
Article

The choice of test in phase II
cancer trials assessing
continuous tumour shrinkage
when complete responses
are expected
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Abstract

Traditionally, phase II cancer trials test a binary endpoint formed from a dichotomisation of the continuous

change in tumour size. Directly testing the continuous endpoint provides considerable gains in power,

although also results in several statistical issues. One such issue is when complete responses, i.e. complete

tumour removal, are observed in multiple patients; this is a problem when normality is assumed. Using

simulated data and a recently published phase II trial, we investigate how the choice of test affects the

operating characteristics of the trial. We propose using parametric tests based on the censored normal

distribution, comparing them to the t-test and Wilcoxon non-parametric test. The censored normal

distribution fits the real dataset well, but simulations indicate its type-I error rate is inflated, and its

power is only slightly higher than the t-test. The Wilcoxon test has deflated type I error. For two-arm

designs, the differences are much smaller. We conclude that the t-test is suitable for use when complete

responses are present, although positively skewed data can result in the non-parametric test having higher

power.
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1 Introduction

Phase II cancer trials of cytotoxic drugs are conducted to test the anti-tumour activity of a novel
compound. One-arm studies are still routinely used1 for sample-size reasons, although randomised
two-arm designs are becoming increasingly popular due to high subsequent failure rates of drugs
which were successful in one-arm phase II trials.2

In early phase studies, the anti-tumour effect of a drug is traditionally measured by the change in
the sum of diameters of target lesions. The clinical endpoint used, the tumour response rate, is
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formed from a dichotomisation of this underlying continuous endpoint; patients experiencing a
partial or complete response (at least a 30% reduction in the total diameter of target lesions)
according to the response evaluation criteria in solid tumors (RECIST) criteria3 are classed as
treatment successes; others as treatment failures. In addition, patients in whom new lesions appear,
or for whom non-target lesions grow beyond a certain percentage, are classed as treatment failures.

It is well known in the statistical literature4–6 that using a dichotomised continuous variable as an
endpoint leads to loss of power and therefore higher sample size requirements. The idea of directly
using the continuous endpoint to design and analyse cancer trials was originally proposed by Lavin.7

Karrison et al.8 discuss issues in the design of such a trial, and recommend their use. Wason et al.9

quantify the sample size savings for a two-stage trial design, with 50% reductions observed for a
previously designed study. Despite the potential savings, the binary endpoint remains the standard
endpoint.

One issue arising from using continuous endpoints is that of complete responses. Complete
responses signify that lesions are no longer detected and, if one is using the percentage change,
thus have the outcome �100%. If there are several patients experiencing complete responses, then
multiple observed effects of treatment will be tied at �100%. Complete responses are observed
regularly in several areas of cancer, including metastatic breast cancer,10 recurrent ovarian
cancer,11 metastatic gastric cancer,12 and carcinomas of unknown primary site.13 Panageas14

proposed modelling complete responses separately using a trinomial outcome, but this also
discards information contained in the continuous tumour shrinkage. One could test the clinical
binary endpoint, but use the continuous tumour shrinkage to improve the power using the
method of Suissa.15,16 This requires the distribution of the continuous endpoint to be known, and
so may not perform well when there are complete responses.

When directly modelling the continuous shrinkages, the properties of any statistical method
assuming normality of the data, such as the t-test, may deviate from asymptotic properties when
there are complete responses. We briefly discuss this issue further in Section 2.1.1.

Karrison et al.8 suggest that when complete responses are expected, non-parametric tests should
be used. However, a well-fitting parametric model could result in power gains. In this article, we
investigate a range of straightforward tests for hypothesis testing in phase II cancer trials. We
compare the approaches to the Wilcoxon and t-tests, considering one-arm and randomised two-
arm trials separately.

As a motivating example, we use a recently published phase II study in metastatic gastric cancer
by Park et al.12 The parametric approaches generally fit well to the observed data. To assess the type-
I error rate and power of the various approaches, we use a broad range of simulation scenarios.

2 Methods

2.1 One-arm cancer trials

2.1.1 Notation and hypotheses

In a one-arm cancer trial, n patients receive treatment and are assessed for tumour change.
The question of which continuous endpoint to use has not been extensively studied in cancer. The
absolute change is not desirable because its variance depends on the baseline value, and the possible
change in tumour size will be limited by the baseline value. Lavin7 recommends using the logarithm of
the ratio of the final tumour size to the baseline. This recommendation was based on one relatively
small dataset in gastric cancer. Additionally, in the case of complete responses, the observed endpoint
will be minus infinity, which makes fitting a parametric distribution problematic. One could specify a
truncation point, with observations below being replaced by the truncation point. However, results
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could be sensitive to the selection of the truncation point. For these reasons, we use the percentage
change in tumour size. The central-limit theorem implies that the mean percentage change is
asymptotically normally distributed, although convergence to normality may be slow, especially if a
large proportion of observations are complete responses.

Let X1,. . ., Xn be the percentage tumour changes for each patient. The hypotheses tested are H0 :
d> d0 and H1 : d� d0, where d is the mean tumour change. If X1,. . ., Xn are normally distributed,
then H0 can be tested using a one-sample t-test. When several of the Xi’s take the value �100, the
normality assumption is violated, and the t-test may not be valid. The one-sample t-test has been
shown to be robust to a non-normal distribution when skewness and kurtosis were low,17 but many
complete responses may result in a large skewness.

2.1.2 Wilcoxon test

One-sample non-parametric tests, such as the Wilcoxon-signed ranks test, are used to test differences in
the medians rather than the means. This assumes that the underlying population distribution under the
null is symmetric. Thus, for directly testing observed tumour size changes, theWilcoxon test may not be
valid, as the lower limit of �100% prevents symmetry when there are several complete responses.

2.1.3 Censored normal distribution

Let X be normally distributed with mean � and variance s2. Then Y, defined as:

Y ¼
X if X4 c
c if X � c

�
, ð1Þ

is a left-censored normal random variable with location parameter �, scale parameter s2 and
censoring point c, denoted CN(�, s2, c). We assume the distribution of percentage change in
tumour size is CN(�, s2, �100). This is a special case of a tobit model.18

The assumption of the model that the observed percentage change in tumour size can go beyond
�100%, but is censored. This is wrong, but is a useful construct to fit a convenient model. For
interpretation reasons, one may prefer to test the mean of the observed distribution, m(�, s), using
an estimate of the standard error of m from the censored normal likelihood. It is also possible to test
only the location parameter, �, but this requires eliciting values for the mean and standard deviation
of the change. Testing the mean just requires specification of a null value for the mean change.

The log-likelihood of independent identically distributed CN(�, s2, �100) random variables
(Y1,. . ., Yn), can be written as:19

Lð�, �Þ ¼ log
n

nc

� �
þ nc log �

�100� �

�

� �� �
þ ðn� ncÞ logð�

ffiffiffiffiffiffi
2�
p
Þ �

Pn�nc
i¼1 ðYðiÞ � �Þ

2

2�2
, ð2Þ

where � is the cumulative distribution function of the standard normal distribution, nc the number
of truncated responses and (Y(1),. . ., Y(n�nc)

) the order statistics of the untruncated observations.
By maximising (2), the maximum likelihood estimators �̂ and �̂ can be obtained. The joint

distribution distribution of ð�̂, �̂ÞT will be approximately normal with mean (�, s) and variance
Ið�̂, �̂Þ�1, where I , the Fisher information, is given in Cohen.19

In terms of � and s, the mean of the observed distribution is:

mð�, �Þ ¼ �100�ðð�100� �Þ=�Þ þ ð1��ðð�100� �Þ=�ÞÞ �þ
�ðð�100� �Þ=�Þ�

1��ðð�100� �Þ=�Þ

� �
, ð3Þ

where f is the probability density function of the standard normal distribution.
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The mean can be estimated by mð�̂, �̂Þ and its standard error estimated by the delta
method, i.e.:

Varðmð�̂, �̂ÞÞ � 5mð�̂, �̂ÞTIð�̂, �̂Þ�1 5mð�̂, �̂Þ, ð4Þ

where r is the vector of partial derivatives of m(�, s) with respect to � and s.
For a one-sided test of size a, a confidence interval with coverage 1� 2a can be obtained by:

ðmð�̂, �̂Þ ���1ð1� �Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðmð�̂, �̂ÞÞ

p
,mð�̂, �̂Þ þ��1ð1� �Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðmð�̂, �̂ÞÞ

p
Þ. A one-sided test of size

a is to reject inferiority of the new treatment if the upper point of the confidence interval is below the
value supposed for the mean under the null hypothesis.

This procedure makes two assumptions. The first is that the non complete-responses can be
modelled as a normal distribution truncated below at �100%, and the second that two parameters
are sufficient to model both the truncated component of the distribution and the probability of
complete response. If the first assumption is incorrect, it may be possible to transform the data so
that the normality assumption is valid. Inferences from tobit models are sensitive to deviations from
the assumption of normality.20 Thus, if the second assumption is incorrect, use of the model described
in this section could lead to invalid inferences.

2.1.4 Unrestricted probability of complete response

A more flexible distribution is a mixture distribution of a point mass, p, at �100% and a normal
distribution truncated below at �100%. The mixture probability is not constrained as it was
previously. This is similar to a zero-inflated model with continuous data (the literature on this
subject is discussed in Mahmud et al.21 and Li et al.22).

The log-likelihood of this distribution is:

Lð�, �, pÞ ¼ log
n

nc

� �
þ nc logð pÞ þ ðn� ncÞ logð1� pÞ �

ðn� ncÞ

2
logð2�2Þ

� ðn� ncÞ log 1��
�100� �

�

� �� �
�

1

2�2

Xn�nc
i¼1

ðYðiÞ � �Þ
2: ð5Þ

Since the log-likelihood decomposes into terms involving p, and terms not involving p, the MLE

of p can be estimated immediately as
nc
n
.

The mean of the observed data will be:

muð�, �, pÞ ¼ �100pþ ð1� pÞ �þ
�ðð�100� �Þ=�Þ�

1��ðð�100� �Þ=�Þ

� �
, ð6Þ

from which the hypothesis of inferiority can be tested in a similar manner to before.

2.2 Randomised two-arm cancer trials

2.2.1 Notation

In a two-arm cancer trial, n1 patients are randomised to the control treatment, and n2 to the
treatment being tested. All patients are assessed for tumour size change. The parameter tested is
the mean difference between control and intervention groups, d, with hypotheses H0 : d� d0 andH1 :
d> d0. The trial is powered at d¼ d1.
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2.2.2 Two-sample parametric tests

The two proposed parametric methods are straightforward to extend to a two-arm study. The
estimated difference between arms, together with its standard error can be used to form a
confidence interval for the difference in means and a one-sided test of H0 performed.

2.3 Simulation study

To compare the various approaches, we performed simulation studies under a range of scenarios:

(1) All patients have normally distributed tumour size changes with all changes of below �100%
being set to �100%.

(2) Observed tumour changes follow a skew-normal random variable,28 with all changes of below
�100% being set to �100%. The shape parameter is varied to change the direction and
magnitude of the skewness.

(3) For each patient, a Bernoulli random variable and a normal random variable truncated below at
�100% are generated. If the Bernouli variable is 1, then the patient is a complete response,
otherwise they have the continuous component as their observed change.

For each scenario, we examine a range of parameters, assessing the type-I error rate and power
of each method at significance level 5%. For each parameter combination, we generate 250000
replicate datasets under the null, and another 250 000 under the alternative. With this many
replicates, the Monte-Carlo standard error of the estimated type-I error rate is 0.0004.

For two-arm trials, the null hypothesis tested is no difference in means (t-test, censored-normal,
mixture model) or medians (Wilcox) between arms. For one-arm trials, the null hypothesis tested is
whether the mean/median is equal to a specified null value. For example, for the first example, the
theoretical mean is given in Equation (3), and if the probability of complete response is less than
50%, the median is the location parameter, �.

3 Results

3.1 Properties of tests when observed data is censored normal

First, we examine the performance of the methods under scenario 1, i.e. that the percentage tumour
size changes are normally distributed, and complete responses are those patients whose normal
random variable is below �100%.

Parameters varied were �0, the location parameter of the censored normal distribution under the
null, �1, the location parameter under the alternative and s, the shape parameter of the censored
normal distribution. For two-arm trials, under the null hypothesis, both treatments have location
parameter �0, and under the alternative, the control treatment has location parameter �0, with the
new treatment having location parameter �1. The shape parameter, s, is assumed to be the same in
both arms under both hypotheses.

Values of �0 considered were {�60, �70, �80}, with �1 being �0� 10. Values of s considered
were {20, 30}. For each combination of (�0, �1, s), the sample size n was chosen as the minimum
number that gave above 80% power at a 5% one-sided significance level using a t-test were the
distribution not censored at �100%. For single-arm trials, this gives a sample size of 25 and 56 for
s¼ 20, 30 respectively. For randomised trials, it gives a sample size per arm of 50 and 112,
respectively. This covers a range of sample sizes that one might expect to see in a well-powered
phase II trial.
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Table 1 shows the type-I error rate and power of each of the methods proposed for single-arm
trials. The type-I error rate is generally higher than nominal for the non-parametric tests and lower
than nominal for the parametric tests.

The Wilcoxon test performs well when the probability of complete response is low. The power is
only slightly less than that of the parametric methods. As the probability of complete response
increases, the type-I error rate and power decrease. The decrease is worse for the larger sample
size. Thus, the Wilcoxon-signed rank test should not be applied directly to single-arm data with
many complete responses.

The two parametric tests proposed in this article have a higher inflation in type-I error rate than
the t-test. This is because the parametric tests rely on asymptotics: for the distribution of the
maximum likelihood estimators and also for the delta method approximation of the standard
error of the observed mean. The inflation is lower for s¼ 30, i.e. when the sample size is higher.
There does not appear to be much difference in allowing the complete response to be unconstrained,
with a very slight decrease in type-I error rate and power.

The t-test generally performs well. It has the lowest deviation from the nominal significance level
of all the methods, and does not lose much power compared to the two more sophisticated
parametric methods. It is also much simpler to apply.

Table 2 provides results for randomised trials. For this set of simulations, there is very little
difference in the performance of each method for randomised trials. All methods have close to
nominal type-I error rate, although the two parametric methods are still somewhat inflated.

All results in Table 2 assume the same variance in each arm. This may not be the case, but the
only method which explicitly assumes it is the two-sample t-test. In the case of both the variance and
the sample size differing in each arm, the type-I error rate and power can be affected.24,25 We also
considered using a t-test which allows unequal variances. This showed no loss in power, therefore we
recommend it for its additional robustness.

3.2 Properties of tests when observed data is censored skew-normal

Next, we simulated datasets where the outcomes were censored skew-normal random variables. We
only considered the case where the mean change under the null and alternative are �70% and
�80%, respectively, and the standard deviation of the underlying skew-normal random variables
is 30. The shape parameter, was varied between �10 and 10 in increments of 1.25. For each value of

Table 1. Type-I error rate and power under simulation scenario 1 for single-arm trials.

Type-I error rate Power

Parameters n P(CRWH0) P(CRWH1) W T CN CNU W T CN CNU

(60,70,20) 25 0.023 0.067 0.048 0.053 0.063 0.062 0.758 0.784 0.812 0.811

(60,70,30) 56 0.091 0.159 0.040 0.055 0.060 0.059 0.736 0.789 0.802 0.799

(70,80,20) 25 0.067 0.159 0.045 0.056 0.067 0.067 0.744 0.785 0.813 0.810

(70,80,30) 56 0.159 0.252 0.027 0.058 0.064 0.063 0.648 0.780 0.796 0.790

(80,90,20) 25 0.159 0.309 0.035 0.064 0.076 0.074 0.673 0.777 0.806 0.802

(80,90,30) 56 0.252 0.369 0.010 0.063 0.069 0.067 0.435 0.766 0.783 0.775

Method abbreviations: W – Wilcoxon signed rank test; T – t-test; CN – censored normal; and CNU – censored normal with

unrestricted probability of complete response.
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the shape parameter, location and scale parameters were found under the null and alternative such
that the means and standard deviation were as specified.

Figure 1(a) and (b) show the type-I error rate and power, respectively, of the Wilcoxon test and
the three parametric approaches, as the shape parameter varies, for single-arm trials.

The Wilcoxon test is the most sensitive to non-zero skewness of the four approaches. The type-I
error rate is very large for large negative skewness, and very low for large positive skewness. This
may be partly due to deviations from the assumption of a symmetric distribution. As in the first
scenario, there does not seem to be any advantage in using the more sophisticated parametric
procedures over that of using the t-test. There is a difference in the type-I error rate and power,
but no single technique shows a consistent advantage.

As in the previous simulation scenario, there is much less difference between the techniques for
randomised trials (data not shown). Again, the two censored normal approaches had higher
deviations from the nominal significance level – lower than nominal for negative skewness and
higher than nominal for zero to positive skewness. An observation of interest was that the power
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Figure 1. Type-I error rate and power of the different approaches as the shape parameter changes, for simulation

scenario 2.

Table 2. Type-I error rate and power under simulation scenario 1 for randomised trials.

Type-I error rate Power

Parameters 2n P(CRWH0) P(CRWH1) W TS TD CN CNU W TS TD CN CNU

(60,70,20) 100 0.023 0.067 0.049 0.049 0.049 0.053 0.054 0.778 0.794 0.794 0.806 0.807

(60,70,30) 224 0.091 0.159 0.051 0.050 0.050 0.052 0.053 0.778 0.784 0.784 0.792 0.791

(70,80,20) 100 0.067 0.159 0.050 0.050 0.050 0.054 0.055 0.777 0.786 0.786 0.799 0.798

(70,80,30) 224 0.159 0.252 0.050 0.050 0.050 0.052 0.053 0.773 0.771 0.771 0.780 0.779

(80,90,20) 100 0.159 0.309 0.050 0.050 0.050 0.054 0.055 0.769 0.766 0.766 0.781 0.779

(80,90,30) 224 0.252 0.369 0.050 0.050 0.050 0.052 0.053 0.759 0.748 0.748 0.758 0.756

Method abbreviations: W – Wilcoxon rank-sum test; TS – t-test assuming same variance between arms; TD – t-test allowing

difference variances; CN – censored normal; CNU – censored normal with unrestricted probability of complete response.
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of the Wilcoxon test was generally lowest at zero skewness. The power increased as the skewness
deviated from zero. The parametric techniques have highest power for large negative skewness, with
the power decreasing monotonically as the shape parameter increased. This is likely due to the
probability of complete response increasing as the skewness goes from positive to negative.

3.3 Properties of tests when complete response probability
is unconstrained

We next consider the third scenario – where the probability of complete response is independent of
the continuous tumour change.

The scale parameter for the truncated normal component is set to be 30, with the location
parameters under the null and alternative being chosen so that the mean tumour change,
including complete responses, is �70 and �80, respectively.

We examined the case where the difference between p1, the probability of complete response
under the alternative, and p0, the probability under the null, was constant. The difference was
fixed at the difference when determined by the tail-probabilities of the normal distribution. With
means �70, �80 and standard deviation 30, p0 and p1 are equal to 0.159 and 0.252, respectively.
Thus, we fix the difference between p0 and p1 at 0.093, but vary p0. Values of p0 considered were
{0.05, 0.1, 0.15, 0.2, 0.25}.

In single-arm cases, we found that the type-I error rate of the Wilcoxon test increased modestly
with p0, from 0.016 at p0¼ 0.05 to 0.022 at p0¼ 0.25. The type-I error rate of the restricted censored
normal approach also increased at about the same relative rate - from 0.055 to 0.073. However, both
the t-test and the unrestricted censored normal approach maintained their type-I error rate at
around 0.06 and 0.065, respectively as p0 increased. The power showed a large gap, implying
again that for single-arm trials it would be a mistake to apply the Wilcoxon test to datasets with
complete responses.

A surprising result was that the unrestricted censored normal test showed no power advantage.
Its sole advantage was that the type-I error rate was closer to nominal. Even then the t-test showed
less inflation in type-I error rate and around the same power.

For randomised trials, the only observation of note was that as p0 increased, the power of
the Wilcoxon test dropped considerably more than the parametric approaches. At p0¼ 0.05,
the gap was around 0, but at p0¼ 0.25, it was 5%. Again, there was no noticeable advantage in
using the censored normal approaches over using the t-test. Of the two censored approaches, the
deviation from 5% significance level was lower using the unconstrained probability of complete
response.

3.4 Case study

As a case study, we use published data from Park et al.,12 a phase II study in metastatic gastric
cancer. The trial had one arm, the treatment being a triplet regimen of S-1, irinotecan and
oxaliplatin. A total of 41 patients were assessed, 7 of whom were complete responses.

As currently carried out, phase II cancer trials do not test hypotheses about the continuous
change, so a null value being tested is not available. Instead, we compare the confidence intervals
for the observed mean from the t-test and the two censored normal approaches as well as the
confidence interval for the observed median from the Wilcoxon test.

First, we compare the fit of the two censored normal approaches to the observed data. Figure 2
shows the empirical cumulative density function and the model fit from each approach.
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Figure 2 shows little noticeable difference in the fit of the two censored normal approaches. Both
tend to fit well in the middle of the distribution, but not at the left tail. The unrestricted model fits
better in the right tail, although the restricted model appears to model the probability of complete
response sufficiently well.

Table 3 shows the log-likelihood, Akaike information criterion (AIC) and fitted probability of
complete response for each model.

In terms of the log-likelihood and the AIC, there is little difference between the fit of the models
for this dataset. There is a small difference in the fitted probability of complete response, but the
standard error of the estimate for the restricted model is 0.063, so the confidence interval includes
0.171, the fitted probability of complete response under the unrestricted model.

The standard errors of the mean tumour change for the restricted and unrestricted models are
4.11 and 4.28, respectively using the delta method. Similar results were found using 5000 bootstrap
samples (standard errors of 4.26 and 4.23, respectively).

The 95% confidence intervals for the mean tumour change are (�77.7%, �61.6%) from the
restricted censored normal approach, (�78.8%, �62.1%) from the unrestricted approach and
(�79.30%, �61.8%) from the t-test (i.e. by assuming the data is normally distributed). The 95%
confidence interval for the median, from the Wilcoxon test, is (�82.1%, �64.1%). The confidence
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Figure 2. Observed quantiles of tumour change data from case-study, and fitted quantiles from the censored normal

and unrestricted censored normal models.

Table 3. Summary of model fit for the two censored normal procedures

Restricted censored normal Unrestricted censored normal

Log-likelihood �156.1 �155.3

AIC 316.3 316.6

P(CR) (standard error) 0.203 (0.063) 0.171 (0.059)
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intervals for the mean do not vary greatly between the methods, as one would expect from the
simulation results. However, the width of the confidence interval from the t-test is slightly wider.

4 Discussion

In this article, we have considered which test to use for comparing tumour size changes (either
between two groups, or to historical data) in phase II cancer trials when complete responses are
expected. For randomised two-arm designs, there appears to be little difference in the performance
of each test examined. Using the Wilcoxon rank-sum test provides equally good power to using the
t-test. This agrees with earlier work on the two-sample case by Lachenbruch.26,27 The two more
sophisticated parametric approaches we examined have slightly inflated type-I error rates.

For one-arm designs, which are common in phase II cancer trials, there is more of a difference.
The Wilcoxon-signed rank test has a lower than nominal type-I error rate, and a loss in power. The
t-test shows a slight inflation in type-I error rate. However, the degree of inflation is lower than that
of the two parametric approaches. Although the two parametric approaches provide a slight
increase in power, this increase is less than 1%. Because of the extra complexity and the small
gain, we would still recommend the t-test for use in practice.

One factor that makes a difference is the skewness of the data. In single-arm trials, negative
skewness resulted in the Wilcoxon test having the lowest power of the approaches, whereas positive
skewness meant it had the highest. For two-arm trials, the difference was again much smaller.

The censored parametric methods may be improved by testing the underlying location parameter
instead of the observed mean. For single-arm trials, this would be difficult because it would require a
null value for the location parameter to be specified before the trial. For two-arm trials, this is not
required. It may still be not desirable however, as a difference in location parameter between arms
would not be as interpretable as a difference in observed means, and would be more difficult to
communicate to non-statisticians.

This article has considered cytotoxic agents, which are designed to shrink the tumour. More
recently, cytostatic agents have been introduced, which are designed to control the tumour
growth. For trials of cytostatic agents, complete responses are unlikely, and so the conclusions
presented in this article are less relevant. However, cytotoxic drugs continue to be developed and
tested.

The methods in this article assume that the only endpoint of interest is the change in size of target
lesions. Real trials are often more complex, with death and toxicity occuring, which causes patients
to drop out. This study presents important conclusions about modelling target tumour size when
complete responses are present. Incorporating these conclusions into more complicated models that
allow for death and toxicity is the subject of ongoing work.
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