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Machine learning (ML) is largely used to develop automatic predictors in migraine classification but auto-
matic predictors for medication overuse (MO) in migraine are still in their infancy. Thus, to understand
the benefits of ML in MO prediction, we explored an automated predictor to estimate MO risk in
migraine. To achieve this objective, a study was designed to analyze the performance of a customized
ML-based decision support system that combines support vector machines and Random Optimization
(RO-MO). We used RO-MO to extract prognostic information from demographic, clinical and biochemical
data. Using a dataset of 777 consecutive migraine patients we derived a set of predictors with discrimi-
natory power for MO higher than that observed for baseline SVM. The best four were incorporated into
the final RO-MO decision support system and risk evaluation on a five-level stratification was performed.
ROC analysis resulted in a c-statistic of 0.83 with a sensitivity and specificity of 0.69 and 0.87, respec-
tively, and an accuracy of 0.87 when MO was predicted by at least three RO-MO models. Logistic regres-
sion analysis confirmed that the derived RO-MO system could effectively predict MO with ORs of 5.7 and
21.0 for patients classified as probably (3 predictors positive), or definitely at risk of MO (4 predictors
positive), respectively. In conclusion, a combination of ML and RO – taking into consideration clinical/bio-
chemical features, drug exposure and lifestyle – might represent a valuable approach to MO prediction in
migraine and holds the potential for improving model precision through weighting the relative impor-
tance of attributes.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Migraine is a primary form of headache characterized by recur-
rent episodes of debilitating headache, sometimes preceded by
transient neurological symptoms named aura. Its pathophysiology
recognizes a unique mixture of bio-psycho-social aspects, which
may all trigger the attack in susceptible individuals, unveiling a
biological predisposition of a dysexcitable brain to convert non-
painful stimulation into headache pain. This ultimately leads to
impressive disability, significant productivity loss, huge economic
burden and healthcare resource use.

In the last two decades, an unprecedented number of studies
have contributed to substantial advances in abortive and preven-
tive therapy, opening new and promising scenarios in the field of
precision medicine. Nonetheless, migraine remains a major clinical
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challenge, as it is often under-diagnosed [1]. Current validated
diagnostic criteria, in fact, distinguish migraine according to the
attack frequency (episodic or chronic) or to the presence/absence
of aura [2], but do not disentangle the different endophenotypes
of this highly heterogeneous headache disorder [3]. Furthermore,
preventative migraine medications are often underutilized, leaving
patients at-risk of medication overuse (MO), disease progression,
higher disability and increased healthcare costs [4]. MO affects
approximately 15% of migraine patients [5] and is the most rele-
vant risk factor for migraine chronicization [6] as well as the devel-
opment of a secondary headache disorder known as medication-
overuse headache (MOH) [2,7,8]. Daily or weekly analgesic use,
in fact, disproportionately increases the risk for chronic migraine
(RR = 13.3, 95% CI: 9.3–19.1) as documented by a large prospective
population survey [9]. When considering a specialized headache
center setting, the odds for developing chronic migraine 1 year
later in patients with episodic migraine with MO is 19.4 times
(95% CI: 8.7–43.2) higher than in those without [10]. The risk of
chronic migraine progression is further incremented when overus-
ing involves acute medications containing barbiturates (OR = 2.1;
95% CI: 1.3–3.1) or opioids (OR = 1.2; 95% CI: 1.4–2.2), compared
with acetaminophen, as hinted by the American Migraine Preva-
lence and Prevention (AMPP) study [11]. This is also true in adoles-
cents, in whom medication overuse is a predictor of migraine
chronic evolution (HR = 2.5; 95% CI: 1.1–5.5) [12]. Once estab-
lished, MOH is the epitome of hard to treat neurological disorders
due to its disappointing response to treatment and frequent
relapse.

Thus, the possibility of predicting MO, or estimating the efficacy
of a given therapy, is a compelling challenge in the clinical man-
agement of migraine to set out prevention programs for patients
prone to frequent headache.

Artificial intelligence (AI) with machine learning (ML) has
shown great potential in building automatic predictors in the field
of migraine [13–22] but detectors for MO are still in their infancy
[20]. In fact, many AI models have been applied for nearly 10 years
to implement medical decision support systems for the diagnosis
of migraine [13–20] and for predicting migraine treatment out-
comes [21,22]. For example, artificial neural networks (ANNs), arti-
ficial immune systems (AIS) and support vector machines (SVM)
have shown encouraging results. Some systems were built on clin-
ical dataset derived from patients’ medical records [13–17], while
others analyzed data from resting-state functional magnetic reso-
nance neuroimaging (rs-fMRI) [18–20]. All these studies demon-
strated that intelligent systems represent a promising approach
for migraine classification, holding potential to revolutionize con-
ventional models of diagnostic deliverance in a contest of person-
alized medicine. However, To the best of our knowledge, there is
only one study studying the potential of AI in predicting MO
[20]. In their study, Garcia-Chimeno et al. reported the possibility
to distinguish between patients with episodic or chronic migraine
with MO via feature selection techniques and machine learning
[20]. Using SVM, Boosting and Naive Bayes they obtained an over-
all classification with over 93% accuracy. However, the study had a
big major limitation: due to the small number of participants
(n = 18 for chronic migraine with MO), the testing was undertaken
in the same dataset used for training and no holdout test set was
used [20]. Moreover, the specific aim was not to predict MO risk,
but to correctly classify between different migraine phenotypes
[20]. Thus, there is still an unmet need to develop classifications
models that embody the newest AI technologies and can be used
to predict MO in individual migraine patients for a personalized
patient care.

In this study, we present our approach RO-MO to use machine
learning along with Random Optimization (RO) for predicting
Medication Overuse (MO) in migraine patients. Our approach in
this study solves the problems of previous studies [20] as testing
has been carried out in a held-out set and RO-MO outperforms
SVM as used in [20]. RO-MO derives from our previous studies.
In a perspective of predictive medicine and tailored therapy, we
have recently demonstrated that an approach based on AI method-
ologies holds the potential to devise decision support systems
(DSSs) that can be adapted to different medical problems [23–
26]. Our model based on Multiple Kernel Learning (MKL) [27],
combines SVM [28] algorithm and Random Optimization (RO)
[29], offering the possibility to inspect the learned model and pro-
viding an estimate of the relative weight of routinely collected
demographic, clinical and biochemical data in predictions. This
model – originally developed for cancer-associated thrombosis risk
assessment [23–25] and then adapted to estimate the risk of dis-
ease progression of breast cancer patients [26] – seeks not only
decision, but also interpretability of the model itself, which repre-
sents the novel aspect of our research. Based on previous observa-
tions, we hypothesized that our previous approach could be of
assistance in predicting the risk of MO in migraine patients. To
achieve this objective, a proof-of-concept study was specifically
designed produce MO risk predictors (RO-MO) using real world
data from a large, well clinical characterized migraine outpatient
population, detailing lifestyle, behavioral and socio-demographic
factors and clinical phenotype. The performance of RO-MO was
also compared with that of baseline SVM to assess the significance
of optimizing the relative importance of groups of clinical attri-
butes in the selection of MO risk predictors.
2. Patients and methods

2.1. Patient’s dataset

Starting from January 2008, the Headache and Pain Unit of the
Department of Neurological, Motor and Sensorial Sciences and
the InterInstitutional Multidisciplinary Biobank (BioBIM) of the
IRCCS San Raffaele Pisana, Rome, Italy, are jointly involved in the
recruitment of outpatients affected by headache, who are prospec-
tively followed under the appropriate Institutional ethics approval
and in accordance with the principles embodied in the Declaration
of Helsinki [30]. All patients undergo a careful physical and neuro-
logical examination performed by trained neurologists (PB, GE, LF)
and are screened with face-to-face interviews using a semi-
structured questionnaire formulated to collect thorough data on
lifestyle, behavioral and socio-demographic factors (age, sex, civil
status, occupation, body mass index, arterial blood pressure, sport
activity, use of coffee, alcohol, smoking, sleep disturbances, meno-
pause, contraceptive use), comorbidities and concomitant medica-
tions and clinical features of migraine (disease duration, family
history of migraine, presence, frequency, duration of attacks, loca-
tion, accompanying symptoms, unilateral cranial autonomic symp-
toms, triggers and alleviating factors, prodromes, postdromes,
allodynia, presence and duration of medication overuse, current
acute or preventive medications, patient’s satisfaction with trip-
tans) [31]. All patients provide written informed consent, previ-
ously approved by the local Institutional Review Board, to donate
a blood sample to be used in the analysis of possible determinants
of migraine outcome or response to treatment.

Blood samples are withdrawn in fasting conditions and pro-
cessed using standard operating procedures, ICT tools and dedi-
cated software to track the entire sample life, including elapsed
time between blood withdrawal and storage [30]. Routine bio-
chemical analyses are performed on fresh blood samples at time
of enrolment. Thereafter, blood samples are processed, aliquoted,
coded, and stored at �80 �C for subsequent batch analyses. Storage
conditions are carefully monitored, and all aliquots are limited to
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one freeze–thaw cycle to ensure the best sample quality. For the
present study, 777 consecutive migraine patients were analyzed.

2.2. Experimental settings and statistical analysis

Our MO risk predictor is based on multiple kernel learning over
support vector machines and Random Optimization (RO-MO). We
built RO-MO in KELP [32] as previously reported [23]. RO-MO
was used to produce prognostic discriminators (referred as RO-
MO-x) yielding the best classification performance over a training
(3-fold cross validation) and test set. Twenty different learning ses-
sions with 20 different RO initializations were performed. The
dataset, consisting of 777 patients, was randomly divided into a
training and a test set. The training set consisted of 543 migraine
patients (70% of the dataset); the remaining 234 patients were
allocated to the test set (30% of the cases).

Baseline SVM was run on weka platform and its performance
was evaluated in comparison with RO-MO classifiers.

Demographic, clinical and biochemical characteristics of the
training and test sets are summarized in Tables 1 and 2.
Table 1
Clinical features of migraine patients in the training and test set.

Training

Sex, N (%)
Male 96 (17.7)
Female 447 (82.3)
Menopausal status
Pre 327 (73.2)
Post 120 (26.8)
Age at menarche 12.2 ± 1.2
Age (Years), Mean ± SD (range) 41.5 ± 13.2 (13–78
BMI, Mean ± SD (range) 23.9 ± 3.8 (17.0–46
Age of onset (Years), Mean ± SD (range) 19.9 ± 11.0 (3–73)
Length of chronicization (Years), Median (IQR) 2 (1–4)
Type of migraine, N (%)
Chronic 139 (25.6)
Episodic without aura 287 (52.9)
Menstrual migraine, N (%)* 181 (40.5)

Episodic with aura 85 (15.6)
Cluster headache 11 (2.0)
Tension-type headache 21 (3.9)
Familiarity, N (%) 383 (70.8)
Frequency (days/months), Median (IQR) 7 (3–15)
Pain Localization, N (%)
Unilateral 357 (65.8)
Unilateral or bilateral 4 (0.7)
Bilateral 182 (33.5)
Unilateral cranial autonomic symptoms, N (%) 242 (44.6)
Dopaminergic symptoms, N (%) 173 (31.9)
Comorbidities, N (%)
neuropsychiatric 167 (30.8)
cardiovascular 61 (11.3)
endocrine-metabolic 83 (15.4)
Treatment, N (%)
Type of medication
Triptans 140 (25.8)
NSAID 165 (30.4)
Triptans + NSAID 178 (32.8)
Other 60 (11.1)
Response to triptans 280 (88.0)
Use of prophylaxis 304 (56.0)
Medication overuse
Overusing patients, N (%) 127 (23.4)
Abused Drug, N (%)
Triptans 38 (29.9)
NSAIDs ± combination medications 19 (15.0)
Combination medications 64 (50.4)
Others 8 (6.3)
Quantity of abused drug (tablets/month) 34 ± 29
Overuse duration (Years), Median (IQR) 2 (1–4)

BMI: body mass index; NSAID: nonsteroidal anti-inflammatory drugs; IQR: interquartile
*p = 0.847 for subgroup analysis.
Numerical attributes were analyzed as continuous values. Miss-
ing clinical attribute values were treated according to Predictive
Value Imputation (PVI) method by replacing missing values with
the average of the attribute observed in the training set [33]. Group
clustering was performed according to the clinical significance of
the attributes included in the patient dataset. These included:
demographic characteristics (group 1), migraine clinical features
(group 2), treatment details (group 3), presence of co-morbidities
(group 4), biochemical variables (group 6) and lifestyle information
(group 7). Dopamine-beta-hydroxylase (DBH) 19-bp I/D polymor-
phism (rs72393728/rs141116007) was individually considered
given its proposed association with MO [34]. A detailed list of all
the features that have been applied to construct the predictor is
reported in Fig. 1. RO was used to devise their relative weights in
final prediction. In RO, relative weights are initialized with random
number and estimated by maximizing performance in the 3-fold
cross validation. These weights can be used to interpret the impor-
tance of the groups of features within the model. Thus, the final
DSS is interpretable.
Test P value

0.513
46 (19.7)
188 (80.3)

0.235
146 (77.7)
42 (22.3)
12.2 ± 1.4 0.875

) 39.5 ± 12.5 (17–71) 0.052
.8) 23.7 ± 3.6 (15.0–36.5) 0.623

19.9 ± 10.7 (4–62) 0.970
2 (1–5) 0.768

0.092
48 (20.5)
114 (48.8)
92 (39.3)
54 (23.1)
9 (3.8) 0.811
9 (3.8) 0.990
168 (72.4) 0.648
5 (2–10) 0.002

0.377
146 (62.4)
2 (0.8)
86 (36.8)
103 (44.0) 0.887
63 (26.9) 0.509

65 (27.8) 0.397
22 (9.4) 0.439
30 (12.8) 0.356

0.009
71 (30.3)
74 (31.6)
51 (21.9)
38 (16.2)
104 (85.3) 0.523
112 (47.9) 0.087

35 (15.0) 0.010

9 (25.7) 0.437
7 (20.0)
15 (42.9)
2 (5.7)
33 ± 26 0.724
2 (1–4) 0.439

range.



Table 2
Biochemical features of migraine patients in the training and test set.

Training Test P
value

Blood cell counts
Red blood cells 4.5 ± 0.5 4.4 ± 0.42 0.161
Haematocrit 39.4 ± 3.5 39.4 ± 3.4 0.811
Hemoglobin 13.3 ± 1.3 13.4 ± 1.2 0.502
White blood cells 6.6 ± 1.7 6.5 ± 1.6 0.581
Neutrophils 3.9 ± 1.4 3.8 ± 1.2 0.487
Lymphocytes 2.1 ± 0.6 2.6 ± 0.6 0.947
Monocytes 0.5 ± 0.1 0.5 ± 0.2 0.409
Platelets 230.2 ± 52.1 231.7 ± 51.4 0.818
Mean Platelet Volume 9.0 ± 1.0 8.9 ± 1.1 0.218
Coagulative asset
International Normalized Ratio 1.0 ± 0.1 1.0 ± 0. 1 0.984
Prothrombin Time 103.3 ± 13.2 104.1 ± 16.3 0.656
aPTT 27.9 ± 2.9 30.5 ± 30.5 0.228
Fibrinogen 282.1 ± 54.5 279.7 ± 47.6 0.757
Glucose metabolic asset
Fasting blood glucose (mg/dl),

Mean ± SD
82.5 ± 11.5 84.2 ± 10.0 0.201

Fasting insulin (mIU/ml), Mean ± SD 9.6 ± 9.2 10.0 ± 9.8 0.677
HbA1c (%), Mean ± SD 5.5 ± 0.3 5.5 ± 0.4 0.595
Blood lipids
Total cholesterol (mg/dl), Mean ± SD 202.3 ± 35.7 195.8 ± 35.3 0.134
HDL-cholesterol (mg/dl), Mean ± SD 56.7 ± 14.0 56.9 ± 12.9 0.864
LDL-cholesterol (mg/dl), Mean ± SD 125.2 ± 31.4 120.3 ± 30.7 0.192
Triglycerides (mg/dl), Mean ± SD 102.2 ± 57.2 93.3 ± 56.5 0.196
Blood lipids
Creatinine (mg/dl), Mean ± SD 0.80 ± 0.13 0.78 ± 0.14 0.414
Blood urea nitrogen (mg/dl), Median

(IQR)
31.5 ± 9.7 31.4 ± 9.3 0.897

Alanine transaminase 17.6 ± 9.2 18.5 ± 10.6 0.464
Aspartate transaminase 18.1 ± 4.6 18.0 ± 4.9 0.809
Gamma-glutamyl transferase 20.0 ± 22.0 18.2 ± 14.3 0.442
Total bilirubin 0.53 ± 0.30 0.59 ± 0.39 0.139
DBH 19-bp I/D polymorphism* 0.141
II 130 (46.3) 45 (42.1)
ID 60 (21.4) 33 (30.8)
DD 91 (32.4) 29 (27.1)

*Available in 388 patients (training set, n = 281; test set, n = 107).
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Receiver operating characteristic (ROC) curve, Bayesian analysis
and logistic regression were performed by MedCalc Statistical Soft-
ware version 13.1.2 (MedCalc Software bvba, Ostend, Belgium) to
Group 1
• Age, Sex, Menopausal status, Age at m

Group 2

• Presence of aura, Type of migraine, P
Familiarity, Length of chronicization,
symptoms, Menstrual migraine

Group 3
• Use of prophylaxis, Type of medicatio

Group 4 • Comorbidities (neuropsychiatric, card

Group 5
• Dopamine-beta-hydroxylase (DBH) 1

(rs72393728/rs141116007)

Group 6
• Complete and differential blood cell c

parameters, Lipid profile, Kidney and

Group 7
• Obesity, Smoking habit, alcohol and c

contraception/hormone replacement t

Fig. 1. Features includ
estimate the probability of medication overuse. All tests were
two-tailed and only p-values lower than 0.05 were regarded as sta-
tistically significant.
3. Results

Overall, 21% (162 of 777) of the enrolled patients reported the
presence of MO which had lasted for at least 2 years (Table 1).
No substantial differences were observed for clinical and biomolec-
ular variables between patients included in the training and test
sets, with the exception of attack frequency, the use of triptans
in combination with NSAID and the percentage of patients with
MO, which were all slightly higher in the training compared with
the test set.

A set of predictors (named RO-MO-x) was identified using a 3-
fold cross validation technique on a training set (n = 543). A test set
(n = 234) was used to compute the final performance of risk predic-
tors. As shown in Table 3, RO-MO was capable of improving MO
risk prediction compared to baseline SVM as demonstrated by a
substantial improvement of the f-measure. Thus, to better charac-
terize the performance of the proposed method, the area under the
ROC curve (AUC) and positive and negative likelihood ratios (LRs)
were also calculated for all RO-MO models in comparison with
baseline SVM. As shown in Table 3, RO-MO-08 was the best per-
forming predictor in the training set with an AUC of 0.79, which
was significantly higher than that observed for baseline SVM
(p = 0.003) (Table 3, Fig. 2) and further increased to 0.81 in the test
set (Table 4).

Overall, five RO-MO predictors showed an acceptable predictive
performance with AUCs > 0.70 and significant positive and nega-
tive LRs (Table 3), but only RO-MO-02, RO-MO-03, RO-MO-08
and RO-MO-12 confirmed their predictive value in the test set
(Table 4, Fig. 3).

Of interest, all four predictors were not only clinically plausible
– as demonstrated by the finding that group 2 variables (migraine
clinical features) retained the strongest weight in all models
(Table 5) – but they had also a complementary configuration of
weights (Table 5, Fig. 4). In particular, RO-MO-02 was weighted
on demographics and co-morbidities, RO-MO-03 on DBH polymor-
phism, RO-MO-08 on treatment details and lifestyle-related trig-
enarche

ain localization, Age of onset, 
 Frequency, UA symptoms, DAergic 

n, Response to triptans

iovascular, endocrine-metabolic)

9-bp I/D polymorphism 

ounts, Coagulation assays, Glycemic 
 Liver function

offee consumption, use of oral 
herapy

ed in the model.



Table 3
Analytical performance of machine learning with random optimization in the training set.

Model Precision Recall F-Measure AUC (SE) 95% CI +LR �LR

SVM Baseline 0.862 0.441 0.583 0.710 (0.0224) 0.669–0.748 20.4 0.57
RO-MO-05 0.819 0.683 0.745 0.657 (0.0242) 0.615–0.697 1.95 0.53
RO-MO-12 0.704 0.754 0.728 0.737 (0.0223) 0.697–0.773 2.77 0.35
RO-MO-14 0.685 0.690 0.688 0.669 (0.0236) 0.628–0.708 1.93 0.47
RO-MO-13 0.691 0.675 0.683 0.610 (0.0248) 0.567–0.651 1.57 0.64
RO-MO-04 0.611 0.698 0.652 0.683 (0.0241) 0.642–0.722 2.91 0.55
RO-MO-19 0.753 0.532 0.623 0.599 (0.0246) 0.557–0.641 1.80 0.73
RO-MO-03 0.483 0.770 0.593 0.717 (0.0232) 0.677–0.754 2.67 0.41
RO-MO-08 0.474 0.786 0.591 0.787 (0.0219) 0.750–0.821 5.26 0.34
RO-MO-06 0.466 0.698 0.559 0.645 (0.0245) 0.603–0.685 1.89 0.57
RO-MO-09 0.420 0.794 0.549 0.656 (0.0236) 0.614–0.696 1.80 0.49
RO-MO-16 0.395 0.802 0.529 0.696 (0.0230) 0.656–0.735 2.18 0.41
RO-MO-11 0.435 0.643 0.519 0.663 (0.0242) 0.622–0.703 2.77 0.60
RO-MO-07 0.396 0.754 0.519 0.644 (0.0237) 0.602–0.684 1.69 0.51
RO-MO-17 0.381 0.746 0.504 0.639 (0.0233) 0.598–0.680 3.28 0.68
RO-MO-18 0.405 0.643 0.497 0.681 (0.0223) 0.640–0.721 1.89 0.39
RO-MO-15 0.465 0.532 0.496 0.666 (0.0230) 0.624–0.705 1.81 0.44
RO-MO-01 0.363 0.746 0.488 0.714 (0.0235) 0.674–0.752 4.71 0.52
RO-MO-02 0.339 0.651 0.446 0.726 (0.0235) 0.687–0.763 3.94 0.47
RO-MO-00 0.270 0.738 0.396 0.511 (0.0235) 0.468–0.554 1.07 0.97
RO-MO-10 0.276 0.643 0.387 0.589 (0.0250) 0.546–0.631 1.57 0.74
Average RO-MO 0.509 0.699 0.560 0.664 0.705 – 0.690 3.32 0.54

AUC: Area Under the Curve; CI: Confidence Interval; LR: Likelihood Ratio; SE: Standard Error.

Fig. 2. Comparison between the Receiver Operator Characteristics Curves for RO-MO-08 and SVM baseline predictor in the training set.
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gers and RO-MO-12 on the biochemical and metabolic asset. These
findings are consistent with literature data showing that DBH poly-
morphism is associated with MO in chronic migraine patients [34]
and suggest that patients’ metabolic asset, obesity, or lifestyle-
related factors might contribute to drug overuse in this clinical
setting.

As the performance of RO-MO predictors could be further
enhanced, we sought to investigate whether the combination of
the best binary predictors (RO-MO-02, RO-MO-03, RO-MO-08
and RO-MO-12) into a decision support system (ML-based DSS)
could be of advantage over the individual predictors, or baseline
SVM. Using this combined model, we were able to classify
migraine patients into five categories: definitely not likely to over-
use (0, all predictors negative); probably not likely to overuse (1, at
least one positive); possibly at risk of drug overuse (2, two of four
positive); probably at risk of drug overuse (3, three of four posi-
tive); definitely at risk of drug overuse (4, all predictors positive).
The discriminatory power of the ML-based DSS was first analyzed
in the training set. The results obtained showed an overall
improvement of MO risk prediction performance, with an AUC of
0.81 (95% CI: 0.78–0.84), which was higher than that observed
with baseline SVM (AUC = 0.710; difference between areas:
0.099, p < 0.001), or each single predictor (RO-MO-2
AUC = 0.726, p < 0.001; RO-MO-3 AUC = 0.717, p < 0.001; RO-
MO-8 AUC = 0.787, p = 0.05; RO-MO-12 AUC = 0.737, p < 0.001).

It should be noted that the adoption of a DSS incorporating mul-
tiple predictors implies that risk evaluation would be represented
by a n-level stratification (generated in the event that risk estimate
is achieved by all predictors, or by different combinations). In our
model, the use of 4 predictors had led to a 5-level stratification,
which was barely comparable with the binary classification of
the original models or baseline SVM. Thus, instances were re-
coded as 1/0 depending on whether they were positive or not to
at least three of the RO-MO predictors (DSS predicted class 3 or
4) and ROC curves were re-analyzed. As reported in Fig. 5, the com-
bined model resulted in an overall improvement of MO risk predic-
tion performance, with a 0.765 AUC, which was higher than that
observed with SVM, or each single predictor (Fig. 3).

The improved predictive performance of the ML-based DSS was
also confirmed in the test set. As shown in Fig. 6, in fact, the com-
bined model resulted in an overall improvement of MO risk predic-
tion performance, with an AUC of 0.83, a sensitivity and specificity



Table 4
Analytical performance of machine learning with random optimization in the test set.

Model Precision Recall F-Measure AUC (SE) 95% CI +LR �LR

SVM Baseline 0.957 0.629 0.759 0.812 (0.0414) 0.760–0.863 15.0 0.34
RO-MO-00 0.161 0.429 0.234 0.501 (0.0431) 0.436–0.567 1.01 1.00
RO-MO-01 0.302 0.457 0.364 0.625 (0.0439) 0.559–0.687 2.65 0.71
RO-MO-02 0.267 0.657 0.380 0.739 (0.0433) 0.678–0.794 4.17 0.44
RO-MO-03 0.382 0.743 0.505 0.746 (0.0405) 0.685–0.800 2.96 0.34
RO-MO-04 0.348 0.657 0.455 0.688 (0.0447) 0.624–0.747 2.92 0.53
RO-MO-05 0.806 0.714 0.758 0.675 (0.0439) 0.611–0.735 2.14 0.49
RO-MO-06 0.284 0.714 0.407 0.702 (0.0429) 0.639–0.760 2.44 0.44
RO-MO-07 0.231 0.686 0.345 0.683 (0.0412) 0.619–0.742 1.97 0.41
RO-MO-08 0.325 0.743 0.452 0.806 (0.0393) 0.750–0.855 5.69 0.30
RO-MO-09 0.245 0.714 0.365 0.649 (0.0434) 0.585–0.710 1.77 0.51
RO-MO-10 0.200 0.486 0.283 0.606 (0.0459) 0.541–0.669 1.71 0.70
RO-MO-11 0.429 0.429 0.429 0.571 (0.0431) 0.505–0.635 1.71 0.82
RO-MO-12 0.676 0.714 0.694 0.770 (0.0390) 0.711–0.822 3.34 0.30
RO-MO-13 0.446 0.714 0.549 0.597 (0.0444) 0.532–0.661 1.42 0.64
RO-MO-14 0.410 0.714 0.521 0.703 (0.0411) 0.640–0.761 2.21 0.39
RO-MO-15 0.232 0.629 0.338 0.685 (0.0400) 0.621–0.744 1.92 0.38
RO-MO-16 0.220 0.686 0.333 0.687 (0.0431) 0.623–0.746 2.20 0.46
RO-MO-17 0.400 0.457 0.427 0.603 (0.0435) 0.537–0.666 2.24 0.75
RO-MO-18 0.239 0.629 0.346 0.701 (0.0368) 0.638–0.759 1.94 0.30
RO-MO-19 0.479 0.657 0.554 0.632 (0.0455) 0.567–0.694 1.86 0.62
Average RO-MO 0,382 0,631 0.452 0.812 0.728 3.01 0.52

AUC: Area Under the Curve; CI: Confidence Interval; LR: Likelihood Ratio; SE: Standard Error.

Fig. 3. Comparison of the predictive performance among the analyzed models.
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of 0.69 and 0.87, respectively, and an accuracy of 0.87 when MO
was predicted by at least three RO-MO models. Logistic regression
analysis further confirmed that the ML-based DSS could effectively
distinguish between MO and non-MO with ORs of 5.72 (95%CI:
1.56–20.9) and 21.0 (95%CI: 8.5–52) for patients classified as prob-
ably (3 RO-MO predictors positive), or definitely at risk of drug
overuse (4 RO-MO predictors positive), respectively.

4. Discussion

The present study was designed to investigate the performance
of a novel ML-based methodological approach to derive an AI-
based DSS for MO risk assessment in migraine patients.
MO is a challenging problem in migraine, mostly chronic
migraine, in which is associated with higher pain intensity scores,
symptoms severity and disability [5,35], as well as the develop-
ment of MOH [2,7,8]. MOH is defined as a headache for �15 days/-
month in a patient with a pre-existing primary headache (usually
migraine or tension-type headache), and develops as a conse-
quence of regular overuse (more than three months) of simple
analgesics such as non-steroidal anti-inflammatory drugs, acetyl-
salicylic acid and paracetamol for �15 days/month, or analgesic
combinations, triptans, ergotamine or opioid for �10 days/month
[2].

Given the high disability rate of MOH and the treatment chal-
lenges it poses [7], prevention is especially important in patients



Table 5
Normalized weights of attribute groups in the training set.

Model Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7

RO-MO-00 0.05024 0.04528 0.36122 0.13728 0.41846 0.80842 0.05055
RO-MO-01 0.18894 0.69045 0.17202 0.04681 0.04858 0.03836 0.14286
RO-MO-02 0.23891 1.08083 0.00088 0.24596 0.00138 0.00011 0.03468
RO-MO-03 0.05299 1.57451 0.03584 0.16382 0.33030 0.17691 0.02008
RO-MO-04 0.00002 2.22696 0.07553 0.14644 0.12533 0.01231 0.04431
RO-MO-05 0.01375 0.74568 0.01027 0.01685 0.01496 0.44050 0.03129
RO-MO-06 0.00722 1.11237 0.08035 0.45895 0.11300 0.33577 0.23231
RO-MO-07 0.00545 0.38898 0.01664 0.14503 0.34447 0.09276 0.19871
RO-MO-08 0.02089 0.92704 0.49196 0.10673 0.08813 0.05844 0.49128
RO-MO-09 0.18281 1.11588 0.08265 0.14504 0.40745 0.00791 0.09501
RO-MO-10 0.42575 0.01383 0.03373 0.02243 0.34697 0.20611 0.38230
RO-MO-11 0.11897 0.67353 1.02092 0.09301 0.05042 0.16503 0.01637
RO-MO-12 0.00007 1.09627 0.00705 0.03511 0.03214 0.46090 0.06996
RO-MO-13 0.00612 1.45488 0.03022 1.45488 0.02723 0.03022 0.15365
RO-MO-14 0.23138 1.44378 0.01624 0.13616 0.02975 0.52446 0.12165
RO-MO-15 0.41376 1.05772 0.48082 0.00006 0.21378 0.03978 0.02857
RO-MO-16 0.00002 0.67413 0.04690 0.15811 0.54734 0.03346 0.65751
RO-MO-17 0.22385 1.55356 0.24080 0.08292 0.07987 0.00019 0.09701
RO-MO-18 0.02800 1.10822 0.08851 0.19543 0.17163 0.30326 0.00743
RO-MO-19 0.42158 0.44897 0.03173 0.06303 0.02103 0.25017 0.01316
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Fig. 4. Normalized weights of groups of clinical attributes for the different models.
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prone to frequent headache and the possibility to predict MO is a
compelling challenge in the clinical management of migraine.

Based on previous results [20,23–26], we hypothesized that a
combined approach of kernel machines and RO of performance
would have found a combination of attributes yielding the best
classification performance of MO predictors over a test set. The
results obtained demonstrated, for the first time to our knowledge,
that this approach can be useful in performing an automated pre-
diction for MO, holding the potential for improving model preci-
sion through weighting the relative importance of attributes. The
clinical soundness of our approach was also supported by the find-
ing that the best scoring models in terms of both f-measure and
AUCs were also clinically plausible, as they were all strongly
weighted on clinical features (Group 2), which represent some of
the major determinants of MO development identified in epidemi-
ological studies [5]. Furthermore, RO-MO-08, the best performing
predictor, was substantially weighted on treatment information
(use of prophylaxis, different drug classes, or response to triptans),
whose role in the development of MO and MOH is also generally
accepted [8]. On the other hand, the DBH 19-bp I/D polymorphism,
showed irrelevant weights in three of the four models selected for
DSS construction, with the exception of RO-MO-03, which may
appear in partial disagreement with our previous finding of a sig-
nificant association between DBH 19-bp I/D polymorphism and
MO in inheritance models of genotype-variable association [34].
However, we must acknowledge that while the latter are designed
for statistical inference, ML models are designed for prediction and
not to prove relationships within the data.

As stated in Section 1, MO is strongly associated to MOH,
although it does not necessarily represent its leading cause [2].
Of interest, some of the RO-MO predictors identified in our analysis
also showed a discriminatory power for MOH. MOH was present in
9 of the 234 migraine patients included in the test set, 7 of whom
(78%) had a positive RO-MO-12 predicted class. Hence, in this
patient subset RO-MO-12 was capable of predicting MOH with a
sensitivity and specificity of 89% and 71%, respectively, an AUC of
0.80 and a positive likelihood ratio of 3.1 (95% CI: 2.4–3.9) (data
not shown). Nonetheless, whether this approach might be useful
to identify individuals who will likely develop MOH still needs to
be explored.

On the other hand, the analysis of clinical/biochemical variables
identified other features possibly associated to MO, which were
seldom considered before [36–38]. This is the case of biochemical
features and lifestyle-related attributes, whose relative weight was
considerably represented in RO-MO-08 and RO-MO-12, respec-
tively. Previous studies, in fact, suggested that psychiatric co-
morbidities (e.g. anxiety disorder or depression) [36], smoking
[38], lack of exercise [38] or metabolic syndrome [37] could repre-
sent risk factors for the development of MOH. Here, we provide
further evidence suggesting that an AI-based approach may exploit
significant patterns in data – connoting causality between individ-
ual features and MO – that can be used to further explore the
pathophysiology of MO and MOH in patients with migraine.

The availability of a set of predictive discriminators further
allowed the design of a DSS based on a complementary set of four
predictors, to investigate whether a combined approach may be of
advantage over individual models. The adoption of a model incor-
porating four predictors allowed to perform a risk evaluation on a
five-level stratification and resulted in an overall improvement of
MO risk prediction performance over the single predictors, with
an AUC of 0.83 and ORs of 5.7 and 21.0 for patients classified as
probably (3 RO-MO predictors positive), or definitely at risk of drug
overuse (4 RO-MO predictors positive), respectively. This result
could be of considerable importance in migraine, where patient
education and counseling to avoid MO remains the single most
important way to prevent MOH. The possibility to predict those
patients at risk for MO, indeed, would help the neurologist to



Fig. 5. Comparison between the Receiver Operator Characteristics Curves for ML-based decision support system (DSS) and SVM baseline predictor in the training set.

Fig. 6. Receiver Operator Characteristics Curve for the combined Decision Support System in the test set.
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advise people from an early stage and tailor treatment based on
individual risk.

The results obtained in the present study are barely comparable
with previous studies, as the application of ML to implement med-
ical decision making in migraine has generally addressed the issue
of disease classification [13–20,39] or treatment outcome predic-
tion [21,22]. All these studies demonstrated that intelligent sys-
tems represent a promising approach for migraine classification,
holding potential to revolutionize conventional models of diagnos-
tic deliverance in a contest of personalized medicine. Interestingly,
using ML approaches based on magnetic resonance imaging
resting-state data [19] or somatosensory evoked potentials [39] it
was possible to discriminate migraine patients from healthy sub-
jects with an accuracy of 81% and 88%, respectively. On the other
hand, the issue of ML-based risk prediction of MO in migraine
has never been addressed before. Even the study by Garcia-
Chimeno et al. – reporting an accuracy >90% using SVM – analyzed
the possibility to correctly classify between different migraine phe-
notypes (i.e. episodic vs. chronic migraine with MO) [20]. Con-
versely, in the present study we specifically addressed the issue
of MO risk prediction in patients with various migraine pheno-
types, demonstrating that the use of a combined approach of ker-
nel machines and RO of performance outperforms SVM with an
accuracy of 87%. This percentage is also higher than that reported
by Maizels et al., who demonstrated that the use of a computerized
headache assessment tool (CHAT) was able to correctly recognize
MO in 82.7% of cases [40].

There are, of course, some limitations to acknowledge. First, the
sample size was relatively small, ultimately leading to a small num-
ber of recorded events. Second, the model here reported was
designed and validated on a dataset derived from a biobank/-
database project in which all patients are interviewed with a face-
to-face semistructured questionnaire detailing in depth demo-
graphic and clinical characteristics. Therefore, the population
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enrolled is highly homogenous andwell characterized. Nonetheless,
the data here reported demonstrate that the use of ML algorithms
and ROmodels might be of advantage in developing local classifiers
capable of predicting MO in migraine, thus supporting the neurolo-
gist in the critical phase ofmigraine clinical and therapeutic decision
making. Validation in multicenter prospective studies is needed
before making any ML approach into the clinical practice available.

5. Conclusions

In conclusion, a combination of machine learning and random
optimization – taking into consideration clinical and biochemical
features, drug exposure and lifestyle – might represent a valuable
approach to MO prediction in migraine. This is particularly appeal-
ing in a context of predictive medicine, in which attributes, rou-
tinely collected in electronic health records, may be all used to
design new tools for clinical and therapeutic decision making. This
approach holds the potential for improving model precision
through weighting the relative importance of attributes and
demonstrates that other variables must be considered in MO risk
evaluation, thus strengthening the theory advocated by precision
medicine that data should be considered in a more general associ-
ation, rather than individually.
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