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Abstract: Background: Performance of wrist actigraphy in assessing sleep not only depends on the
sensor technology of the actigraph hardware but also on the attributes of the interpretative algorithm
(IA). The objective of our research was to improve assessment of sleep quality, relative to existing IAs,
through development of a novel IA using deep learning methods, utilizing as input activity count and
heart rate variability (HRV) metrics of different window length (number of epochs of data). Methods:
Simultaneously recorded polysomnography (PSG) and wrist actigraphy data of 222 participants were
utilized. Classic deep learning models were applied to: (a) activity count alone (without HRV), (b)
activity count + HRV (30-s window), (c) activity count + HRV (3-min window), and (d) activity count
+ HRV (5-min window) to ascertain the best set of inputs. A novel deep learning model (Haghayegh
Algorithm, HA), founded on best set of inputs, was developed, and its sleep scoring performance
was then compared with the most popular University of California San Diego (UCSD) and Actiwatch
proprietary IAs. Results: Activity count combined with HRV metrics calculated per 5-min window
produced highest agreement with PSG. HA showed 84.5% accuracy (5.3–6.2% higher than comparator
IAs), 89.5% sensitivity (6.2% higher than UCSD IA and 6% lower than Actiwatch proprietary IA),
70.0% specificity (8.2–34.3% higher than comparator IAs), and 58.7% Kappa agreement (16–23%
higher than comparator IAs) in detecting sleep epochs. HA did not differ significantly from PSG
in deriving sleep parameters—sleep efficiency, total sleep time, sleep onset latency, and wake after
sleep onset; moreover, bias and mean absolute error of the HA model in estimating them was less
than the comparator IAs. HA showed, respectively, 40.9% and 54.0% Kappa agreement with PSG
in detecting rapid and non-rapid eye movement (REM and NREM) epochs. Conclusions: The HA
model simultaneously incorporating activity count and HRV metrics calculated per 5-min window
demonstrates significantly better sleep scoring performance than existing popular IAs.

Keywords: wrist actigraphy; sleep; artificial intelligence; deep learning; Convolutional Neural
Network (CNN); time series classification; Long-Short-Term Memory (LSTM)

1. Introduction

Polysomnography (PSG) is considered the gold standard for sleep evaluation. How-
ever, this method is not always an option. PSG requires bulky instrumentation and wiring
of the patient making the sleep environment unnatural. Moreover, novelty of the sleep
laboratory environment and night-to-night difference in sleep quality might confound ac-
curate sleep assessment [1,2]. Furthermore, differences in the scoring of PSG data between
and within raters are potential sources of error [3]. Finally, PSG studies are expensive,
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thereby resulting in the exclusion of some patients and discouraging longitudinal assess-
ment. Questionnaires and diaries are inexpensive and easy to use methods for large-scale
studies. Sleep questionnaires, however, depend on the retrospective recall of patients and
this can introduce biases [4]. Sleep diaries lack accuracy because of poor awareness of
patients of certain events, such as the exact time of falling asleep and number of awak-
enings during sleep [5]. More importantly, these methods are incapable of ascertaining
reliable information on any of the main sleep parameters, such as time spent awake after
sleep onset (WASO). Additionally, non-invasive motion sensors, such as passive InfraRed
motion sensor [6] or bed sensors, have been used for the purpose of sleep assessment;
however, these methods have not yet been studied extensively. Wrist actigraphy, due to
its low cost and ability to estimate the main sleep parameters in an unobtrusive manner,
is a popular method for assessing the sleep of persons residing in free-living conditions.
Nevertheless, the accuracy of this method depends on both the quality of the hardware
(sensor) technology and the performance of interpretative algorithms (IA) in scoring of
sleep by sensed movement.

Wrist actigraphy is considered by The American Academy of Sleep Medicine as a
method with acceptable accuracy to evaluate adult sleep patterns [7], although without spe-
cific recommendation of specific scoring IA. Even though actigraphy has high sensitivity in
detecting sleep (between 0.87 to 0.99), its specificity is low (between 0.28 to 0.67) [8], depend-
ing upon its hardware and IA. Sadeh [9], Cole-Kripke [10], rescored Cole-Kripke [10,11],
and University of California San Diego (UCSD) [12] IAs are the ones most commonly
used to process actigraphy data and score wake/sleep epochs. To utilize these IAs, as a
first step, raw accelerometer data need to be pre-processed and converted into activity
counts. The method by which sensed raw accelerometer data are processed is called “mode
of operation”. Proportional Integrating Measure (PIM), Time Above Threshold (TAT),
and Zero-Crossing Mode (ZCM) are the most common operational modes of actigraphy.
ZCM is the number of voltage crosses in response to body movements that exceed threshold
per given time interval (epoch), whereas TAT is the duration of time voltage exceeds a cho-
sen threshold value in response to movements per given epoch. Lastly, PIM is the total area
under the time-movement curve during any given epoch, regardless of voltage sign [13].
The Cole-Kripke [10], rescored Cole-Kripke [10,11], and Sadeh [9] IAs utilize the ZCM to
score a specific epoch as wake or sleep. The UCSD algorithm is the only well-known IA that
is equally applicable to data derived by the PIM, TAT, or ZCM modes [12]. It progressively
rates each successive epoch as wake or sleep on the basis of a 7-min data span—the current
1 min, the 4 preceding minutes, and the 2 subsequent minutes [12]. Recently, researchers
have increasingly focused on improving the performance of the wrist actigraphy method
by incorporating more input features, in addition to activity count indices, like heart rate
(HR) or heart rate variability (HRV). Studies have shown an association between sleep
stages and HR and HRV [14]; both decrease during sleep stages 1 to 4 and increase during
rapid eye movement (REM) sleep [14,15]. There is also significant increase in HRV low
frequency/high frequency ratio (LF/HF) during REM sleep [14,16].

We previously compared the performance of the four commonly used conventional
wrist actigraphy IAs [17] and also more advanced IAs [18], such as those used by the
Fitbit fitness trackers [19,20] in assessing sleep. We also studied the effect of the selected
mode of operation on sleep scoring performance [21]. The purpose of our most recent
work summarized in this article is to: (1) report the effect of utilizing HRV measures plus
actigraphy count data in combination on sleep scoring performance in contrast to utilizing
actigraphy count data only, (2) compare the effect of incorporating different HRV period
lengths on sleep scoring performance, (3) introduce the Haghayegh algorithm (HA) that
simultaneously incorporates HRV measures and actigraphy data into a deep learning
model to score epochs as wake and sleep, and (4) evaluate the performance of the novel HA
relative to the Actiwatch Spectrum proprietary IA and also the UCSD IA in accord with
standards and terminologies established by national sleep and technology organizations
for wearable wristband devices [22].
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2. Methods
2.1. Dataset

We used the PSG and wrist actigraphy data of the Multi-Ethnic Study of Atherosclero-
sis (MESA) sleep [23,24] studies that entailed the simultaneous collection of wrist move-
ment sensed by the Actiwatch Spectrum (Philips Respironics, Murrysville, PA, USA) and
PSG recordings obtained by a commercial in-home PSG system (Compumedics Somte
System, Compumedics Ltd., Abbotsford, Australia). Data of the synchronized PSG studies
of various rated quality and actigraphy (PIM mode only) of the MESA are available for
1835 participants through The National Sleep Research Resource website (sleepdata.org).
In order to have an accurate reference to compare the performance of sleep scoring models,
we only used PSG data whose overall quality of data were rated by certified PSG scorers as
outstanding, i.e., the signal of all of the channels being rated good for the entire duration of
sleep that lasted longer than 6 h (N = 253).

2.2. Heart Rate Variability Features

The electrocardiography (ECG) signal of the PSG was used to extract HRV metrics.
The ECG was recorded with sampling rate of 256 HZ using Ag/AgCl patch electrodes.
Since the purpose of this study was to compare the effect of incorporating different HRV
period durations on sleep scoring performance and also developing a novel IA based
on the combination of activity count and HRV, we decided to use the most accurate
signal for calculating HRV, i.e., the ECG signal, even though the same HRV metrics can
be also derived by plethysmography. In total, 17, i.e., 9 time domain and 8 frequency
domain, HRV metrics were extracted per 30-s epoch using Kubios HRV Premium (ver 3.3,
Kubios, Kuopio, Finland) by applying automatic QRS detection and artifact correction
algorithms [25]. Only the data of sleep studies with a percentage of artifact <5% (N = 222)
of the entire recording period were utilized. Table 1 presents the list of the HRV metrics
considered, along with their units and definitions [26,27].

Table 1. Heart rate variability metrics used to develop algorithms [26,27].

Metric Unit Definition

Time Domain
Mean R-R [ms] Average of R-R intervals per window duration

SDRR [ms] Standard deviation of R-R intervals per window duration
Mean HR [bpm] Average heart rate per window duration
Min HR [bpm] Minimum heart rate calculated using 5 beat moving average per window duration
Max HR [bpm] Maximum heart rate calculated using 5 beat moving average per window duration
RMSSD [ms] Root mean square of differences between successive intervals per window duration

PNN50 [%] Number of successive R-R intervals differing by >50 ms divided by total number of R-R
intervals per window duration

HRVti - Integral of the density of R-R interval histogram divided by height of the histogram per
window duration

TINN [ms] Baseline width of R-R histogram per window duration
Frequency Domain

VLF Peak [HZ] Peak frequency of the very-low-frequency band (0.0–0.04 Hz) per window duration
LF Peak [HZ] Peak frequency of the low-frequency band (0.04–0.15 Hz) per window duration
HF Peak [HZ] Peak frequency of the high-frequency band (0.15–0.4 Hz) per window duration

VLF Power [ms2] Absolute power of the very-low-frequency band (0.0–0.04 Hz) per window duration
LF Power [ms2] Absolute power of the low-frequency band (0.04–0.15 Hz) per window duration
HF Power [ms2] Absolute power of the high-frequency band (0.15–0.4 Hz) per window duration

LF/HF - Ratio between low frequency and high frequency band power per window duration
Stress index - Square root of the Baevsky’s stress index per window duration [28]

HRV metrics are significantly affected by the window duration selected to derive
them, i.e., number of data epochs comprising the HRV calculation. In the literature,
HRV recording period length (window) shorter than 5 min is considered as ultra-short-
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term measurement and that of ~5-min as short-term measurement [26]. In this study,
we compared 3 different window lengths of HRV calculation: (1) 30-s window, which is
equal to the epoch size of the PSG sleep scoring estimation, (2) 5-min window, considered
as short-term measurement, and one between these two, i.e., 3-min window.

2.3. Participants

The sleep data of 222 participants met the inclusion and exclusion criteria for analysis.
Table 2 summarizes the characteristics of the subjects of the sleep study population.

Table 2. Characteristics of the study population (N = 222).

Age 67.5 ± 8.3 years

Gender

Male 108 (48.6%)
Female 114 (51.4%)

Race

White, Caucasian 80 (36.0%)
Chinese American 31 (13.9%)
Black, African-American 64 (28.8%)
Hispanic 47 (21.2%)

Told by doctor as having insomnia

Yes 9 (4.1%)
No 213 (95.9%)

Trouble falling asleep past 4 weeks

No, not in the past 4 weeks 127 (57.2%)
Yes, less than once a week 26 (11.7%)
Yes, 1 or 2 times a week 36 (16.2%)
Yes, 3 or 4 times a week 20 (9.0%)
Yes, 5 or more times a week 13 (5.9%)

Chronotype

Definitely a morning type 78 (35.1%)
Rather more a morning than an evening type 60 (27.0%)
Rather more an evening than a morning type 29 (13.1%)
Definitely an evening type 29 (13.1%)
Neither a morning nor an evening type 26 (11.7%)

2.4. Deep Learning Algorithm Training and Selection

The database of the 222 subjects was randomly divided into testing (N = 77 subjects;
35%) and training/validation (N = 145 subjects; 65%) sets. None of the test set data was
utilized for training, tuning, or selection of the analytical models. The raw time series
data of activity count and HRV metrics mode channels as input into the model centered
around each successive 30-s epoch of a 10.5-min time window, i.e., 10 epochs preceding
and 10 epochs following the centered 30-s (see Figure 1). The effect of combining the
HRV and activity data plus effect of HRV window length, i.e., 30-s vs. 3-min vs. 5-min,
was explored using four classic deep learning architectures. In this manner, residual
network [29,30], fully convolutional neural networks [29,30], encoder [29,31], and time
Le-Net [29,32] were applied to datasets of activity count only, activity count + 30-s HRV,
activity count + 3-min HRV, and activity count + 5-min HRV. The models were trained
and evaluated on a training dataset using a 5-fold cross-validation process. A random
search over the hyperparameters, using the Mcfly software package [33], was performed
to generate 50 sets of convolutional neural network (CNN) [34] models and 50 sets of
deep learning convolutional, long-short-term, memory (DeepConvLSTM) [35] models. The
randomly selected hyperparameters were regularization rate, learning rate, number of
convolution layers, number of filters per layer, number of hidden nodes, and number of
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long-short-term memory (LSTM) layers (only for DeepConvLSTM) [33]. Some 70% of the
training/validation dataset was randomly used to train the total of 100 models, and the
remaining 30% was used to evaluate the models. The top 5 models of best performance, i.e.,
lowest validation loss values, were further evaluated with a 5-fold cross-validation strategy
using the training/validation dataset, exclusive of the test dataset. The deep learning IAs
were produced using the TensorFlow [36,37] and Keras library [38] in Python (version 3.7).
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Figure 1. Illustrative example of different heart rate variability (HRV) window lengths used to calculate the HRV metrics
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the window.

2.5. Statistical Analyses

Since the start and end time of each PSG was unspecified per subject study, the pulse
oximetry (SpO2) data of the PSG study were utilized as a surrogate biomarker of both the
start time, i.e., the first 5-min block that contained ≥30-s of SpO2 values, and end time, i.e.,
the last 5-min block that contained ≥30-s of SpO2 values. Accuracy, specificity, sensitivity,
and Cohen’s Kappa in detecting sleep epochs were calculated by equations provided in
Appendix A for each individual subject for the Actiwatch proprietary, UCSD, and proposed
deep learning IAs. These metrics were additionally calculated in detecting REM and Non-
Rapid Eye Movement (NREM) sleep epochs for the proposed deep learning IA only, since
the other two IAs lack the capability of estimating sleep stages. Bland–Altman plots [39]
were generated to compare performance between the PSG and each IA in estimating the
individual sleep quality parameter (See Table 3 for definition of each one). A negative value
of bias indicates overestimation of the PSG value by the IA. Linear regression analysis
was applied to test the null hypothesis of absence of significant trend in Bland–Altman
plots, i.e., no trend in difference between values determined by PSG and given IA across
subjects (y-axis of Bland–Altman plot) relative to the overall mean of the PSG and given IA
values (x-axis of Bland–Altman plot) [40]. The null hypothesis that the estimated value of a
sleep parameter by each IA did not significantly differ from the reference PSG value was
paired t-tested. Additionally, the null hypothesis that the amount of bias in an estimated
sleep parameter by the proposed deep learning method did not vary significantly from that
estimated by each of the other two IAs was assessed by t-test. We also calculated the Mean
Absolute Error (MAE) as the average of the absolute values of difference between PSG
and IAs per sleep parameter. Python (version 3.7) and MATLAB (version R2020a) were
used for data analyses. P values less than 0.05 was considered as evidence of a statistically
significant difference.
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Table 3. Estimated sleep parameters derived by polysomnography (PSG), actiwatch plus its proprietary interpretative
algorithm (IA), the UCSD IA, and the proposed deep learning Haghayegh algorithm (HA) across participants of the
test dataset.

Sleep
Metric

Metric
Definition (Units) Measurement Method Measured Values

Mean (SD)

Sleep Period Time
(SPT)

Total recording time
(min) PSG 509.7 (67.1)

Total Sleep Time
(TST)

Total time scored as “sleep”
(min)

PSG
Actiwatch IA

UCSD IA
Deep Learning HA

367.8 (65.3)
442.3 (62.9)
359.9 (70.2)
372.2 (81.5)

Sleep Efficiency
(SE) (TST/SPT) × 100 (%)

PSG
Actiwatch IA

UCSD IA
Deep Learning HA

72.6 (11.5)
86.9 (6.5)

70.8 (11.0)
73.3 (13.4)

Sleep Onset Latency
(SOL)

Duration of time from lights off to
first 10 min block when ≥50% of

epochs scored as sleep (min)

PSG
Actiwatch IA

UCSD IA
Deep Learning HA

60.6 (39.9)
10.4 (19.5)
37.3 (33.5)
53.6 (42.0)

Wake After Sleep Onset (WASO)
Cumulative amount of time spent
in wakefulness after sleep onset

(min)

PSG
Actiwatch IA

UCSD IA
Deep Learning HA

82.5 (54.2)
58.5 (32.1)

115.5 (54.4)
86.7 (56.6)

Non-Rapid Eye Movement Sleep
(NREM)

Time spent in Sleep Stages N1-N4
(min)

PSG
Deep Learning HA

293.7 (55.4)
328.1 (80.7)

Rapid Eye Movement Sleep
(REM)

Time spent in Rapid Eye
Movement Sleep (min)

PSG
Deep Learning HA

74.1 (24.3)
44.2 (25.3)

3. Results
3.1. Comparison of Different HRV Period (Window) Lengths

Table 4 reports the comparison with PSG of the classic deep learning architectures
applied to activity count only, activity count + 30-s HRV, activity count + 3-min HRV,
and activity count + 5-min HRV in scoring epochs as sleep or wake. As apparent from
Table 4, the combination of activity count plus 5-min HRV provided highest accuracy and
Kappa agreement.

Table 4. Mean and 95% confidence interval of accuracy, sensitivity, specificity, and Cohen’s kappa in scoring the 30-s epochs
as sleep vs. wake by the classic deep learning (Residual Network [29,30], Fully Convolutional Neural Networks [29,30],
Encoder [29,31], and Time Le-Net [29,32]) Architectures applied to activity count data only and also activity count plus
heart rate variability (HRV) data of periods (windows) of different durations.

Features Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

Cohen’s Kappa
(%)

Activity count 69.1 (59.7, 78.5) 68.1 (52.1, 84.1) 71.5 (63.9, 79.1) 39.1 (30.0, 48.2)
Activity count + 30-s HRV 73.3 (65.0, 81.6) 81.6 (66.5, 96.7) 52.5 (40.3, 64.7) 37.4 (28.0, 46.8)

Activity count + 3-min HRV 72.4 (66.0, 78.8) 78.7 (66.1, 91.3) 56.9 (44.8, 69.0) 36.3 (28.8, 43.8)
Activity count + 5-min HRV 74.9 (68.7, 81.1) 79.5 (67.9, 91.1) 63.7 (55.3, 72.1) 43.8 (37.8, 49.8)

3.2. Best Deep Learning Model’s Architecture

A DeepConvLSTM, consisting of 9 convolutional layers, each followed by a batch nor-
malization and 4 LSTM layers after the last convolutional layer, proved to be the best model.
Binary cross entropy was applied as a loss function for the classification task. The kernel
regularization method was used to prevent overfitting, and the minimum validation loss
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was used to identify the model weights. The Supplementary Materials Table S1 provides
the configuration of the best model.

3.3. Overall Estimate of Sleep Parameters

Table 3 lists the overall mean and standard deviation of the sleep parameters assessed
by PSG as well as by Actiwatch with data analyzed, respectively, by its proprietary IA,
UCSD IA, and proposed HA. Mean sleep onset latency (SOL) varied from ~10 min by
the Actiwatch proprietary IA to ~54 min by the proposed deep learning HA, while the
reference PSG was ~61 min. WASO varied from ~59 min by the Actiwatch proprietary
IA to ~116 min by the UCSD IA, while the reference PSG was ~83-min. Total sleep time
(TST) ranged from ~359 min by the UCSD IA to ~442 min by the Actiwatch proprietary IA,
while the reference PSG was ~368 min. Finally, sleep efficiency (SE) varied from ~71% by
the UCSD IA to ~87% by the Actiwatch proprietary IA, while the reference PSG was ~73%.
Overall, estimation of the sleep parameters by the HA deep learning method displayed
greatest similarity to PSG; in contrast, average values derived by the Actiwatch proprietary
IA were most divergent from PSG values.

3.4. Epoch-by-Epoch Comparisons

Table 5 presents the accuracy, sensitivity, specificity, and kappa agreement of each IA
in detecting sleep (vs. wake) epochs, in reference to PSG. Additionally, these metrics are
reported for the HA deep learning algorithm in detecting REM (vs. NREM sleep + wake)
epochs and also NREM sleep (vs. REM sleep + wake) epochs in reference to PSG. The deep
learning HA showed highest accuracy (84.5%), specificity (70.0%), and Cohen’s Kappa
(58.7%), while the Actiwatch proprietary IA showed highest sensitivity (95.5%) in detecting
sleep epochs.

Table 5. Epoch-by-epoch comparisons of scoring epochs as sleep vs. wake by Actiwatch and its proprietary interpretative
algorithm (IA), the UCSD IA, and proposed deep learning Haghayegh algorithm (HA) vs. polysomnography as reference.

Interpretative
Algorithm

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

Cohen’s Kappa
(%)

Sleep detection
proprietary 79.2 (77.2, 81.2) 95.5 (94.6, 96.5) 35.7 (32.2, 39.2) 35.7 (31.6, 39.8)

UCSD 77.8 (75.7, 79.8) 83.3 (81.1, 85.5) 61.8 (57.4, 66.1) 42.7 (38.0, 47.4)
Deep learning HA 84.5 (82.6, 86.3) 89.5 (86.9, 92.2) 70.0 (66.4, 73.5) 58.7 (55.0, 62.4)
REM detection 1

Deep learning HA 88.1 (87.0, 89.1) 39.6 (34.8, 44.4) 96.6 (95.9, 97.3) 40.9 (36.1, 45.7)
Non-REM detection 2

Deep learning HA 78.9 (77.4, 80.4) 87.1 (84.1, 90.2) 65.9 (62.7, 69.2) 54.0 (50.8, 57.1)

Values reported as mean and 95% confidence limits in parentheses. 1 Detection of rapid eye movement (REM) epochs vs. non-rapid eye
movement (NREM) sleep plus wake epochs. 2 Detecting NREM epochs vs. REM sleep plus wake epochs.

3.5. Performance in Estimating Sleep Parameters

Figure 2 presents the Bland–Altman plots that compare PSG, as reference, with the
proposed deep leaning HA, Actiwatch proprietary IA, and UCSD IA for the sleep parame-
ters of SOL, WASO, TST, and SE, and Table 6 summarizes the details of these comparisons.
In reference to PSG, there was no statistically significant bias in the estimation of any
of the sleep parameters—SOL, WASO, TST, and SE—by the HA. In contrast, SOL was
underestimated by the Actiwatch proprietary IA (~50 min) and UCSD (~23-min); WASO
was underestimated by the Actiwatch proprietary IA (~24 min) and overestimated by
UCSD (~33-min); TST was overestimated by the Actiwatch proprietary IA (~75-min) and
underestimated by UCSD (~8 min); and SE was overestimated by the Actiwatch propri-
etary IA (~14%) and underestimated by UCSD (~2%). In comparison to the PSG reference,
the amount of bias in the estimated SOL, WASO, TST, and SE parameters by the deep
learning HA was significantly smaller than that of the UCSD and Actiwatch proprietary
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IAs. Moreover, the MAE of each of the sleep parameters was smallest by the HA relative
to the UCSD and Actiwatch proprietary IAs. Regression analysis of Bland–Altman data
revealed significant positive slope in bias for the sleep parameters of SOL, WASO, and SE
derived from the Actiwatch proprietary IA. The amount of bias in SOL and WASO esti-
mated by Actiwatch proprietary IA increased as mean values increased, while that in SE
decreased as mean values increased. There was a significant negative slope in bias for the
TST derived from the HA, meaning that the amount of bias in estimating TST was smallest
for the middle range values of TST (Supplementary Materials Table S2).
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Figure 2. Bland–Altman plots of sleep parameters assessed by polysomnography (PSG) vs. Actiwatch
proprietary, UCSD, and deep learning Haghayegh algorithms; x axis displays mean value of each
individual sleep parameter (average of PSG and IA derived values) and y axis displays between-
device/method difference (PSG minus IA). Positive bias indicates underestimation of PSG-derived
values by the IA. Solid lines denote bias and dashed lines upper and lower limits of agreement
(bias ± 1.96*SD). Abbreviation: IA: interpretative algorithm; SE: sleep efficiency; SOL: sleep onset
latency; TST: total sleep time; WASO: wake after sleep onset.
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Table 6. Comparison of sleep parameters estimated by Actiwatch proprietary interpretative algorithm (IA), UCSD IA, and
deep learning Haghayegh algorithm (HA) vs. polysomnography (PSG) as reference.

Variable
(Units)

Overall Bias
(95% CI) [p Value]

Bland–Altman Limits of Agreement
MAE

Lower Limit Upper Limit

SOL (min)
Actiwatch IA vs. PSG 50.2 (41.0, 59.3) [<0.001] −29.1 129.5 50.9
UCSD IA vs. PSG 23.3 (13.9, 32.6) [<0.001] −58.0 104.5 31.8
Deep Learning HA vs. PSG 7.0 (−1.2, 15.2) [0.093] −63.9 78.0 19.9
Comparing bias of Deep Learning HA vs. bias of Actiwatch IA: d = 43.2, p < 0.001
Comparing bias of Deep Learning HA vs. bias of UCSD IA: d = 16.2, p < 0.001
WASO (min)
Actiwatch IA vs. PSG 24.0 (14.6, 33.4) [<0.001] −57.2 105.2 35.4
UCSD IA vs. PSG −33.0 (−43.7, −22.4) [<0.001] −125.2 59.1 44.8
Deep Learning HA vs. PSG −4.2 (−15.3, 6.9) [0.451] −100.0 91.5 35.3
Comparing bias of Deep Learning HA vs. bias of Actiwatch IA: d = 28.2, p < 0.001
Comparing bias of Deep Learning HA vs. bias of UCSD IA: d = 28.8, p < 0.001
TST (min)
Actiwatch IA vs. PSG −74.5 (−86.4, −62.7) [<0.001] −177.1 28.1 76.0
UCSD IA vs. PSG 7.8 (−4.2, 19.8) [0.198] −95.8 111.5 41.4
Deep Learning HA vs. PSG −4.4 (−17.0, 8.1) [0.483] −113.0 104.1 40.1
Comparing bias of Deep Learning HA vs. bias of Actiwatch IA: d = 70.1, p < 0.001
Comparing bias of Deep Learning HA vs. bias of UCSD IA: d = 12.3, p = 0.042
SE (%)
Actiwatch IA vs. PSG −14.3 (−16.5, −12.1) [<0.001] −33.1 4.5 14.6
UCSD IA vs. PSG 1.8 (−0.6, 4.2) [0.134] −18.9 22.5 8.2
Deep Learning HA vs. PSG −0.7 (−3.2, 1.8) [0.584] −22.1 20.7 7.9
Comparing bias of Deep Learning HA vs. bias of Actiwatch IA: d = 13.6, p < 0.001
Comparing bias of Deep Learning HA vs. bias of UCSD IA: d = 2.5, p = 0.032
REM sleep (min)
Deep Learning HA vs. PSG 29.9 (23.0, 36.8) [<0.001] −29.5 89.3 33.9
NREM sleep (min)
Deep Learning HA vs. PSG −34.3 (−47.5, −21.2) [<0.001] −147.7 79.0 55.3

Positive values of bias indicate underestimation by IAs. Abbreviations: d: absolute difference; MAE: Mean Absolute Error; REM: Rapid
Eye Movement; NREM: Non-Rapid Eye Movement; SE: Sleep Efficiency; SOL: Sleep Onset Latency; TST: Total Sleep Time; WASO: Wake
After Sleep Onset; PSG: Polysomnography.

3.6. REM and NREM Sleep Detection/Scoring

The UCSD and Actiwatch proprietary IAs are incapable of estimating sleep stages, but
the HA is. Table 5 presents epoch-by-epoch comparison of the proposed deep learning HA
with PSG in detecting REM and NREM sleep epochs. The deep learning HA performs better
in detecting NREM epochs (Kappa agreement = 54.0) than REM epochs (Kappa agreement
= 40.9). Table 6 shows the performance of the deep learning HA in estimating the total
duration of REM and NREM sleep. The deep learning HA significantly underestimated
the REM sleep duration and overestimated Non-REM sleep duration.

4. Discussion

The purpose of this project was to: (1) investigate the effect of combining activity count
and HRV metrics on sleep scoring performance, (2) compare the effect of different HRV
period lengths (windows) on sleep scoring performance, (3) devise a novel IA to improve
sleep scoring performance of wrist actigraphy based upon deep learning methods that
simultaneously incorporates HRV and activity count values, and (4) compare performance
of this novel IA with existing UCSD and Actiwatch proprietary IAs.

In regard to the first and second study objectives, we applied four classic deep learning
architectures to only activity count data and, in addition, the combination of activity count
with 30-s, 3-min, and 5-min windows of HRV metrics data to perform epoch-by-epoch
comparisons between the most utilized IAs vs. PSG as reference in scoring sleep vs. wake.
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The IA comprised of the combined activity counts plus 5-min HRV window was termed
the deep learning Haghayegh algorithm (HA) and provided the highest accuracy and
agreement with the reference PSG in detecting sleep epochs. Both the time domain and
frequency domain of the HRV metrics were significantly affected by the window duration,
i.e., number of data epochs comprising the HRV calculation. Some HRV metrics have a
recommended recording period length (window) of at least 5-min, because ultra-short
period lengths fail to provide the same values as the 5-min period length [26].

Regarding the third and fourth study questions, we developed a deep learning model
that incorporates both activity count and 5-min HRV metrics to score wrist actigraphy
data. Per epoch comparison of the novel HA relative to the PSG in the ability to properly
score sleep epochs disclosed accuracy of 84.5%, sensitivity of 89.5%, specificity of 70.0%,
and Kappa agreement of 58.7%. We further compared the performance, relative to PSG,
of the HA against the UCSD and also the Actiwatch proprietary IAs. Our proposed deep
learning HA exhibited highest accuracy (respectively, 6.2% and 5.3% higher than the UCSD
and Actiwatch proprietary IAs), specificity (respectively, 8.2% and 34.3% higher than the
UCSD and Actiwatch proprietary IAs), and Kappa agreement (respectively, 16% and 23%
higher than the UCSD and Actiwatch proprietary IA). The sensitivity of the proposed
deep learning HA was higher than that of the UCSD IA (6.2%), but lower than that of the
Actiwatch proprietary IA (6%). Overall, the performance of our proposed deep learning
HA is better than other IAs as reported in the literature for wrist actigraphy; a 2019 meta-
analysis of data of 49 studies entailing 1582 participants reported the average specificity,
sensitivity, and accuracy of sleep scoring to be 51%, 83%, and 82%, respectively, for wrist
actigraphy compared to PSG [41].

It is worthy of note that the performance of HA did not significantly differ from PSG
in determining SOL (bias of 7.0 min), WASO (bias of −4.2 min), TST (bias of −4.4 min),
and SE (bias of −0.7%). We further compared the amount of bias of our proposed deep
learning HA against the respective UCSD and Actiwatch proprietary IAs, with respect to
the reference PSG. The deep learning HA exhibited significantly lower bias in detecting
SOL (respectively, 16.2 min and 43.2 min lower than UCSD and Actiwatch proprietary IAs),
WASO (respectively, 28.8 min and 28.2 min lower than UCSD and Actiwatch proprietary
IAs), TST (respectively, 12.3-min and 70.1 min lower than UCSD and Actiwatch proprietary
IAs), and SE (respectively, 2.5% and 13.6% lower than UCSD and Actiwatch proprietary
IAs). Additionally, the amount of MAE for all of the sleep parameters was smallest for the
deep learning HA. The amount of bias, in comparison to PSG as reference, in estimating
WASO, TST, and SE by the HA was smaller than that reported in the literature and was
about the same in estimating SOL; the 2019 meta-analysis of 64 studies that compared
the method of actigraphy to that of PSG revealed overestimation of TST by −17.9 min
(N = 3437) and SE by −3.8% (N = 2905), and underestimation of SOL by 6.9 min (N = 2534)
and WASO by 12.9 min (N = 2537) by the actigraphy method [41]. The amount of bias of
the deep learning HA is also smaller than that reported for sleep-staging Fitbit wristband
technology, which uses motion, HRV, and respiratory rate to score epochs as sleep vs. wake
and estimate sleep parameters [20].

We further assessed the performance of the deep learning HA in detecting REM and
NREM sleep stage epochs. The HA showed 40.9% Kappa agreement, 88.1% accuracy,
39.6% sensitivity, and 96.6% specificity with PSG in detecting REM epochs and 54.0%
Kappa agreement, 78.9 accuracy, 87.1 sensitivity, and 65.9 specificity in detecting NREM
epochs. The total duration of REM sleep was underestimated by the HA by ~30 min and
the duration of NREM was overestimated by ~34 min. Since the UCSD and Actiwatch
proprietary IAs are only capable of detecting sleep vs. wake epochs, and not sleep stages,
it was not possible to compare in this respect the performance of the HA with these two
other IAs. Walch et al. [42] tested the performance of their neural network classifier on
a MESA dataset and achieved accuracy of ~60–65% in detecting each of the wake, REM,
and NREM epochs, which is lower than that found for the HA. Finally, the findings of this
study indicate the novel HA, which performs better than existing commercial IAs, can be
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used as to achieve the sleep/wake scoring of simultaneously sensed heart rate and wrist
movement count data of any wearable device.

The strengths of our project in developing the deep learning HA are: (1) use of
PSG with only high-quality signals as the reference; (2) reliance on the same actigraphy
hardware (Actiwatch), thereby avoiding confounding, to record movement (count) data
for the scoring of epochs as sleep or wake by all the three IAs; (3) assessment of a relatively
large dataset. The limitations of our project are: (1) use of a PSG/wrist actigraphy database
that is representative of older (average age of ~67 years) participants, (2) dependence upon
the ECG channel of PSG to derive the HRV metrics, (3) lack of information on the precise
start and end times of each of the PSG studies thereby requiring reliance upon SpO2 data
as a surrogate indicator of such, and (4) lack of data on the other wrist activity mode
measures of ZCM or TAT to incorporate in the proposed deep learning HA to attempt
further improvement of its performance.

5. Conclusions

The findings of this study show the incorporation of HRV metrics, when the number of
epochs is of sufficient number, i.e., duration of the data window is optimal, in combination
with movement count data assessed by wrist actigraphy improves the performance of
IAs in differentiating the epochs as sleep vs. wake. Application of advanced classifier
methods, such as neural network to develop interpretative algorithms, can improve the
performance of wrist actigraphy sleep scoring. We proposed a novel deep neural network
(Haghayegh Algorithm, HA) that simultaneously incorporates both activity count and
HRV metrics to differentiate and score epochs as wake and sleep and improve estimation
of parameters of sleep quality. We demonstrated in the study that the HA shows higher
accuracy, specificity, and Kappa agreement than the UCSD and Actiwatch proprietary
IAs and also in comparison to those values reported in the literature. Estimated sleep
onset latency, wake after sleep onset, total sleep time, and sleep efficiency parameters
measured by the HA did not differ significantly from the respective reference values
produced by PSG; however, it overestimated the total amount of time spent in NREM sleep
and underestimated the total amount of time spent in REM sleep.

Supplementary Materials: The following are available online at https://www.mdpi.com/1424-82
20/21/1/25/s1, Table S1: List of layers of the proposed deep learning model. Table S2: Linear
regression analysis of trend in Bland-Altman plots, i.e., trend in differences between estimated sleep
parameters (y-axis of each depicted Bland–Altman plot) relative to magnitude of the mean per sleep
parameter (x-axis of each depicted Bland–Altman plot).
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Code Availability: The deep learning models were developed using freely available libraries in
Python. Access to the deep learning HA code and instructions on its use are available from the
corresponding author upon request without charge for non-commercial purposes.

Appendix A

Table A1. Equations for calculation of Accuracy, Sensitivity, Specificity, and Cohen’s Kappa.

Actigraphy Scoring

0 1

PSG Scoring 0 TN FP
1 FN TP

Accuracy =
TP + TN

TP + TN + FP + FN

Sensitivity =
TP

TP + FN

Speci f icity =
TN

TN + FP

Po =
TP + TN

TP + TN + FP + FN

Pe =
(TP + FP) ∗ (TP + FN) + (FN + TN) ∗ (FP + TN)

(TP + TN + FP + FN)2

Cohen′s Kappa =
Po− Pe
1− Pe
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