips obtained larger precision and recall value
than a pre-defined threshold.

Evaluation on temporal-spatial pixel-level anomaly. In terms of the temporal-spatial module,
this work proposes a multi-scale temporal-spatial isolation forest (MSTS-iForest) to detect the local
anomaly within each frame. Therefore, the role of each component in MSTS-iForest is evaluated
in this subsection. In this module, we employ the standard pixel-level ROC and area under ROC
(AUC) to quantitatively qualify the performance. Note that the evaluation on this part builds on the
obtained temporally abnormal sub-clips for a fair and clear comparison. The results are demonstrated
in Figure 7a,b. From these sub-figures, we can see that the basic spatial iForest is manifestly poorer
than MSTS-iForest (three scales) (having 6.83% gap). The reason behind this is the key role of temporal
learning, which can memorize the historic normal situations and make the anomaly more obvious
(proven in Section 4.4, giving a better and concise comparison with other methods). In addition, optical
flow usually generates estimation error, and the temporal module can restrict it by a consistency
consideration. With the temporal module, the performance is largely boosted while demonstrating a
similar average AUC for different scale numbers. However, from Figure 7b, one scale configuration
generates more dispersive AUC values for all the clips and many clips obtain poor AUC. In other
words, the multi-scale form is more robust than the single scale. Actually, this phenomenon is caused
by the fact that the anomaly regions in multi-scale form are more obvious than the ones on a lesser
scale because of the supervision role of the larger blocks in a smaller scale channel.
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Figure 7. The performance comparison. (a) represents the pixel-level ROC curves and the average
AUC values (%) of iForest and MSTS-iForest, (b) denotes the dispersion degree of the AUC values on
all the clips, and (c) is the pixel-level ROC curves of various anomaly detectors.

4.4. Comparison with the State-Of-The-Art

In this comparison, we evaluate the entire pipeline of our method with state-of-the-art
unsupervised approaches. To be specific, we treat frames beyond the detected abnormal sub-clips
as normal, and run the other methods on the entire clip. The performance of them are compared by
the pixel-level ROC curves, area under ROC curve (AUC), and the ratio of detection (RD), as was
explained in Li et al. [6]. These metrics are based on the pixel-level anomaly map and the ground-truth.
The detailed comparison results are quantitatively shown in Figure 7c, and qualitatively demonstrated
in Figure 8.

Figure 7c shows that the proposed method is apparently superior to other ones, and RDA and
iForest obtain the second and third rank. For this observation, the behind reasons are summarized
as: (1) a large proportion of frames in one clip are removed by the temporal module, therefore
reducing a large percentage of false positives; (2) OC-SVM, RDA, and iForest do not have the temporal
consideration for anomaly measurement, which is actually vulnerable to estimation error of optical
flow and other disturbing regions; (3) iGRLSS only considers the temporal consistency. Albeit it
maintains the spatial objectness, the spatial anomaly is not involved. Figure 8 demonstrates some
typical frames for an in-depth comparison. From this figure, we can observe that iForest cannot
manifest the boundary of anomaly and normal pattern clearly, and generates an unobservable anomaly
map. OC-SVM highlights many irrelevant points as anomalies, which may be caused by the inaccurate
boundary learned for separation because OC-SVM may learn multiple boundaries for samples with
multi-modal distribution. As for the RDA, it finds the anomaly with large reconstruction error to
original data; while it might be disturbed by the multi-modal distribution of the optical field, reversed
determination emerges sometimes. With respect to our methods with different scale number, we can
see that our method can obtain a relatively similar result. However, taking a deep observation, we
find that more scales will weaken more background clutter, and generate clearer shapes complying
with the ground-truth. The single scale easily generates “trailing smear” phenomena, marked by the
red boxes in Figure 8. This is because, without the supervision of smaller scales, these points are also
treated as the anomaly.
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Figure 8. Typical examples for demonstrating the anomaly map by different detectors. (a) original
frames; (b) ground-truth of anomaly regions; (c) denotes the results of basic iForest [29]; (d—f) represent
the results of OC-SVM [49], iGRLSS [37], and RDA [50], respectively. The results of our method
are presented by (g) our method with only one scale, (h) with two scales, and (i) with three scales;
(j) denotes the recounting results of the related clips.

It is worth noting that the Drive-Anomaly106 dataset contains 16 video clips of nocturne driving,
22 video clips of heavy traffic, and 20 video clips of bad weather conditions, accounting for 15.09%,
20.75%, and 18.87% of the total, respectively. The proposed model still achieves good performance on
the three special conditions. The AUC values of them achieve 83.24%, 79.10%, and 82.25%, as listed
in Table 1, which even outperforms the overall level of 79.77%. It demonstrates that the proposed
framework can ensure the effectiveness and robustness in different conditions.
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Table 1. The performance on the three special conditions, involving the scenarios with nocturne driving,
heavy traffic and bad weather.

Conditions Number of Sequences  Proportion (%) AUC (%)
Nocturne Driving 16 15.09 83.24
Heavy Traffic 22 20.75 79.10
Bad Weather 20 18.87 82.25

4.5. Evaluation on Driving Anomaly Recounting

With respect to the driving anomaly recounting, we qualitatively demonstrate the top three
causal relations for typical frames, as shown in Figure §j. It is worth noting that the accuracy of
recounting is quantized by measuring the number of clips that obtain a matched semantic variation
for the anomaly regions. For example, for a “car hits motorbike” anomaly, if the obtained top three
semantic variations have “car changed into motorbike” or “motorbike changed into car”, we treated
this as an accurate recounting. Under the configuration in this work, we obtain 23 (relative to 106)
clips accurately recounted. Actually, the performance of recounting binds closely to the semantic
segmentation methods, e.g., FCN [15]. Therefore, the provided framework for driving anomaly
recounting will be updated in the future.

4.6. Discussion

Efficiency comparison. Although the proposed TSS model has three modules, the main time cost
belongs to MSTS-iForest, depending on the iTree number ¢, sub-sample size f and instance number
n. Based on the analysis in [29], the time complexities are O(tflog p) for training and O(ntlog f).
When we set t = 500, f = 256, n = 1936 for the large scale channel, n = 400 for the middle scale
and n = 100 for the small scale, incorporating the time cost for optical flow estimation, total running
time for each frame is five seconds in average, and reduces to 4.3 s and 3.5 s with the decreasing
of scale number, which is a little longer than three seconds only with spatial iForest for each frame,
on the same PC platform with 2.70 GHz i7 CPU and 32 GB RAM. Therefore, the MSTS-iForest is an
efficient but effective ensemble. In addition, we also compare our method with other approaches.
The results are shown in Figure 9a. From this table, we can observe that iGRLSS is the most efficient
one (1.5 s/frame), while it is poorer than other ones. RDA is the slowest one (57 s/frame) owing to the
exhaustive training process. Our method shows a competitive efficiency but the best detection ability.

60

[y
o
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N
o
T

N
o
T

distant from - » » slight motion ® -
ego-vehicle behaviour low light condition

o
T

running time (secs/frame)
w
o

o

iForest OC-SVM IGRLSS RDA ours
(a) (b)
Figure 9. Discussion of for efficiency and failure situations. (a) demonstrates the efficiency comparison;
and (b) shows the situations of anomaly distant from ego-vehicle, slight motion behavior, and
imperceptible anomaly with low light condition, coupled with the detection results by ours.

Failure situation analysis. Actually, this work tackles the driving anomaly with a large-scale
dataset for the first time. The diversity of the anomaly situations makes the detection rather challenging,
and inevitably encounters some failures. To summarize, the failures mainly appear in three kinds of
circumstances: (1) anomaly distance from ego-vehicle, (2) anomaly with slight motion behavior, and
(3) imperceptible anomaly in low light conditions. Some examples are shown in Figure 9b, marked
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by red boxes. These situations make the anomaly motion be rather unobservable, along with many
disturbing and similar appearances. In the meantime, the motion in other normal regions may cover
up the imperceptible motion change of anomalies. Therefore, camera motion compensation may be
needed in the future.

5. Conclusions

This work addressed the driving anomaly detection and recounting problem by a progressive
temporal-spatial-semantic analysis framework. This framework novelly incorporated the property
of driving scenarios, and introduced a top-down traffic saliency relating to eye fixation of drivers to
temporally find the sudden scene variation, likely the existing driving anomaly. Within the temporal
candidate for driving anomaly found, this paper further examined the spatial anomaly region by a
novel multi-scale temporal-spatial iForest (MSTS-iForest) that has a temporal memory learning and
spatial anomaly highlighting ability for local anomaly detection. The driving anomaly recounting
was exploited by a temporal-spatial-semantic perceptual learning, which adequately explored the
temporal-spatial co-occurrence of semantic variation of anomaly regions. Exhaustive experiments
demonstrated the superiority of the proposed framework.
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