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Abstract

Recently, we developed a soft X-ray microscope called the scanning-electron generation X-ray microscope (SGXM), which
consists of a simple X-ray detection system that detects X-rays emitted from the interaction between a scanning electron
beam (EB) and the thin film of the sample mount. We present herein a three-dimensional (3D) X-ray detection system that is
based on the SGXM technology and designed for studying atmospheric biological samples. This 3D X-ray detection system
contains a linear X-ray photodiode (PD) array. The specimens are placed under a CuZn-coated Si3N4 thin film, which is
attached to an atmospheric sample holder. Multiple tilt X-ray images of the samples are detected simultaneously by the
linear array of X-ray PDs, and the 3D structure is calculated by a new 3D reconstruction method that uses a simulated-
annealing algorithm. The resulting 3D models clearly reveal the inner structure of the bacterium. In addition, the proposed
method can easily be used for diverse samples in a broad range of scientific fields.
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Introduction

Imaging with nanometre-scale resolution is indispensable for

many scientific fields such as biology, physics, chemistry, materials

science and nanotechnology [1–5], and soft-X-ray microscopy is

an important technique for producing such high-resolution images

of unstained samples that are under atmospheric pressure or in

water [6–9]. When combined with a diffractive zone plate and a

synchrotron light source, the spatial resolution of soft-X-ray

microscopy is approximately 10 nm [10,11], which is much higher

than the resolution available with an optical microscope.

Moreover, X-ray microscopes that exploit the computer-tomog-

raphy (CT) method can image the three-dimensional (3D)

structure of diverse samples [12–16]. However, these methods

require large and complex synchrotron light sources. Furthermore,

3D reconstructions using these systems require the acquisition of

many images with the sample rotated and/or tilted between each

image, and acquiring these numerous images can lead to sample

damage. Moreover, to acquire an image at each viewing angle, the

beam focus and the sample position must be adjusted between

each image, which leads to long data-acquisition times.

Recently, we have developed a soft-X-ray microscope called the

scanning-electron generation X-ray microscope (SGXM) [17–19].

This microscope consists of a simple system for detecting the soft

X-rays generated by the interaction between a scanning electron

beam of a scanning-electron microscope (SEM) and a target

material layer on thin film. Therefore, X-ray imaging of various

samples is relatively simple with SGXM. Furthermore, the spatial

resolution of the SGXM incorporated into a field-emission SEM is

11 nm [19] and its theoretical resolution is less than 5 nm [18].

In this paper, we present a 3D reconstruction system based on

the SGXM technology for studying atmospheric biological

samples. The X-ray detection system consists of a linear X-ray

photodiode (PD) array; hence, multiple sample tilt images are

acquired simultaneously by PDs during a single electron-beam

(EB) scan. Moreover, we have developed a highly accurate 3D

reconstruction method that uses a simulated-annealing (SA)

algorithm.

Currently available methods for 3D volume reconstruction

include the filtered-back projection method, the algebraic

reconstruction technique and the simultaneous iterative recon-

struction technique [20,21]. However, these methods require

numerous projections. Some two-dimensional (2D) CT methods

have been developed that use the SA algorithm and enable highly

accurate reconstructions from a reduced number of projections

[22–24]. Furthermore, we have developed a 3D reconstruction

method that uses an SA algorithm and have applied it to imaging

proteins with a transmission electron microscope [25].

We, thus, propose herein a 3D reconstruction method that uses

an SA algorithm combined with images captured by a linear array

of X-ray PDs. The atmospheric sample holder, the linear-array X-

ray PD system and the SA 3D reconstruction algorithm constitute

a new technology that is expected to contribute in a broad range of

scientific fields for analysing the 3D structure of various

atmospheric samples.

Results

A schematic of the atmospheric 3D-SGXM system is shown in

Figure 1. The unstained sample is positioned under a brass
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(CuZn)-coated Si3N4 film and sealed by a 100-nm Si3N4 film

(Figure 1A), and the ensemble is attached to an atmospheric

sample holder (Figure 1B) in which the sample space is maintained

at atmospheric pressure. The sample holder is then mounted on

the stage of the linear X-ray PD array system combined with a

photoelectric conversion film (Figure 1B–D).

The CuZn-coated Si3N4 film is scanned by an EB accelerated at

a voltage of 5 kV; hence, the impinging electrons are almost

absorbed on the CuZn-coated Si3N4 film (Figure S1). Conse-

quently, electron damage to the sample is strongly suppressed. In

addition, the interaction of the scanning EB with the CuZn thin

layer emits approximately 1-keV X-rays (Figure S1) that irradiate

the sample.

The X-rays transmitted through the sample are detected by the

linear PD array and photoelectron conversion systems (Figure 1B).

To form X-ray images, photoelectrons from the Au-coated film

are detected by a secondary-electron (SE) detector in the SEM,

which is typically supplied with conventional SEMs. This process

constitutes the photoelectron conversion system [19]. As a result,

X-ray images can easily be observed because the same SEM

position setting and focus can be used.

To form X-ray images from the linear PD array, the X-ray

signals are read from the seven PDs that are used from among the

16 elements at one PD interval (Figure S2). The seven PD outputs

are amplified by preamplifiers and main amplifiers and then

recorded with a data recorder (Figure 1B). Because of their linear

arrangement, each PD views the sample from a different angle and

hence collects a different tilt image. The angles between the EB-

irradiated spot in the Si3N4 film and the PD elements range from

240.2u to 45.0u (Figure S2). Finally, the X-ray images are

reconstructed from the X-ray signals combined with the EB scan

signal and the PD angle corrections.

With the 3D-SGXM system, we first observed unstained

atmospheric bacteria of Rhodobacter capsulatus [26,27]. Figure 2A

shows an X-ray image of the bacteria positioned under the CuZn-

coated Si3N4 film from the SE detector, acquired at 40006
magnification at a 5-kV EB. The unstained bacteria create a black

contrast and have an elongated shape, which is 2 to 5 mm long and

approximately 1 mm wide. The bacterium indicated by the white

arrow in Figure 2A was scanned at 30,0006magnification and is

shown in the top-left panel of Figure 2B. The inner structure of

this bacterium is clearly visible at this magnification.

Figure 2B shows the simultaneously acquired tilt images of the

same bacterium obtained from the linear PD elements and

corrected for angle and X-ray absorbance. In these images, X-ray

PD-1 (XPD-1) views the sample at h1 = 240.2u; XPD-4 is placed

approximately under the sample (h4 = 4.4u) and XPD-7 views the

sample at h7 = 45u (Figure S2). To correct the tilt angle, the

horizontal axes of the detected images are reduced by a factor

cos(hx). Furthermore, in the 3D model, X-ray images are

converted to X-ray absorbance after angular correction (see

Materials and Methods).

To construct a high-accuracy 3D model from seven X-ray

images, we developed a new 3D reconstruction method that uses

Figure 1. Experimental setup and new 3D-SGXM system. (A) Schematic of the atmospheric sample holder. Bacteria samples are positioned
under the CuZn-coated Si3N4 film; these samples are maintained at atmospheric pressure. A scanning 5-kV EB irradiates the upper side of the CuZn-
coated Si3N4 film. The linear X-ray PD array under the sample detects the X-rays transmitted through the sample. (B) Schematic of X-ray-detection
apparatus. The X-ray images are acquired by both the SE detector (which detects the photoelectric conversion electrons) and the linear X-ray PD
array. The X-ray image acquired from the SE detector was obtained from the photoelectrons generated at the Au-coated film, which is positioned at
the side of the PD stage. A linear X-ray PD array consisting of seven PDs was fixed under the sample, and its output was recorded using a data
recorder (EZ7510, NF Co., Japan) after amplification by PD preamplifiers (gain 1006MA/V) and main amplifiers (gain 1006). (C) Photograph of the
linear X-ray PD array system. The linear X-ray PD array is visible in the upper centre on a circuit board. In this system, the X-ray signals are obtained by
seven X-ray PDs (XPD 1–7) from among the 16 elements, and the output from each X-ray PD is amplified by a preamplifier, which is located under the
circuit board. (D) Photograph of atmospheric sample holder set upon the X-ray detection system. The linear X-ray PD array system is covered by an Al
box, but its position is marked by the hole that is visible beneath the sample holder. An atmospheric sample holder was mounted on the Al stage.
The Au-coated photoelectron conversion film is fixed in the gap between the sampler holder and the X-ray detection box.
doi:10.1371/journal.pone.0021516.g001

Observation of Atmospheric Samples by 3D-SGXM
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the SA algorithm (Figures 3 and 4). This algorithm enables 3D

reconstruction from a small number of projections, even if its

projections are restricted tilt angles. A schematic of the proposed

3D reconstruction method is shown in Figure 3 and its flow

diagram is given in Figure 4. Initially, a 3D mask is calculated by

back projecting the 2D masks obtained from the X-ray images

(Figure S3). The 3D voxel values and the seven projections are

initially set to 0. Next, a position in the 3D mask is randomly

selected and its voxel values within the kernel-boundary area are

randomly shifted. This new 3D volume is reprojected onto the

seven angles of the corresponding PDs. To evaluate the modified

voxel values, the residual sum of the squares between all

reprojections and its corresponding X-ray images is calculated

and used by the SA algorithm to determine whether to accept the

new 3D volume (Figure 4). This procedure is iterated 100,000

times. When finished, the temperature, the kernel size and is the

standard deviation (SD) decrease exponentially. The kernel area

begins with an SD of 15s voxels, which is finally reduced to 2s
voxels. The entire cycle is repeated 200 times.

We applied our 3D reconstruction method to the tilt X-ray

images of a bacterium sample (Figure 2B). The modifications in

the 3D volume and the XPD-4 model projections between various

annealing cycles are shown in Figure 5A and B, respectively.

Starting from the blank volume and its projected image (left-most

panels in Figure 5A and B), the 3D volume and the projection

rapidly emerge after just 10 cycles, at which point the projection

Figure 2. X-ray image of atmospheric unstained bacteria by SGXM system. (A) X-ray image of the atmospheric Rhodobacter capsulatus
acquired by the photoconversion system using an original SE detector. The image was acquired at 40006magnification at a 5-kV EB acceleration
voltage. The image was filtered by a 2D Gaussian filter (size 15615 pixels; s= 1). (B) High-resolution X-ray images of the bacterium indicated by white
arrow in panel (A). The top left image shows an X-ray image of a bacterium acquired with the SE detector and taken at 30,0006magnification. The X-
ray images from XPD 1–7 were acquired by the linear PD array. Each X-ray image was corrected for the view angle and X-ray absorbance. In these
images, XPD-1 is the tilt image at 240.2u, XPD-4 is placed approximately under the sample (4.4u) and XPD-7 is at 45u.
doi:10.1371/journal.pone.0021516.g002
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already approximates the X-ray images. After 200 cycles, the

projection is very similar to the corresponding X-ray image.

Figure 5C shows the annealing temperature and the error between

the projections and the X-ray images as functions of the cycle

number. Between 0 and 10 cycles, the error decreases drastically

and then it decreases gradually with the cycle number.

Figure 6 shows the projections and the 3D volume once

annealing is complete. Each model projection shown in Figure 6A

is very similar to the X-ray images for the corresponding tilt angle

(Figure 2B). Therefore, the calculated 3D volume is likely to be

highly reliable. The 3D volume viewed from the side and the top

and the corresponding cross sections are shown in Figure 6B–E;

Figure 6B and C show that the bacterium has the form of a slightly

curved cylinder. A higher-density area in the bacterium, which is

probably the nucleoid, is located at the bottom right, and the point

with slightly above-average density is detected at the top left in the

bacterium (Figure 6D and E). The bacterium centre exhibits a

complex grain structure with relatively low density.

To clearly identify the high-density region, we captured images

of three bacteria of similar length and have displayed their inner

structures in Figure 7. Figure 7A shows the same bacterium that is

displayed in Figure 6 and reveals that the red high-density regions

are clearly located in the longitudinal extremities of the bacterium.

Furthermore, the complex inner structure of this bacterium is

clearly observed. These features of the high-density regions shown

in Figure 7A are similar to those observed in the other two bacteria

shown in Figure 7B and C.

Discussion

The results presented above demonstrate that the proposed

system (Figures 1–4) can obtain a high-resolution 3D structure of

the specimens in an atmospheric unstained sample (Figures 5–7).

These images clearly reveal the complex structure of the high-

density regions of the bacteria. The enabling technology is the

linear array of X-ray PD elements that simultaneously capture a

sequence of tilt X-ray images without requiring sample rotation or

tilt (Figures 1 and 2). Therefore, the proposed system can calculate

the 3D volume at the point of sample fixing, which enables high-

speed 3D detection. In addition, this aspect of the technology

further contributes to reducing sample damage.

The spatial resolution of the proposed system can be estimated

from the geometry of the X-ray source diameter, the PD size and

the separation between the two [18]. X-ray detector XPD-4 is

positioned directly under the sample at a distance of 13 mm and

presents a rectangular cross section of 2 mm65 mm (in the x and y

directions, respectively, Figure S4A). For a 5-kV EB acceleration

voltage, a Monte Carlo simulation using CASINO version 2.42

[28] (Figure S4B and C) indicates an X-ray source diameter of

approximately 25 nm. The area of the sample covered by the X-

ray beam expands in proportion to the depth from the X-ray

emission point in the CuZn-coated film (Figure S4A). The spatial

resolution of the image captured by XPD-4 is 78 nm6160 nm for

a bacterium centred (z = 300 nm depth) (Figure S4D). At the right

side of the PD array, XPD-7 views the sample at 45u with respect

to EB (Figure S4A) and is 18.4 mm from the sample. Its resolution

is 52 nm692 nm at a depth of 300 nm, which is superior to the

resolution of XPD-4. However, the X-ray image generated by

XPD-7 is noisy because it is farther from the sample than XPD-4.

Accordingly, more sensitive X-ray detectors with smaller cross

sections are required to improve the 3D resolution beyond what is

reported here. Furthermore, because it has many X-ray detectors,

the 2D PD array is a suitable geometry for generating the high-

resolution 3D model.

Figure 3. Outline of new 3D reconstruction method that uses SA algorithm. First, a 3D mask is calculated from the X-ray images of the
sample. Next, a position in the 3D mask is selected at random and its voxel values within the kernel-boundary area are altered at random. The thus-
modified 3D volume is reprojected onto the seven angular directions to the X-ray detectors. To evaluate the modified values, the residual sum of the
squares between all projections and its corresponding X-ray images is calculated and used by the SA algorithm to determine whether to accept the
new 3D volume. This procedure is iterated 100,000 times, and when finished, the temperature, the kernel size and its value-shifting SD decrease
exponentially. These processes are iterated for a prefixed cycles.
doi:10.1371/journal.pone.0021516.g003
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In the future, the system should be able to produce real-time 3D

models using highly sensitive 2D X-ray detectors. Furthermore,

work is in progress to develop an easy-to-use water-sample holder.

A combination of these systems is expected to enable high-

resolution observation of real-time movements of biological

samples in water.

In conclusion, we have developed an X-ray CT system called

3D-SGXM that enables the observation of the 3D structure of

atmospheric unstained specimens. The specimens are placed

under a CuZn-coated Si3N4 film and the ensemble is secured in an

atmospheric sample holder, so that the samples are in an

atmospheric environment. Tilt X-ray images of the sample are

detected by a linear X-ray PD array, and the sample’s 3D

structure is generated by a newly developed 3D reconstruction

method that uses an SA algorithm. The 3D reconstructions

presented herein clearly reveal the inner structure of the bacterium

samples. This method can be easily used for diverse samples in a

broad range of scientific fields.

Materials and Methods

CuZn coating on Si3N4 film
A 50-nm-thick Si3N4 film supported by a window

(0.5 mm60.5 mm) in a Si frame (5 mm65 mm and 0.2 mm

thick; Silson Ltd., UK) was coated with brass (70% Cu, 30% Zn)

using a magnetron sputter machine model MSP-30T (Vacuum

Figure 4. Flowchart of newly developed 3D reconstruction method employing SA algorithm. First, the 3D mask of the sample is
calculated from the tilt X-ray images acquired by the linear X-ray PD array. Next, we select a random position in the 3D mask, change its voxel values
in a random shift, calculate the new error from the new 3D volume and feed this new error to the SA algorithm to determine whether to accept the
modification. The error value used to determine whether to accept the modification is the residual sum of the squares of the projections from the
new 3D volume and its corresponding X-ray images. This process is iterated for a predetermined number of times (100,000 times for the work
reported herein). The temperature and kernel of changing voxels are thereby gradually reduced. These steps are iterated for a predetermined number
of cycles (200 cycles for the work reported herein).
doi:10.1371/journal.pone.0021516.g004
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Devices, Inc., Japan). The sputtering conditions were 1.1 Pa Ar,

150 mA and 30 s sputtering time. The distance between the

sputter target and the Si3N4 film was 50 mm. The deposited CuZn

layer was approximately 60 nm thick, as determined by the sputter

conditions.

Sample preparation and an atmospheric sample holder
The biological sample of Rhodobacter capsulatus, obtained from the

Shimatec Co. (Japan, Osaka), is a purple, rod-shaped, nonsulfur

photosynthetic bacterium with flagella [26,27]. One millilitre of

bacterium solution was centrifuged at 6200 rpm for 1 min in a

Capsulefuge PMC-060 (Tomy, Inc., Japan), and the supernatant

solution was replaced by a 1% (w/v) trehalose solution of 1 ml

(Hayashibara, Inc., Japan). To prepare the SEM sample, 2 ml of

the bacterium solution was dropped onto a CuZn-coated Si3N4

film. After 1 min, the solution on the film was removed by filter

paper and the film was dried in atmosphere at room temperature

(23uC) for 5 min. The sample thus attached to the Si3N4 film was

secured in the atmospheric sample holder (Figure 1).

The new sample holder maintains the sample at atmospheric

pressure in the sample space between a CuZn-coated 50-nm Si3N4

film and a 100-nm Si3N4 film (Figure 1A). The sample space

between the two Si3N4 films is sealed by two sample-holding pieces

and two O-rings, and the holding pieces are coupled by screws.

The biological sample in the atmospheric sample holder is then

mounted onto the sample stage above the linear PD array

(Figure 1B and D).

Scanning electron microscopy and X-ray imaging system
The stage containing the sample was transferred to the chamber

of a thermionic emission SEM (JSM-6390, JEOL, Japan). X-ray

images were captured by an original SE detector and the linear X-

ray PD array under high-vacuum conditions with the following

parameters: magnification = 4000–30,0006, image size = 12806
960 pixels, observation time = 160 s, working distance = 7 mm,

EB accelerating voltages = 5 kV and EB aperture = 42–45. For the

bacterium sample imaged at 4000 and 30,0006 magnifications

(Figure 2), the X-ray images from the SE detector were filtered by

a 2D Gaussian filter (GF) (size = 969 pixels, s= 1) by using

Matlab R2007b (Math Works Inc., USA). The image contrast

level was normalized to black (low intensity) and white (high

intensity).

A linear X-ray PD array model AXUV-16EL (IRD Inc., USA)

was fixed under the sample and consisted of seven PD elements

out of the possible 16 elements (Figure 1). The XPD output was

recorded using a data recorder (EZ7510, NF Co., Japan) after

amplification by PD preamplifiers (gain = 1006 MA/V) and the

main amplifiers (gain 1006), which consist of AD8562 (Analog

devices Inc., USA) integrated circuits. The X-ray and EB scan

signals were recorded in a 16-bit data recorder with 20-kHz

sampling rate. After the experiments, the data files were

transferred to a personal computer (Intel Core2 Duo E6850,

3.0 GHz, Windows XP), and the X-ray images were generated

from the XPD signals combined with the EB scan signal, with the

calculation performed by Matlab R2007b.

Figure 5. Evolution in 3D reconstruction and projection of XPD-4 at annealing cycles. (A) Evolution of 3D structure as a function of the
number of annealing cycles specified above each 3D image. Initially, the 3D volume is blank. Starting from the blank volume, the 3D volume rapidly
emerges in just 10 cycles. Beyond 10 cycles, the 3D volume is gradually optimized and the fine structure appears. (B) Evolutions of the projection
image corresponding to XPD-4 angle (4.4u) after the specified number of annealing cycles. (C) Error and temperature as a function of annealing
cycles. The temperature remains constant at 10 for the first 30 cycles. After 30 cycles, the temperature decreases exponentially. However, within 10
cycles, the error is rapidly reduced. After 10 cycles, the error decreases gradually.
doi:10.1371/journal.pone.0021516.g005
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Correction of X-ray PD images and image processing
Each linear XPD element detects a tilt image according to its

position. With respect to EB, the angles hx between the EB-

irradiated spot on the sample and the PD elements range from

240.2u to 45.0u (Figure S2C). The detection length of each XPD

is shortening from the distance of EB scanning on Si3N4 film by its

set angle of hx, these reduction rates are calculated by cos(hx)

(Figure S2B). Therefore, horizontal ratio at each constructed X-

ray image is expanded by the EB scan signal at its XPD setting

position, because the observed length by scan signal is based on a

Figure 6. Final 3D model and its projections. (A) Each projection (1 to 7) from the final 3D volume corresponds to the views from the X-ray PDs
(240.2u to 45u). These images are very similar to the original X-ray images (Figure 2B). (B) Surface-rendered image of a bacterium is obtained by using
2s that is greater than the mean value of the final 3D model. (C) Top view of 3D image of a bacterium, obtained by 90u rotation of 3D view shown in
(B). (D) Cross section parallel to the vertical axis through the 3D volume with colour map to indicate density. The high-density region is coloured red
and is visible at the right bottom end of the bacterium. (E) Cross section perpendicular to the vertical axis. The high-density region is located at the
right side of the bacterium.
doi:10.1371/journal.pone.0021516.g006
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detector just under EB point. To recover the true tilt images, the

horizontal width of the detected images are reduced by the factor

cos(hx). Furthermore, to generate the 3D model, each X-ray signal

must be transformed into X-ray absorbance (An), which is done

using Eq. (1):

An~log10(In0=In): ð1Þ

In Eq. (1), In is the X-ray intensity of each X-ray element n and In0

is the base intensity without the sample.

After correction, the X-ray images were filtered by a 2D

Gaussian filter (GF, size = 565 pixels, s= 1) via Matlab R2007b.

The images were normalized to 8-bit contrast. For 3D

reconstruction from the X-ray images, the 12806960 pixel images

were reduced to 3206240 pixels.

3D reconstruction algorithm
To generate a 3D model from seven XPD images, we developed

a highly accurate reconstruction method that uses an SA algorithm

(Figures 3 and 4) that was implemented by a Matlab script. First, a

3D mask was calculated for each 2D mask from the X-ray images

(Figure S3). This approach contributes to the short calculation

time because it reduces the 3D space involved. The 3D voxel

values and all projections were initially set to 0. Starting from the

initial value of 0, a position in the 3D mask is randomly selected,

and the voxel values in the kernel area at the selected position are

randomly shifted. Initially, the kernel area is set to a 3D normal

distribution with SD = 15s, and the randomly changed value in

the kernel is SD = 0.2s, which is gradually reduced at each

calculation cycle.

The new 3D volume is reprojected onto the seven directions

corresponding to the seven angles of the XPD elements, and the

error between each reprojection and its corresponding X-ray

image is calculated by the residual sum of the squares. This

calculated error is used by the SA algorithm to determine whether

to accept the modified volume [29]. If the new error value is less

than the previous error value, the modified volume is accepted

unconditionally. If the error has increased, the Boltzmann

probability factor of P(DE) is calculated using Eq. (2) and is used

to determine whether to accept the modified voxel value.

P(DE)~exp ({DE=T): ð2Þ

In Eq. (2), DE is the change in the error and T is the current

temperature. A random number (R) uniformly distributed in the

interval 0 to 1 is generated and the volume change is accepted if

R,P(DE). If R.P(DE), the volume is returned to its previous state.

Next, a new position is selected at random, its volume is randomly

shifted and the SA algorithm is applied again. This procedure is

iterated 100,000 times. When finished, the temperature, the kernel

size and its value-shifting SD decrease exponentially. Furthermore,

this entire cycle is repeated 200 times. The temperature, the kernel

size and its shifting value are initially set to 10, 15s and 0.2s,

respectively. After the algorithm is executed, these values are

reduced to 0.1, 2s and 0.1s, respectively.

Supporting Information

Figure S1 Energy of X-rays emitted by the interaction of
EB with CuZn-coated Si3N4 film. (A) Overview of the

apparatus to measure the X-ray photon energy, which uses an

energy dispersive X-ray spectrometer (EDS) model EX-2100

including SEM model JSM-5601 (JEOL, Japan). EB irradiates the

centre of the CuZn-coated Si3N4 film on the Al stage. The EDS

detector is positioned 80 mm from the EB-irradiated spot and at a

30u angle with respect to EB; its detection area is 10 mm2. SEM is

operated at 5–7 kV for the EB acceleration, 4006 magnification

and an EB aperture of 40. The X-ray-acquisition time is 100 s. (B)

EDS spectrum for 5-kV EB acceleration. The large peak at 1 keV

is due to both Cu and Zn X-ray lines. The weak peak at 1.8 keV is

the Si X-ray line, and its presence suggests that a small number of

electrons are transmitted to the Si3N4 film through the CuZn

layer. However, under these conditions, the 1.5-keV Al peak is not

detected (from the Al stage), which suggests that the impinging

electrons do not cross the CuZn-coated Si3N4 film. (C) EDS

spectrum for 7-kV EB acceleration. Under these conditions, a

weak Al peak is detected from the Al stage that is positioned under

the CuZn-coated Si3N4 film. Therefore, in this case, the 7-kV

impinging electrons penetrate the CuZn-coated Si3N4 film.

(TIF)

Figure 7. High-density areas in reconstructed 3D model of
bacteria. (A) Red regions indicate .6.5s above the average intensity.
The high-density red regions are clearly located at both ends of the
bacterium, which likely suggests the presence of a nucleoid. The
complex structure was detected in the central area of the bacterium.
(B), (C) High-density regions in the other two bacteria. Both structures
indicated that high-density regions exist at the extremities of the
bacteria.
doi:10.1371/journal.pone.0021516.g007
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Figure S2 Schematic diagram of tilt imaging system
based on the linear X-ray PD array. (A) Overview of tilt

imaging system showing left, right and centred PD elements of the

linear X-ray PD array. A left-side PD element detects the left-tilt

image of the sample, because the X-rays arriving at the detector

are tilted to the left by the sample. Likewise, the right-side PD

element detects the right-tilt images. (B) Schematic showing the

influence of different detection angles on the detected length Pxi.

The left-side PD located at h1 detects the EB-scanned width of Ex

reduced by cos(h1), [Px1 = Excos(h1)]. The centre PD element

(under the sample) detects the same width as the EB-scanned

length, [Px2 = Ex]. (C) Schematic showing the angles of each X-ray

PD element. The linear X-ray PD array is positioned 13 mm

under the sample. Each PD element is a 265 mm2 rectangle, and

there are seven active signal-detection elements from among the

16 elements. The angles between the EB-irradiated spot and the

PD elements are 240.2u,228.1u,213.0u, 4.4u, 21.0u, 34.7u and

45.0u.
(TIF)

Figure S3 Outline of 3D mask calculation. First, the 2D X-

ray-image masks are calculated with 2s larger than the image’s

average intensity. The intensity of this 2D mask is normalized to

range from 0 to 100. Each 2D mask is back projected onto the

angle corresponding to the PD. The 3D mask is obtained from the

specific threshold of 600 for the 3D volume by the mask back-

projections.

(TIF)

Figure S4 Spatial resolution of 3D-SGXM. (A) Overview of

the sample detection area for two X-ray PD elements XPD-4 and

XPD-7. The X-ray detection area expands gradually at deeper

positions. XPD-4 is positioned 13 mm directly under the sample and

measures 2 mm65 mm. XPD-7 on the right side of the linear PD

array is oriented at 45u with respect to EB and from the EB-irradiated

spot. It is approximately 18.4 mm from the EB-irradiated position.

(B) MC simulation showing electron trajectories in the 50-nm Si3N4

film coated by a 60-nm CuZn layer. A 20-nm EB spot diameter and a

5-kV accelerating voltage conditioned the simulation. (C) Normalized

intensity of CuZn characteristic X-rays as a function of radial distance

in the CuZn layer by MC simulation. The X-ray spot radius was

12.5 nm. (D) Estimated spatial resolution of XPD-4 and XPD-7. The

spatial resolution of XPD-4 and XPD-7 consists of an x component

(labelled a) and a y component (labelled b).

(TIF)
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