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ABSTRACT:  The objective of  this study was 
to estimate genetic parameters of  antibody re-
sponse and reproductive traits after exposure to 
porcine reproductive and respiratory syndrome 
virus. Blood samples were taken approximately 
60 d after the outbreak. Antibody levels were 
quantified as the sample-to-positive ratio (S/P 
ratio) using a fluorescent microsphere assay. 
Reproductive traits included total number born 
(TNB), number born alive (NBA), number still-
born (NSB), number mummified  (NBM), and 
number born dead (NBD). Mortality traits were 
log transformed for genetic analyses. Data were 
split into prior, during, and after the disease 
outbreak phases using visual appraisal of  the 
estimates of  farm-year-week effects for each re-
productive trait. For NBA, data from all phases 
were combined into a reaction norm analysis with 
regression on estimates of  farm-year-week effects 
for NBA. Heritability for S/P ratio was estimated 
at 0.17  ± 0.05. Heritability estimates for repro-
duction traits were all low and were lower during 
the outbreak for NBA but greater for mortality 
traits. TNB was not greatly affected during the 
outbreak, as many sows that farrowed during 
the outbreak were mated prior to the outbreak. 
Heritability for TNB decreased from 0.13 (prior) 

to 0.08 (after). Genetic correlation estimates be-
tween prior to and during the outbreak were high 
for TNB (0.86 ± 0.23) and NBA (0.98 ± 0.38) but 
lower for mortality traits: 0.65  ± 0.43, −0.42  ± 
0.55, and 0.29  ± 1.39 for LNSB, LNBM, and 
LNBD, respectively. TNB prior to and after the 
outbreak had a lower genetic correlation (0.32 ± 
0.33). In general, genetic correlation estimates of 
S/P ratio with reproductive performance during 
the outbreak were below 0.20 in absolute value, 
except for LNSB (−0.73  ± 0.29). Based on the 
reaction norm model, estimates of  genetic cor-
relations between the intercept and slope terms 
ranged from 0.24 ± 0.50 to 0.54 ± 0.35 depending 
on the parameterization used, indicating that se-
lection for the intercept may result in indirect se-
lection for steeper slopes, and thus, less resilient 
animals. In general, estimates of  genetic correla-
tions between farm-year-week effect classes based 
on the reaction norm model resembled estimates 
of  genetic correlations from the multivariate 
analysis. Overall, compared to previous studies, 
antibody S/P ratios showed a lower heritability 
(0.17  ± 0.05) and low genetic correlations with 
reproductive performance during a porcine re-
productive and respiratory syndrome outbreak, 
except for the LNSB.
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INTRODUCTION

Porcine reproductive and respiratory syndrome 
virus (PRRSV) severely affects both the breed-
ing and growing sectors of the swine industry. In 
the breeding sector, PRRS causes abortions, still-
borns, mummified piglets, pre-weaning mortality, 
and embryonic death (Lunney et al., 2016). It was 
estimated that $302 million (~45%) out of the an-
nual $663 million in costs associated with problems 
caused by PRRS are due to losses in the breed-
ing sector (Holtkamp et  al., 2013). This was very 
different than estimates from a previous study by 
Neumann et al. (2005), where only ~12% was due 
to breeding herd losses. A relatively large amount 
of work has been done on the growing pig sector 
to reduce the economic impact of PRRS (Lunney 
et al., 2011) and less attention has been focused on 
reducing the effects of the disease in breeding herds 
(Lunney et al., 2016). One reason is that, prior to 
the availability of high-density genotyping, genetic 
analyses required a pedigree, which is typically not 
available for sows at the commercial level due to 
pooling of semen. Because nucleus and multiplier 
herds are managed to maximize biosecurity and 
minimize the risk of exposure to major pathogens 
such as PRRS, studies on outbreaks in herds with 
pedigreed sows are rare. Although pedigrees are 
not required with genomics, genotyping is still rela-
tively expensive, and it still requires high-quality 
data, which is typically collected in nucleus herds. It 
is also much more expensive to set up experimental 
infection trials for reproductive traits in sows, as 
done in the PRRS Host Genomics Consortium 
nursery pig trials (Lunney et al., 2011). Breeding for 
increased resistance to PRRS is difficult in growing 
pigs and the problem becomes even more difficult 
for reproductive performance.

Antibody level in sows following an outbreak 
with a PRRSV could be used as an indicator trait 
for selection. Serão et al. (2014) demonstrated that 
antibody level measured as sample-to-positive (S/P) 
ratio from a commercial IDEXX ELISA analysis 
of blood samples taken after a PRRS infection was 
highly heritable (0.45) and had moderate-to-strong 
genetic correlations with many reproduction 
traits during the outbreak (~0.7 in absolute value 
for several traits). Since antibody levels under a 
real challenge may be impractical for commercial 
breeding programs, Serão et  al. (2016) suggested 
that antibody following vaccination with a modi-
fied live virus (MLV) could be used as an indicator 
trait to select for reproductive performance under 
PRRS (Madapong et al., 2017). To the best of our 

knowledge, Serão et al. (2014) is the only study that 
has investigated genetic relationships between anti-
body level and reproductive performance under a 
PRRSV challenge. Therefore, it is necessary to val-
idate these findings in a larger, independent PRRSV 
outbreak study.

To date, multivariate and reaction norm mod-
els are the two main methods that have been used 
for analysis of disease outbreak data. Lewis et al. 
(2009) first split reproductive data from a commer-
cial herd that experienced a PRRS outbreak into 
healthy and PRRS phases and found that splitting 
the data based on trait rolling averages was bet-
ter than using diagnostic lab confirmation dates. 
Estimated genetic correlations of reproductive 
performance between healthy and PRRS phases 
ranged from −0.13 to 0.98, although many genetic 
correlations were moderate or low between phases 
(Lewis et al., 2009). Lewis et al. (2009) only sepa-
rated traits into two phases, while it is known that 
PRRS is a persistent infection (Wills et  al., 2003; 
Lunney et al., 2016), suggesting that the post-out-
break phase may need to be considered as a sep-
arate phase, creating three phases (prior, during, 
and after the outbreak). In addition, estimates of 
genetic correlations between reproductive traits 
within phase may also give some insight into how 
disease changes the relationship among traits dur-
ing the different phases of an outbreak.

Reaction norm models are a common way 
to model genotype-by-environment interactions 
(G × E) but they have only more recently been 
utilized for litter size in pigs. Reaction norm 
models are an application of  random regression 
(longitudinal) models that regress the response 
variable on a continuous environmental vari-
able. These reaction norm models yield estimates 
of  breeding values for an intercept term that is 
highly correlated to estimates of  breeding values 
from routine genetic evaluations (Knap and Su, 
2008) and estimated breeding values for a slope 
term that describes the additive genetic sensi-
tivity to changes in the environment (when using 
an additive genetic relationship matrix). Reaction 
norm models have been used to analyze dis-
ease outbreak data by regressing phenotypes on 
estimates of  continuous farm-year-week effects 
or on an index of  challenge load from multiple 
traits (Mathur et  al., 2014; Rashidi et  al., 2014; 
Herrero-Medrano et al., 2015).

The objectives of the current study were to 
(i) estimate the genetic parameters of reproduc-
tion traits prior, during, and after a PRRSV out-
break, and among traits within each phase, (ii) 
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estimate heritability and genetic correlations of 
sample-to-positive (S/P) ratio from blood during 
the PRRS outbreak with reproductive perform-
ance during the outbreak to validate findings from  
Serão et  al. (2014), and (iii) evaluate a reaction 
norm model to model the effect of PRRS on NBA.

MATERIALS AND METHODS

Blood sampling of sows was approved by the 
Institutional Animal Care and Use Committee 
(IACUC, 4-15-8006-S). Reproductive data was 
retrieved from an existing database that included 
data collected as part of a routine breeding pro-
gram and, therefore, did not require approval from 
an animal care and use committee.

Outbreak, Inoculation, and Antibody test

Three breeding farms from The Maschhoffs 
(Carlyle, IL), located in close proximity to each 
other in Illinois, USA, broke with a PRRSV strain 
in the spring of 2015. These farms included pedi-
greed purebred Yorkshire (YORK) and Landrace 
(LR) sows. Farms 1 and 3 contained both breeds, 
while farm 2 contained only the LR breed. After 
suspect abortions, samples were sent for diagnos-
tics and the 1-7-4 restriction fragment length poly-
morphism (RFLP) pattern (strain) of PRRS was 
confirmed by PCR analysis. This strain is a highly 
virulent strain. A nearby farm first broke with this 
PRRSV strain. To protect some high indexing sows 
in farm 1, they were preemptively sent to a quar-
antine facility to be tested for PRRS. After clear-
ing these tests, these sows were then transferred to 
one of the other farms to farrow. Farm 1 was con-
firmed positive on March 5 and was then depop-
ulated to try to protect other nearby farms 2 and 
3. Subsequently, farms 2 and 3 broke with PRRS 
and were then closed to new animals. Farm 2 was 
confirmed positive on April 16 (42 d after farm 
1) and farm 3 on April 9 (35 d after farm 1). After 
the initial confirmed outbreak with several positive 
samples, all sows on farms 2 and 3 were inoculated 
with live virus of a 1-7-4 RFLP pattern (strain) that 
was isolated at each farm (same strain) approxi-
mately 3 wk later, on May 5 for farm 2 and on April 
30 for farm 3. Inoculation was intranasal at farm 2 
and intramuscular at farm 3. All sows were injected 
with an MLV vaccine ~30 d after the inoculation. 
Blood samples for antibody levels were taken from 
the anterior vena cava with vacutainer serum tubes 
from sows on farm 2 on June 18 and from farm 3 on 
June 16, 17, and 19. This was ~60 d after the initial 

outbreak. Antibody levels taken at this time point 
should have plateaued for most animals (Lunney 
et  al., 2016). Serum tubes were centrifuged at the 
farm and these serum samples were sent to Kansas 
State University for analysis. Antibody level against 
the PRRSV N-protein was measured using a fluor-
escent microsphere immunoassay (Luminex) and 
converted into a standardized sample-to-positive 
(S/P) ratio using positive and negative controls. This 
assay is conceptually similar to an indirect ELISA.

Reproductive Data and Phases

Reproductive data obtained from routine data 
collection in these breeding herds included total 
number born (TNB), number born alive (NBA), 
number stillborn (NSB), number mummified 
(NBM), and number born dead (NBD; the sum of 
NSB + NBM). Raw weekly means for each farm are 
presented in Figure 1. For genetic analyses, mortality 
traits NSB, NBM, and NBD were all log transformed 
as ln(phenotype + 1) (Lewis et al., 2009) and will be 
referred to as LNSB, LNBM, and LNBD, respect-
ively. Records on reproductive traits were separated 
into three phases (prior, during, and after the out-
break) based on estimates of farm-year-week (FYW) 
effects (extracted from the farrowing date) for each 
reproductive trait that were obtained from the follow-
ing linear mixed model for each trait separately

yijklm = PARi + FARMj + BREEDk

+ fywl + sowm + eijklm,

where PAR is the parity effect (i=1,…,8), FARM is 
the farm effect (j=1,2,3), and BREED is the breed 
effect (k=1,2), which were fitted as fixed effects, 
while fyw is the random FYW effect, assumed 
to follow ~N(0, Iσ2

fyw) in which σ2
fyw is the FYW 

variance and I  is an identity matrix, and sow is a 
random sow effect, assumed to follow ~N(0, Iσ2

sow) 
in which σ2

sow is the sow variance (following Rashidi 
et al., 2014). To make all traits comparable, esti-
mates of  FYW effects for each trait were stand-
ardized by their respective overall SDs (based on 
the variance estimated for FYW using lme4 in R; 
Bates et al., 2015) and plotted over time (Figure 2).  
Visual appraisal was used to split the data for each 
trait into three phases because it was known when 
the outbreak occurred (dates given above, similar 
to Serão et al., 2014). Preliminary analysis showed 
only minor changes in variance component esti-
mates (<0.1 for genetic correlations) when slightly 
different dates (by 1 or 2  wk) were used to split 
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the data into phases because these different dates 
changed the data sets very little. The PRRS out-
break phase for farm 1 was identified to be from 
March 12 to April 1 (20 d) and also from May 
7 to May 27 (20 d), after sows were moved. The 
PRRS outbreak phase for farms 2 and 3 was from 

May 7 to August 5 (90 d). Based on these dates, 
data from each reproductive performance trait 
were separated into three traits (prior, during, and 
after), which were designated with subscripts p, 
d, and a, respectively, on the trait acronym (e.g., 
TNBp for TNB prior to the outbreak). Transition 

Figure 2. Standardized estimates of farm-year-week random effects for litter size traits from a linear mixed model. Shaded boxes represent the 
PRRS outbreak phase.

Figure 1. Weekly means for litter size traits from each farm. Shaded boxes represent the PRRS outbreak phase.
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periods were masked for this analysis by remov-
ing data just prior to and after the outbreak phase 
(following Herrero-Medrano et al., 2015) because 
these records represented a “grey area” for classi-
fication. For farm 1, data from 1 wk prior to the 
first outbreak and from the 3 wk between the two 
outbreaks were removed. For farm 2, data from 
1  wk prior to and 2  wk after the outbreak were 
removed. For farm 3, data from 1 wk prior to the 
outbreak phase and 7 wk after the outbreak were 
removed. The latter were removed because rolling 
averages for TNB fluctuated continuously during 
these weeks, possibly from a rebound after the 
outbreak, which made it unclear how these data 
should be classified (see Figure 2).

Multivariate Variance Components

Variance components among traits were esti-
mated both between phases (e.g., TNBp with TNBd) 
and within phase (e.g., TNBd with NBAd) by basic 
bivariate animal models, using ASReml4 (Gilmour 
et al., 2015). Heritability estimates for a trait were 
averaged over the bivariate analyses. The model 
used for reproductive traits was as follows:

y = Xβ + Zu + e,

where β included the fixed effects of  parity (1 
through 8), farms (1, 2, or 3), breed (YORK, LR), 
and farm-year-month (FYM), and the 30-d roll-
ing herd average of  the trait analyzed as a fixed 
covariate (following Lewis et al., 2009). The vector 
u represents the random additive genetic effect of 
the sow [~N(0, Aσ2

sow)] where σ2
sow is the sow vari-

ance and A is a matrix of  additive genetic relation-
ships among pigs, and the vector e represents the 
random residual term [~N(0, Iσ2

e )]. Very few sows 
had repeated records for traits prior to and after 
the outbreak and in these cases, the second record 
in the dataset was removed such that a repeatability 
model was not needed. The final multivariate data-
set included 2,014, 1,428, and 1,626 records for  
the prior, during, and after phases, respectively. 
The model used for S/P ratio (only recorded dur-
ing the outbreak) also was a simple animal model, 
with parity, breed, date of  sample collection (June 
16 to 19), and the plate of  the assay (96-well plates 
used) as fixed effects. Collection date was con-
founded with farm (see above) and, therefore, farm 
was not fit in the model. Random effects were the 
same as for the reproduction traits. The pedigree 
included at least three generations to calculate the 

numerator relationship matrix (A), for a total of 
6,202 animals. Animal models for variance com-
ponents were analyzed with ASReml 4 (Gilmour 
et al., 2015).

Reaction Norm Analysis

Reaction norms were used to analyze NBA by 
regressing on estimates of farm-year-week (FYW) 
effects for NBA (estimates ranging from −4.11 to 
2.33) that were obtained using the animal mod-
els described above for each phase. For this ana-
lysis, the entire dataset was kept intact for each 
trait, without splitting it into phases. This dataset 
included 6,328 records from 3,378 sows. These sows 
recorded between one (1,397), two (1,209), three 
(575), and four (197) records (farrowings). The 
healthy phase started at approximately −1 on the 
FYW scale, which would include data from both 
prior to and after the PRRS outbreak phase. The 
model used was as follows:

y = Xb + Qa + Zpe + e,

where the fixed effects vector b included breed, 
farm, parity, status (prior, during, after), and the 
fixed covariate of FYW effect estimates for NBA, 
with corresponding design matrix X. Matrix Q 
contains coefficients for the random additive gen-
etic effects (a), which included correlated random 
intercepts (ai) and random slopes (as) on FYW 
effect estimates for each individual in the pedigree, 
connected through the pedigree relationship ma-
trix. The variance–covariance structure of a was as 
follows:

�Var [a] = Var

ñ
ai

as

ô
= GRN ⊗ A =

ñ
Aσ2

ai
Aσai ,as

Aσai ,as Aσ
2
as

ô
,

where GRN  is the genetic (co)variance matrix, with 
σai ,as, σ

2
ai, and σ2

as denoting the covariance and addi-
tive genetic variances for intercept and slope, re-
spectively. Three different scales were used for the 
random regression coefficients for the 170 unique 
FYW classes (Φ matrix): (i) the raw scale of esti-
mated FYW effects, (ii) Legendre polynomial terms 
from the FYW effects (leg function in ASReml), 
and (iii) orthogonal polynomial terms based on 
the pol function in ASReml (Gilmour et al., 2015). 
No information is reported on model fit, as these 
were equivalent models. Vector pe contains random 
permanent environmental effects for animals with 
records, with matrix Z being diagonal with only an 
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intercept term (1/0), as in a normal repeatability 
model. More complex models for the permanent 
environmental effects did not converge, possibly 
due to the low number of records per sow (Meyer, 
2005). Finally, vector e contains residuals which, 
after a preliminary analysis (fitting many different 
group sizes), were fitted using heterogeneous re-
sidual variances with five discrete classes based on 
the NBA FYW effect estimates {−Inf, −2, −1, 0, 1, 
Inf}. Thus, the residual variance was structured as 
follows:

�
Var
î
e
ó

= Var




e1

e2

e3

e4

e5



=




Iσ2
e1

0 0 0 0
0 Iσ2

e2
0 0 0

0 0 Iσ2
e3

0 0
0 0 0 Iσ2

e4
0

0 0 0 0 Iσ2
e5




.

Estimates of genetic correlations of NBA between 
FYW classes were obtained from the estimated gen-
etic covariance matrix Ĝ RN  using ΦĜ RNΦ

′, which 
results in a square, symmetric matrix with dimen-
sions equal to the number of FYW effects that is 
used to calculate Φ. Estimated breeding values for 
each animal for each FYW level were calculated as 
Φ(q×2)Û ′

(2×n), where Û  is a matrix of estimates of 
the random intercept and slope effects from the re-
action norm model, where q is equal to the number 
of FYW levels (170), and n is the number of ani-
mals in the pedigree (n  =  6,451). For the current 
data, this resulted in a 170 × 6,451 matrix of EBVs.

RESULTS

Summary Statistics Across Phases

Table 1 shows means and SD for the five re-
productive traits during the three phases (prior, 
during, and after). The average TNB was similar 
across phases, although slightly lower after the out-
break. All other traits were greatly affected by the 
PRRS infection. The average NBA dropped from 
10.6 prior to the outbreak to 7.7 during the PRRS 

phase. The average NSB rose from 0.5 to 1.2 per 
litter during the outbreak. The average NBM went 
from 0.3 prior to the outbreak to 2.6 per litter dur-
ing the outbreak. Finally, average NBD went from 
0.8 to 3.8 during the PRRS outbreak. All four traits 
(removing TNB) returned to their pre-challenge 
average after the outbreak.

Identification of Outbreak Phases

Figure 1 displays the raw averages by FYW 
for each trait. The severity of the disease during 
the PRRS outbreak in the spring of 2015 is evi-
dent. Weekly means for TNB did not show large 
changes over time but did trend downward starting 
midway through the PRRS phase. All other traits 
were affected much more severely by the PRRS out-
break as expected. NBA dropped below 7 pigs in 
all three farms. For farm 2, the mean for NBD was 
higher than the mean NBA for 1 wk. Farm 2 had 
a spike in NSB immediately after the outbreak and 
then returned to a normal level after approximately 
5 wk. Farm 3 was slightly less affected by the out-
break in terms of NBA and NBD. An important 
note is that the majority of the in utero mortality 
during the PRRS phase was due to mummies (68%) 
and not stillborns. Prior to and after the outbreak, 
the percent of deaths due to mummies was 36% and 
42%, respectively. Standardized estimates of FYW 
effects followed the same trends as the raw means 
(Figure 2). The PRSS outbreak corresponded to 
spikes in mortality traits and drops in the estimates 
of FYW effects for TNB and NBA. The most ex-
treme standardized effects were from farm 2, where 
some estimates were as high as four. Trends in esti-
mates over time were similar for all traits, except 
for TNB. For farm 2, the NSB returned to baseline 
quicker than farm 3.

Heritability of Reproduction Traits Across Phases

Heritability estimates were ≤0.13 for all repro-
ductive traits for all phases (Table 2). The estimate 

Table 1. Mean reproductive performance prior to, during, and after the PRRS outbreak (with SD in 
parentheses)

Phase1 Count TNB2 NBA2 NSB2 NBM2 NBD2

Prior 2,478 11.4 (3.4) 10.6 (2.3) 0.5 (0.9) 0.3 (0.7) 0.8 (1.3)

During 1,455 11.5 (3.5) 7.7 (4.0) 1.2 (1.6) 2.6 (3.3) 3.8 (3.6)

After 1,632 11.2 (3.4) 10.4 (3.3) 0.5 (0.9) 0.3 (0.9) 0.8 (1.3)

1 Phases were split using a mixed linear model, fitting farm year week (FYW) as a random effect and extracting the predicted values. Visual ap-
praisal was used to split phases into prior, during, and after the PRRS outbreak

2 TNB = total number born, NBA = number born alive, NSB = number stillborn, NBM = number born mummified, NBD = number born dead.
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of heritability for S/P ratio was also relatively low 
at 0.17 ± 0.05. Heritability estimates for mortality 
traits (LNSB, LNBM, and LNBD) ranged from 
0.01 to 0.06 prior to the outbreak, increased dur-
ing the outbreak (0.06 to 0.13), likely because of 
the higher incidence of mortalities during the out-
break, and then reduced again after the outbreak. 
However, only the estimate of heritability of LNBM 
returned to its estimate prior to the outbreak, while 
estimates for both LNSB and LNBD remained 
slightly elevated after the outbreak (0.09 ± 0.04 and 
0.06  ± 0.04, respectively). The estimate of herit-
ability of TNB (0.13 ± 0.05) did not change during 
the outbreak but reduced to 0.08 ± 0.04 after the 
outbreak.

Genetic Correlations of Reproduction Traits 
Between Phases

Estimates of  genetic correlations of  traits be-
tween the three phases are displayed in Table 3. 
Estimates of  the genetic correlation between prior 
to and during the outbreak for TNB and NBA were 
>0.85, indicating similar genetic backgrounds. 
Genetic correlations for TNB and NBA were 
much lower between prior to and after the out-
break (0.32 ± 0.33 and 0.27 ± 0.42, respectively). 
Again, this may be expected when sows are being 
bred during the outbreak. The genetic correlation 
between TNB during and after the outbreak was 
higher (0.72 ± 0.55) than for NBA (0.21 ± 0.54). 
Estimates of  genetic correlations for mortality 
traits prior to and during the outbreak were incon-
sistent; they were positive for LNSB and LNBD 
but negative for LNBM (−0.42 ± 0.55). Trends in 

estimates of  genetic correlations for reproductive 
performance between prior to and after the out-
break were similar to those between during and 
after the outbreak.

Genetic Correlations Between Reproductive Traits 
and S/P Ratio

Estimates of genetic correlations of S/P ratio 
with reproductive traits are presented in Table 4. 
Prior to the outbreak, estimates of the genetic cor-
relations ranged from 0.05 to 0.85, but with very 
large SE for LNBM and LNBD. Most estimates of 
the genetic correlation of S/P ratio with reproduc-
tion traits during the outbreak, which was of main 
interest, were close to zero, with the exception of 
LNSB, which had an estimate of −0.73 ± 0.29 with 

Table 2. Heritability estimates (with SE in paren-
theses) for S/P ratio and reproductive traits prior to, 
during, and after the outbreak

Trait1 Prior2 During2 After2

TNB 0.13 (0.05) 0.12 (0.05) 0.08 (0.04)

NBA 0.11 (0.04) 0.05 (0.03) 0.05 (0.04)

LNSB 0.06 (0.03) 0.13 (0.06) 0.09 (0.04)

LNBM 0.03 (0.03) 0.12 (0.06) 0.03 (0.04)

LNBD 0.01 (0.02) 0.06 (0.04) 0.06 (0.04)

S/P Ratio3 NA3 0.17 (0.05) NA3

1 TNB = total number born, NBA = number born alive, LNSB = log 
number stillborn, LNBM = log number born mummified, LNBD = log 
number born dead, S/P = sample-to-positive ratio of the PRRS anti-
body levels.

2Phases were split using a mixed linear model, fitting farm year week 
(FYW) as a random effect and extracting the predicted values. Visual 
appraisal was used to split phases into prior, during, and after the 
PRRS outbreak.

3 S/P ratio was only collected during the PRRS outbreak.

Table 3. Estimates of genetic correlations (with SE 
in parentheses) for reproductive traits between the 
three phases relative to the outbreak (prior to, dur-
ing, and after)

Trait1 Prior–during2 Prior–after2 During–after2

TNB 0.86 (0.23) 0.32 (0.33) 0.72 (0.28)

NBA 0.98 (0.38) 0.27 (0.42) 0.21 (0.54)

LNSB 0.65 (0.43) 0.40 (0.41) 0.81 (0.28)

LNBM −0.42 (0.55) −0.40 (0.88) −0.363

LNBD 0.29 (1.39) 0.69 (1.52) 0.07 (0.48)

1TNB = total number born, NBA = number born alive, LNSB = log 
number stillborn, LNBM = log number born mummified, LNBD = log 
number born dead.

2Phases were split using a mixed linear model, fitting farm year week 
(FYW) as a random effect and extracting the predicted values. Visual 
appraisal was used to split phases into prior, during, and after the 
PRRS outbreak.

3Completed with remlf90 from BLUPF90 programs in place of 
ASReml due to convergence issues, no SE available.

Table 4. Estimates of genetic correlations (with SE 
in parentheses) of S/P ratio with reproductive traits 
prior to, during, and after the outbreak

Trait1 Prior2 During2 After2

TNB 0.27 (0.25) −0.10 (0.26) −0.17 (0.29)

NBA 0.19 (0.25) 0.05 (0.35) −0.12 (0.32)

LNSB 0.05 (0.35) −0.73 (0.29) −0.06 (0.31)

LNBM 0.85 (0.90) 0.02 (0.42) 0.053

LNBD 0.69 (0.79) −0.18 (0.28) −0.20 (0.32)

1TNB = total number born, NBA = number born alive, LNSB = log 
number stillborn, LNBM = log number born mummified, LNBD = log 
number born dead.

2Phases were split using a mixed linear model, fitting farm year week 
(FYW) as a random effect and extracting the predicted values. Visual 
appraisal was used to split phases into prior, during, and after the 
PRRS outbreak.

3Completed with remlf90 from BLUPF90 programs in place of 
ASReml due to convergence issues, no SE available.
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S/P ratio. The negative genetic correlation estimates 
of S/P ratio with LNSB and LNBD during the out-
break were in the favorable direction (i.e., sows with 
higher antibody level are expected to have fewer 
stillborn pigs phenotypically/genetically). After 
the outbreak, estimates of genetic correlations of 
S/P ratio with reproductive traits were low (−0.20 
to 0.05). Negative genetic correlations may be as 
expected because producing more antibody dur-
ing the infection may have diverted resources away 
from reproduction while the sow was cycling during 
the outbreak, leaving fewer embryos/fetuses to de-
velop and be born after the outbreak.

Genetic Correlations Among Reproduction Traits 
Within Phases

Genetic correlations among reproductive 
traits within phase are displayed in Table 5. TNB 
and NBA had high genetic correlations prior to 
and after the outbreak (>0.90) but the correlation 
dropped to 0.71 ± 0.16 during the outbreak, likely 
due to greater prenatal mortality during the out-
break. TNB was positively correlated, genetically, 
with all mortality traits during all three phases 
(0.23 to 0.56), as expected, but correlations were 
slightly stronger during and after the outbreak 
(0.56  ± 0.23 with LNBD during the outbreak). 
NBA had close to zero genetic correlation estimates 
with mortality traits prior to and after the outbreak 
but slightly negative estimates during the outbreak 
(−0.14 to −0.22). Estimates of genetic correlations 
among mortality traits within phase were all posi-
tive (0.23 to 0.98) for all phases. Prior to and after 
the outbreak, LNSB and LNBD were genetically 
highly correlated, at 0.94  ± 0.07, likely because 

most mortalities at those times are due to stillborns 
rather than mummies. The estimate of the genetic 
correlation between LNSB and LNBD dropped to 
0.73 ± 0.23 during the outbreak but the estimate of 
the genetic correlation between LNBM and LNBD 
increased from 0.68 ± 0.28 prior to the outbreak to 
0.80 ± 0.15 during the outbreak, as a greater pro-
portion of mortalities was due to mummies during 
the outbreak. The estimate of the genetic correl-
ation between LNSB and LNBM was moderate 
prior to the outbreak (0.40 ± 0.47) and low during 
the outbreak (0.23 ± 0.48). All estimates of genetic 
correlations among mortality traits after the out-
break were >0.83.

Reaction Norm Model

The three parameterizations of  the reaction 
norm model only differed in estimates of  gen-
etic variances for the intercept and slope, and in 
estimates of  the genetic covariance or correlation 
between intercept and slope (Table 6). However, 
estimates of  genetic variances and covariances 
for NBA at given FYW levels were unaffected, 
as expected. Estimates of  the genetic variance of 
the intercept and slope ranged from 0.52 to 0.81 
and from 0.07 to 1.21, respectively. All estimates 
of  the genetic covariance between intercept and 
slope were positive (0.11 to 0.51). Estimates of  the 
genetic correlation between the intercept and slope 
were 0.54 ± 0.35, 0.24 ± 0.50, and 0.52 ± 0.36 for 
the raw, Legendre, and the polynomial (pol) func-
tion of  ASReml, respectively. Estimates of  residual 
variance increased slightly from the first FYW level 
to the second (estimated from 12.21 to 12.73) and 
then reduced as the FYW effect increased (10.54, 

Table 5. Estimates of genetic correlations (with SE in parentheses) between reproductive traits within each 
of the three phases relative to the outbreak (prior to, during, and after)

Traits1 Prior2 During2 After2

TNB-NBA 0.96 (0.02) 0.71 (0.16) 0.92 (0.04)

TNB-LNSB 0.23 (0.26) 0.32 (0.28) 0.33 (0.28)

TNB-LNBM 0.23 (0.42) 0.34 (0.36) 0.33 (0.38)

TNB-LNBD 0.28 (0.26) 0.56 (0.23) 0.33 (0.27)

NBA-LNSB 0.00 (0.27) −0.20 (0.35) −0.05 (0.31)

NBA-LNBM 0.05 (0.44) −0.22 (0.41) 0.01 (0.42)

NBA-LNBD 0.03 (0.28) −0.14 (0.33) −0.05 (0.31)

LNSB-LNBM 0.40 (0.47) 0.23 (0.48) 0.84 (0.36)

LNSB-LNBD 0.94 (0.07) 0.73 (0.23) 0.98 (0.06)

LNBM-LNBD 0.68 (0.28) 0.80 (0.15) 0.90 (0.16)

1 TNB = total number born, NBA = number born alive, LNSB = log number stillborn, LNBM = log number born mummified, LNBD = log 
number born dead.

2Phases were split using a mixed linear model, fitting farm year week (FYW) as a random effect and extracting the predicted values. Visual ap-
praisal was used to split phases into prior, during, and after the PRRS outbreak.
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8.70, and 6.84). Figure 3 shows estimates of  genetic 
covariances (left) and correlations (right) from the 
reaction norm model for NBA between FYW lev-
els which, as indicated, were the same for all three 
parameterizations. Estimates of  genetic covari-
ances (diagonals) showed the expected quadratic 
trend (given the first-order model) and were nega-
tive only between the most extreme FYW classes. 
Estimates of  genetic correlations for NBA between 
FYW levels showed two fairly distinct blocks dur-
ing the healthy and diseased phases (diseased in 
the top left, healthy in the bottom right). The tran-
sition from diseased to healthy started for NBA 
FYW effects around −1 (with a very small overlap 
of  the two phases, see Figure 2). Genetic correla-
tions between the two blocks were moderate, ex-
cept for the very extreme FYW levels, which was 
consistent with the multi-trait analysis of  traits 
defined by phase.

Table 7 shows estimates of correlations of EBV 
from the multivariate analysis of NBA by phase 
with EBV obtained from the reaction norm model 
using the raw FYW scale. Correlations of EBV 
for the additive genetic intercept and slope terms 
with EBV for FYW levels equal to −4, −2, 0, and 
2 are also shown, with the first two (−4 and −2) 
being during the outbreak and the other two (0 
and 2) from the two healthy phases (representing a 
combination of prior to and after the PRRSV out-
break). The EBV for the intercept terms from the 
reaction norm model had the highest correlation 
with EBV for NBAp (0.82), while EBV for NBAp 
and NBAd were highly correlated with EBV from 
the reaction norm model at FYW equal to −2 and 
0 (0.78 to 0.80). The EBV for the intercept was al-
most perfectly correlated with EBV for the reaction 
norm at FYW equal to 0 (as expected) and were 
also highly correlated with EBV for the reaction 

Table 6. Estimates of variance components (with SE in parentheses) for three parameterizations of the 
reaction norm model, regressing on the predicted farm-year-week (FYW) effects for number born alive 
(NBA)

 Reaction norm parameterization

Variance component Raw scale1 Legendre2 Polynomial3

Var(intercept) (σ2
ai

) 0.54 (0.17) 0.81 (0.38) 0.52 (0.17)

Var(slope) (σ2
as

) 0.07 (0.06) 0.15 (0.28) 1.21 (0.90)

Cov(intercept,slope) (σai,as) 0.11 (0.07) 0.51 (0.38) 0.41 (0.27)

Cor(intercept,slope) (rai,as) 0.54 (0.35) 0.24 (0.50) 0.52 (0.36)

Var(permanent envir.) (σ2
pe) 1.30 (0.24) 1.30 (0.24) 1.30 (0.24)

Residual Variance 1 (σ2
e1

) 12.21 (1.06) 12.21 (1.06) 12.21 (1.06)

Residual Variance 2 (σ2
e2

) 12.73 (0.62) 12.73 (0.62) 12.73 (0.62)

Residual Variance 3 (σ2
e3

) 10.54 (0.58) 10.54 (0.58) 10.54 (0.58)

Residual Variance 4 (σ2
e4

) 8.70 (0.31) 8.70 (0.31) 8.70 (0.31)

Residual Variance 5 (σ2
e5

) 6.84 (0.45) 6.84 (0.45) 6.84 (0.45)

1Predicted values of farm-year-week (FYW) effects used as covariate.
2Predicted FYW effects scaled using leg function in ASReml 4.
3Predicted FYW effects scaled using the pol function in ASReml 4.

Figure 3. Matrix of genetic covariances (left) and correlations (right) for number born alive (NBA) based on the reaction norm model as a 
function of estimates of NBA farm-year-week effects. The PRRS outbreak phase begins at approximately −1 for the NBA farm-year-week effect. 
Same for all parameterizations of the reaction norm intercept and slopes.
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norm at FYW equal to −2. Correlations between 
EBV at different FYW levels were very similar to 
the estimates of genetic correlations from the reac-
tion norm model, showing decreasing correlations 
with increasing distance between FYW levels.

DISCUSSION

Genetic Parameters for S/P Ratio

Estimates of heritability and genetic correla-
tions for S/P ratio with reproductive performance 
during a PRRS outbreak were mostly inconsistent 
with previous studies. Serão et al. (2014) reported a 
heritability of 0.45 ± 0.13 for S/P ratio after a PRRS 
outbreak in a multiplier herd in Canada, which was 
validated in a more complex independent study 
(Serão et  al., 2016). The estimate of heritability 
of S/P ratio from the current study was, however, 
substantially lower at 0.17  ± 0.05. Estimates of 
genetic correlations of S/P ratio with reproductive 
traits also did not completely agree with previous 
results, except for the genetic correlation of S/P 
ratio with LNSB (Serão et al., 2014). Although this 
is favorable, most of the prenatal mortality (68%) 
during the PRRS outbreak in this study was due 
to mummified piglets, as mentioned above. This is 
important because although S/P ratio was more 
correlated with LNSB, it would not change overall 
mortality as much because more piglet mortality 
stems from mummified piglets. Serão et al. (2014) 
found that S/P ratio tended to have moderate/strong 
genetic correlations with reproduction traits, rang-
ing from −0.72 (NSB) to 0.73 (NBA); the lowest es-
timate in absolute value was 0.27 (NBD). The only 
genetic correlation that was similar in the current 
study was for LNSB (−0.73). Both TNB and NBA 
were not strongly associated with S/P ratio in the 
current study. Note, however, that these estimates 

come with large standard errors when dealing with 
small sample sizes and lowly heritable reproductive 
traits, therefore strong conclusions cannot be drawn 
until further studies are conducted.

One notable difference between the current 
study and the studies of Serão et al. (2014, 2016) is 
the use of different antibody assays for semi-quan-
tification of antibody levels. The IDEXX PRRS X3 
ELISA (at the same lab) was used in both Serão 
et  al. (2014) and Serao et  al. (2016), while the 
Luminex (Luminex Corp., Austin, TX) microsphere 
assay was utilized in the present study. Although 
the IDEXX is considered an industry/research gold 
standard for measuring PRRS antibody (Sattler 
et al., 2014), the microsphere (or microbead) assay 
is rising in popularity because the Luminex multi-
plex system allows for the detection of numerous 
analytes within a single biological sample, sav-
ing cost, time, and labor (Lin et  al., 2011). The 
Luminex assay was also used by the same lab in the 
study of Hess et al. (2018) on nursery pigs following 
experimental PRRSV infection, resulting in a mod-
erate-to-high heritability estimate. The microbead 
assay is not a traditional ELISA but is conceptually 
similar to an indirect ELISA, as both measure anti-
bodies against the nucleocapsid (N) protein (inside 
the complete PRRS virus). Lin et al. (2011) com-
pared an earlier version of the standard single plex 
ELISA (IDEXX Herdchek PRRSV 2XR kit) and 
the microsphere-based immunoassay and found 
the spearman rank correlation to be 0.72 for PRRS 
antibody. The sensitivity and specificity between 
the assays were 91% and 93% for PRRS in young 
pigs, respectively (κ coefficient of 0.67). Commonly, 
young pigs are used for testing and validating 
assay results for several reasons (cost, ease of sam-
pling, availability, etc.). In adult pigs, however, 
64% (16/25) of samples were found to be positive 
by the Luminex assay but negative by the IDEXX 

Table 7. Correlations among EBV from the multivariate analysis of number born alive (NBA) prior to, 
during, and after the outbreak (NBAp, NBAd, and NBAa) and with EBV obtained from the reaction norm 
(RN) model using the raw scale for farm-year-week (FYW) estimates, including EBV for intercept (RNint) 
and slope (RNslope), along with the EBV for NBA for FYW estimates equal to −4, −2, 0, and 2 (RN−4, RN−2, 
RN0, and RN2)

 NBAd NBAa RNint RNslope RN−4 RN−2 RN0 RN2

NBAp 0.99 0.48 0.82 0.42 0.36 0.80 0.78 0.68

NBAd  0.45 0.81 0.39 0.38 0.80 0.76 0.66

NBAa   0.75 0.59 0.09 0.64 0.77 0.74

RNint    0.59 0.34 0.93 0.97 0.88

RNslope     −0.55 0.26 0.77 0.91

RN-4      0.66 0.11 −0.15

RN-2       0.82 0.64

RN0 Sym.       0.97
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HerdChek PRRS X3 assay (Giménez-Lirola et al., 
2014). Giménez-Lirola et al. (2014) used the newest 
IDEXX (HerdChek PRRS X3), the same test used 
in Serão et al., (2014, 2016). Adults pigs (sows and 
boars) may have higher background reactivity than 
young pigs (Giménez-Lirola et al., 2014), possibly 
due to a more mature immune system and antigens 
seen later in life and will need to be investigated fur-
ther. Although we do not have direct evidence that 
the differences in variance components estimated 
between the present study and Serão et al., (2014, 
2016) can be attributed to the differences between 
the IDEXX and Luminex platform, it should be a 
major consideration in future research, along with 
the age of the animal being tested.

There are several other possible reasons for the 
difference in estimates of genetic parameters for 
S/P ratio between the current and previous PRRS 
outbreak studies. These could include other aspects 
of the assay such as in-house diagnostic target var-
iations, time of year, the strain of the virus, sample 
processing, and other unknown environmental 
effects. In contrast to Serão et  al. (2014), sows in 
the current study were inoculated 3  wk after the 
confirmed outbreak, followed by MLV vaccination. 
Vaccination is not expected to impact antibody lev-
els at 40 d after inoculation, as a secondary type 
of response in a relatively short time after infection 
is not expected due to the persistency of infection 
of the PRRS virus (Lunney et al., 2016; discussed 
below). However, it still could contribute to differ-
ences. Typically, antibody response studies in pigs 
are conducted in designed experiments with one 
injection given simultaneously to all animals. In a 
natural disease challenge, this consistency is lost 
and sows in a large farm are consistently re-exposed 
to antigens, some possibly due to “rebound” ani-
mals (Boddicker et al., 2012). In Serão et al. (2016), 
antibody levels were measured on gilts following 
acclimation across many commercial farms, which 
represented a range of times following exposure, ei-
ther through infection or MLV vaccination, again 
strengthening the idea that some of these other fac-
tors may not play a large role.

Multiple factors make determining the cause 
of differences between estimates of genetic param-
eters for S/P between studies hard to understand. 
These will continue to be an issue as what is best 
for measuring antibody response in research (i.e., 
this study) may not be optimal for production and 
clearing the virus from a commercial farm, such as 
inoculation and vaccination observed in the current 
study. This may provide some insight into the dif-
ficulty of conducting this type of research in field 

conditions and therefore alternatives will be needed 
(e.g., separate, carefully designed challenge studies 
in sows). Perhaps other measures such as interfer-
on-γ (IFN-γ) response after inoculation might be 
useful, along with antibody response. Collecting 
antibody response at multiple time points may also 
be helpful to determine the approximate date of in-
fection, but this would be expensive and not feas-
ible on a commercial farm.

Genetic Parameters for Reproduction Traits

Ranges of heritability estimates for litter size 
and mortality traits were consistent with previous 
estimates (0.01 to 0.13; Bidanel, 2011). Trends in 
heritabilities between phases generally followed 
results by Lewis et al. (2009). Heritability for NBA 
was lower during the outbreak, while estimates of 
heritability for mortality traits were higher dur-
ing the outbreak, most likely due to the increased 
incidence of mortality under PRRS challenge. 
Heritability of TNB was not affected by the PRRS 
phase like the other traits but was after the out-
break. Biologically, this makes sense, as sows that 
farrowed during the outbreak were bred prior to 
the outbreak and all fetuses would be counted in 
the total born. However, sows bred during the out-
break farrowed later during or after the outbreak, 
which affects the total born observed due to pos-
sibly fewer oocytes being fertilized or fetuses being 
absorbed. There is no verification of this because 
pregnancies were not evaluated by ultrasound. Low 
to moderate genetic correlations for reproduction 
traits between prior to and during the PRRS phase 
likely indicate the influence of disease resistance 
QTL during the outbreak phase, making them dif-
ferent traits. Serão et al. (2014) found similar trends 
as observed in the present study for estimates of 
heritability prior to and during the outbreak for 
NBM, NBD and NSB but their estimates of her-
itability for NBA was higher during the outbreak.

Estimates of genetic correlations for reproduc-
tion traits between phases were fairly consistent 
with previous estimates (Lewis et al., 2009; Rashidi 
et  al., 2014; Herrero-Medrano et  al., 2015), al-
though these studies combined data from prior 
and after the outbreak into one trait. For instance, 
the genetic correlation from Lewis et al., (2009) for 
NBA was 0.56 between healthy and diseased phases, 
which would be a combination of the current esti-
mates for NBA between prior and during (0.98) 
and between during and after (0.21). Rashidi et al. 
(2014) estimated genetic correlations for NBA and 
NBD at 0.87 and 0.57 between healthy and diseased 
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phases, respectively. Herrero-Medrano et al. (2015) 
estimated these same correlations at 0.75 and 0.74, 
respectively.

Differences between studies in estimates of 
genetic correlations for reproduction traits between 
diseased and healthy phases in PRRS outbreak 
herds can also be due to other factors. The strain 
that caused the outbreak in the current study was a 
very severe strain of the PRRS virus. More studies 
are needed to determine whether results from Serão 
et al. (2014) also hold for other virus strains, such 
as those used in the PRRS host genetics consortium 
and associated trials (Hess et al., 2016; Waide et al., 
2018). New viral strains develop and results from 
previous antibody studies may not apply. For in-
stance, a new PRRS strain that developed in China 
in the last decade shows very different clinical signs 
than normal strains (see Figure 2 from Tian et al., 
2007). Diseases such as PRRS can change and anti-
body measures as indicator traits need to continu-
ally be re-evaluated for effectiveness in a breeding 
program.

Reproductive Performance After the PRRS 
Outbreak

To date, all studies have divided the reproduc-
tion data from PRRS outbreak herds into only 
healthy and diseased phases. A  finding from this 
research was that estimated genetic correlations 
may support keeping the time period after the 
PRRS phase as a separate trait from prior to the 
PRRS outbreak, although standard errors were 
large. PRRS can be a persistent infection (Lunney 
et al., 2016) and, thus, it is possible that PRRS still 
affects reproductive performance after the out-
break has cleared, perhaps subclinically. Lunney 
et al. (2016) discussed the three stages of  a PRRS 
infection: acute, persistent, and extinct. The virus 
can persist in tonsils and lymph nodes and has 
been identified in animals as long as 175 to 251 d 
postinfection (Wills et al., 2003; Molina, 2008), al-
though most cleared within three to four months 
(Wills et al., 2003). In the present study, the after 
phase included ~4 mo of data. It is possible that 
the large farm sizes contributed to the persistent 
nature of  the infection. It is also possible that the 
less than one genetic correlation between traits 
prior and after the outbreak was caused by gen-
otype-by-environment interactions due to reasons 
such as seasonality, which will need to be investi-
gated further in another study. The outbreak phase 
for the current study was during the late spring/
summer months.

Another reason why the after-period may need 
to be analyzed separately is that some sows that far-
rowed after the outbreak were bred during the out-
break, which could result in some residual effects. 
Any sow bred during the PRRS phase could suffer 
reduced TNB from reduced fertilization, embryos 
not surviving, or fetuses being absorbed. In con-
trast, most sows that farrowed during the out-
break phase were bred during the healthy phase 
prior to the outbreak and, thus, TNB should not 
be severely affected due to the piglets already being 
fully-formed, as observed in the present study, es-
pecially in farm 3. This was also reinforced by the 
low estimate of the genetic correlation for TNB be-
tween before and after the outbreak (0.32 ±0.03). 
Thus, it may be better to consider leaving the after 
phase a separate trait or to remove this data for 
routine genetic evaluation. Further research will be 
needed to determine how long this period extends.

Reproduction Traits During the Outbreak

Previous reproductive disease outbreak studies 
have separated reproduction data into two phases 
(healthy and diseased) but, to our knowledge, this is 
the first study to report estimates of genetic correla-
tions within phase (e.g. NBAp with LNSBp or TNBd 
with NBAd). The phase prior to infection represents 
typical variance components for litter size without 
major disease (Su et  al., 2007; Putz et  al., 2015). 
Not separating data from herds that experience dis-
ease outbreaks into three phases could affect esti-
mates of genetic correlations between traits (e.g., 
TNB and NBA or their genetic correlation with 
mortality traits). For example, the genetic correl-
ation between TNB and LNBD was 0.28  ± 0.26 
prior to infection and 0.56 ± 0.23 during the PRRS 
outbreak. This should be as expected, as more total 
born during the outbreak would allow more pigs to 
be affected by disease and die prior to farrowing.

Reaction Norm Model

One possible downside of the use of reaction 
norms for analysis of disease outbreak data is that 
they do not differentiate records obtained prior 
to and after the outbreak. Separate stressors may 
cause dips in performance. This may be a disad-
vantage of the reaction norm models, especially 
for other situations such as outbreaks from dif-
ferent pathogens or different strains of the same 
virus (observed in Herrero-Medrano et al., 2015). 
Multivariate analyses may also not be able to dis-
entangle causes if  multiple pathogens are involved 
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in the infection. In Herrero-Medrano et al. (2015), 
both PRRS and a coronavirus caused outbreaks 
that led to a high challenge load (described by 
Mathur et  al., 2014) of over 15 index units (the 
challenge load). The reaction norm model treats 
both of these outbreaks being very similar traits (in 
terms of regressor values, here the FYW effects), 
when in fact they most likely have different genetic 
backgrounds in terms of genetic resistance. For ex-
ample, two FYW effects around −1 NBA may be 
the result of separate environmental changes; one 
could be the result of porcine epidemic diarrhea and 
the other from heat stress for example. Any FYW 
effect would be a combination of any management 
environments and challenges/stressors. Regardless 
of this, given enough data, these models should still 
result in sows that are more resilient/robust to en-
vironmental challenges. The advantage of the reac-
tion norm is that it would average over all of these 
effects in one parsimonious model without regard 
to specific causes. Knap and Su (2008) stressed the 
need to have large datasets for reaction norm mod-
els to be effective. The optimal breeding objective 
should include general resilience/robustness to any 
number of stressors, including different diseases, 
not to single diseases or stressors. Therefore, for the 
reaction norm models to be effective, it would be 
advantageous to have a large number of environ-
ments classified from many different farms with as 
many different management practices as possible, 
such that the values used to regress on capture as 
many stressors and different environments as pos-
sible (Knap, 2005). When thinking about testing a 
sire, it would be best to have as many daughters in 
as many different farms/environments as possible. 
One issue is that there can be high leverage on the 
slope of the reaction norm slope for extreme FYW 
observations (Pool et al., 2000).

It is known that different parameterizations of 
the regressor value (FYW estimates) lead to dif-
ferent variances and covariances for the intercept 
and slope terms. Therefore, it can be dangerous 
to interpret these estimates, as was done by Knap 
and Su (2008). Another factor that can influence 
the (co)variances is using different contemporary 
group sizes (week, month, or season). Knap and 
Su (2008) utilized estimates for herd-year-season 
contemporary groups instead of herd-year-week 
contemporary groups used in the current analysis. 
The estimate of the genetic correlation between the 
intercepts and slopes from the three parameteri-
zations used in the current study was different (as 
expected), although all were positive. This indicates 
that selection for improved NBA of animals with 

the standard animal model (related to the reaction 
norm intercept) would result in animals with greater 
reaction to changes in the environment. Again, as 
expected, estimates of genetic covariances and cor-
relations between EBVs from each FYW from the 
reaction norm model were not affected by the par-
ameterization of the model (Figure 3).

The correlation between EBV for the inter-
cept term from the reaction norm model and EBV 
from a typical animal model was high, which agrees 
with previous research (Knap and Su, 2008). The 
current analysis expanded this by calculating the 
correlations of EBV from the multivariate phases 
(prior, during, and after) model with the reaction 
norm estimates of intercepts and slopes and EBV 
at discrete FYW levels. Knap and Su (2008) found 
EBV from the multivariate animal model and EBV 
for the intercept terms from the reaction norm to be 
correlated 0.78 to 0.85, similar to the current ana-
lysis, which found correlations between 0.75 and 
0.82 (for prior, during, and after for NBA). EBV 
from the reaction norm model at different levels 
of FYW was also correlated with EBV from the 
multivariate model. EBV from the reaction norm 
between −-2 and +2 were moderate to highly cor-
related with EBV from the multivariate analysis 
(between 0.64 and 0.80). The highest correlation 
between the multivariate EBV and the EBV at −4 
from the reaction norm was for NBA during the 
outbreak, as expected (0.38), however, this was at 
the very extreme of the outbreak phase. The EBV 
for the slope from the reaction norm was negatively 
correlated with the EBV at −4 (−0.55) and strongly 
positively correlated with EBV at 2 (0.91), which is 
as expected. Animals with EBV for the slope that 
deviate from zero are considered sensitive to en-
vironmental changes. Therefore, the optimum se-
lection would be for animals with a high EBV for 
the intercept and an EBV for the slope close to 
zero, indicating high producing animals that pro-
duce uniformly (in ranking) across environmental 
gradients.

The reaction norm can capture more than just 
health, which may contribute to the difference in 
genetic correlations observed between the multi-
variate and reaction norm models. Guy et al. (2012) 
discussed resilience to not only health challenges 
but also other environmental challenges. In com-
mercial data, challenges for pigs can encompass 
social, environmental, metabolic, immunological, 
and human interactions (Martínez-Miró et  al., 
2016). Seasonality encompasses effects of heat 
stress and disease and both affect FYW estimates. 
For instance, there is a positive seasonality effect 
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during the summer months for pigs weaned/sow/
year (Stalder, 2017). Sevillano et al. (2016) showed 
that seasonal infertility can be impacted by photo-
period and not just by ambient temperatures. So, 
as long as data are captured over long periods of 
time and plenty of heterogeneous environments, 
the reaction norm should also be thought of as gen-
eral resilience, instead of only disease resilience. Of 
course, the multivariate model could also pick up 
effects from other stressors.

Bishop and Woolliams (2014) stated that the 
requirement to measure resistance phenotypes is a 
rate-limiting step in breeding for disease resistance. 
One problem for both the multivariate and reac-
tion norm models is that it is difficult to get enough 
records in the diseased phase to obtain accurate 
EBV for disease resilience; most of the information 
for either model will come from correlated data, i.e., 
from the “healthy” phase in the multivariate case. 
For the reaction norm model, most data are from 
healthy weeks when an outbreak has not occurred 
for an extended period of time. For instance, in farm 
1 of Herrero-Medrano et al. (2015), only one out-
break occurred over a 6-yr span of the data and only 
five total outbreaks occurred in the three farms. The 
reaction norm is only observed on part of the FYW 
estimates for many animals, especially because 
many sows are culled early (especially in nucleus 
environments), although this is partially overcome 
by the use of the pedigree relationships. The use of 
random regression models for a reaction norm is dif-
ferent from many other situations in which random 
regression models are used for genetic analyses, such 
as milk yield in dairy cattle, growth or feed intake 
in pigs, and egg production in poultry. In those sit-
uations, animals have repeated records that span 
most of the lactation, growth period, or egg-laying 
cycle, leading to more accurate estimates of breed-
ing values than obtained for the sparser reaction 
norm model (Knap and Su, 2008). In the current 
study, sows had between one and four records for 
the reaction norm model. Meyer (2005) stated that 
using higher order polynomials when a substantial 
proportion of animals have fewer records than the 
order of polynomials fitted can lead to erratic and 
implausible estimates. One should be careful be-
fore applying complex models to this type of data. 
The total range in estimates of NBA FYW effects 
was 6.43 on the original scale. A total of 47%, 70%, 
and 89% of sows had phenotypes in contemporary 
groups that ranged <0.5, 2.0, and 3.0, respectively, 
in NBA FYW effects (i.e., the x-axis). This may 
contribute to the poor accuracy referred to by Knap 
and Su (2008).

Future Work

There is some work needed prior to the swine 
industry adopting antibody response to PRRS 
outbreaks or MLV vaccination. Novel strains of 
PRRSV are continuing to show up because of 
the high mutation rate of the PRRS virus and 
predictive ability in terms of genetic correlations 
should be regularly checked. Antibody tests con-
tinue to change over time and differences among 
labs exist, although the HerdChek PRRS X3 anti-
body test seems to be very repeatable within and 
across labs (Kittawornrat et  al., 2012). This pos-
sible instability over time in other antibody assays 
such as the Luminex (or future IDEXX assays) is 
risky for implementation into the swine breeding 
industry. One important validation needed is to 
send samples to multiple veterinary diagnostic labs 
and with multiple tests (e.g., IDEXX vs. Luminex) 
to verify results for each test and each lab to make 
sure genetic analyses agree. Perhaps even lab repli-
cates will need to be performed to determine the re-
peatability. Thus, at this point, it is unclear whether 
selection on antibody response (possibly to PRRS 
vaccines) will be highly useful to the swine breeding 
industry.

CONCLUSIONS

Antibody level in sows to PRRS following a 
PRRS outbreak, measured as S/P ratio, was low to 
moderately heritable (0.17 ± 0.05) and had low gen-
etic correlations with reproductive traits except for 
LNSB (−0.73 ± 0.29). Standard errors for variance 
component estimates were large because of a rela-
tively small dataset and lowly heritable traits, so no 
strong conclusions can be drawn. More research will 
be needed to understand why these results did not 
completely validate previous findings on S/P ratio 
heritability and genetic correlations with repro-
ductive performance. It is possible that the differ-
ences in the antibody assay were the cause, but this 
is still unknown. The genetic correlation between 
reproductive performance prior to and during the 
PRRS outbreak was high for both TNB and NBA. 
The only negative genetic correlation between per-
formance prior to and during the PRRS outbreak 
was for LNBM. TNB had a genetic correlation of 
0.32 between prior to and after the outbreak. It may 
be useful to consider reproductive performance sev-
eral months after the outbreak as a separate trait 
from performance prior to the outbreak, as sows 
farrowing after the outbreak were bred during 
the outbreak. The reaction norm model for NBA 
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showed similar trends in genetic correlations as the 
multivariate model that considered reproductive 
performance prior, during, and after the outbreak 
as separate traits, although it considered data from 
prior and after the outbreak as having overlapping 
environments. Overall, future work will need to 
address some of the differences from previous re-
search observed in the current study.
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