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Abstract: We discuss the early history of the structure of DNA and its involvement in gene structure
as well as its mobility in and between cells and between tissues in the form of circulating cell-free
DNA (cfDNA). This is followed by a view of the present status of the studies on cfDNA and clinical
applications of circulating cell-free tumor DNA (ctDNA). The future developments and roles of
ctDNA are also considered.
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1. Introduction

Although Mendel and Métais [1] described the presence of nucleic acids in blood
from healthy donors, pregnant women and clinical patients in 1948, this study was largely
forgotten until in 1973 the paper of Koffler et al. [2] described raised DNA levels in the
blood of lupus erythematosus patients. At the time, the data of Mendel and Métais
were questioned because of uncertainties in the less precise analytical methods employed.
However, the lack of interest in the paper was most likely due to the lack of knowledge
and understanding of DNA at this time. Subsequently, the events leading to the current
studies of ctDNA required the discovery of the DNA structure and both its relevance to the
gene and its appearance in the cytoplasm as both organelle and cytosolic components [3,4].

2. Events in the Discovery of DNA Structure and Its Role in the Gene

The concept of Avery et al. [5] demonstrating DNA as genetic material was still being
considered. At the same time, Brachet [6], using the methyl green-pyronin reaction and
Caspersson [7] employing UV-absorption microscopy and nucleases, as well as the Feulgen
reaction were able to demonstrate that both DNA and RNA were present in the nuclei
of both plants and animals. Thus, they overturned the idea that DNA was present only
in animal nuclei and RNA only present in plant nuclei. This was followed by Alfert and
Swift’s [8] demonstration of the fixed amount of DNA per haploid nucleus per species.

An important development concerning the DNA structure was the pronouncement of
Chargaff’s rule [9] in which the total number of purines in a DNA molecule equaled the
number of pyrimidines. Subsequent X-ray studies enabled the structures of guanine and
adenine to be established as well as their mechanism of interaction [10,11]. These results
were important for the determination of the structure of DNA [12,13]. The two groups
were working on the DNA structure, the former as a theoretical study, the latter by X-ray
crystallographic analysis of the purified DNA. An important contributor to the study in
Wilkin’s group was Rosalind Franklin who produced a very clear X-ray crystallographic
image of DNA. The now famous unpublished photograph found its way to Watson and
Crick who then finalized the first DNA model indicating both its structure and replicative
ability [12,13]. A game-changing concept was developed by [14,15] with the cell cycle
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showing DNA to be synthesized at a specific time (S) prior to mitosis (M) with a time gap
G1 between M and S, and a second such period G2 between S and M, where G stands for
“a gap in our knowledge” (Pelc, personal communication to PBG).

3. Cytoplasmic DNA

The identification of cytoplasmic DNA using ultra-violet-light microscopy, biochem-
istry and autoradiography [15–17] was followed by the Chèvremont group [18] showing
DNA by the Feulgen reaction to be present in the mitochondria. The concept of cytoplasmic
DNA caused great consternation among many biophysicists who insisted that (a) the genes
were on chromosomes and the chromosomes were in the nucleus and (b) the genes were
comprised of DNA. Therefore, all of the DNA must be in the nucleus [19].

They ignored the fact of cytoplasmic inheritance in plants that was originally thought
to involve plastids [20,21].

The idea of DNA mobility was even more abhorrent to many workers who were in
the process of establishing the concept of the gene being comprised of DNA.

4. DNA Mobility

The concept of the mobility of DNA and also the fact that it could act as a messenger
was suggested by Gahan and Chayen [17]. However, at the same time, the experiments
of [20,21] also led to the idea of DNA movement. Based on these studies, they were able
to further develop the concept of circulating DNA. This began with the repetition of the
experiments of the USSR scientist Glouchtchenko [22] who demonstrated the transmission
of hereditary characteristics by grafting between two varieties of plants: a mentor plant
and a pupil plant.

In 1963, Stroun et al. [20,23] performed similar grafting experiments using egg-plants—
Solanum nigrum and two varieties of Solanum melongena, e.g., S. melongena and S. nigrum—in
which either the stock or the scion was deprived of all growing leaves with a view to
subjecting them to the influence of the metabolism of the leaf-bearing section. The products
of the pupil plant sometimes showed genetically modified characteristics that were similar
to those of the mentor plant. They were strikingly different to those observed upon the
sexual crossing of the two varieties. Thus, (a) although some characteristics of the mentor
plant were similar to those observed in the pupil plant, others were different to those
observed in the mentor plant; (b) the modified pupil plants acquired various mentor-
plant characteristics, demonstrating either one or several or all of the characteristics of the
mentor; (c) during segregation, which could occur as early as the F1 generation, a few of
the recessive parents produced offspring that had dominant features and (d) occasionally,
linked characteristics in the mentor plant could be seen individually in the pupil plant and
its offspring. Grafting between S. melongena and S. nigrum yielded similar results. The data
were explained as the result of DNA passing from the mentor to the pupil. Hirata [24],
also working with S. melongena, obtained similar results, concluding that genetic material
moved between the stock and the scion.

Similar experiments performed by Yagishita [25,26] employed different species, Cap-
sicum baccatum and Capsicum annuum. The obtained results also included the non-Mendelian
segregation of new features appearing in the graft progeny, as seen in the above studies.
Kasahara and co-workers showed that non-Mendelian inheritance also occurred with grafts
of Capsicum annuum (cited in [27]).

Furthermore, graft-induced genetic variation also occurred upon the transfer of male
sterility from male sterile petunia stocks to normal fertile petunia scions [28].

Such preliminary experiments indicated a possible expression of DNA, transferred
via the graft, in a subsequent generation (reviewed [29]). These plant experiments were
paralleled by a number of similar studies on animals by various researchers [29]. Thus,
inspired by the results of Michurin [30,31] and other Soviet researchers on plant graft-
hybridization data, Sopikov (1950) determined the changes induced by blood transfusion
on hereditary traits. The repeated blood transfusion of 2.5–3 mL blood per kg twice weekly
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for ten weeks was performed from Black Australorp roosters to White Leghorn hens. The
mating of such hens with White Leghorn roosters yielded progeny having a modified
inheritance, with some of the progeny having 8–40 black feathers per bird amongst the
white plumage. A reciprocal experiment was made with White Leghorn donors and Black
Australorp recipients, yielding some progeny with 5–25 white feathers per bird amongst the
black plumage. Compared with purebred controls, such progeny also showed an increased
body mass and size, as well as longer legs. Furthermore, such studies by Sopikov (1954)
injected the blood of Chuvash geese into either White Leghorn or Khaki Campbell ducks,
or injected the blood of bronze turkeys into White Leghorn, similarly resulting in abnormal
characteristics appearing in the progeny. This approach was used by Sopikov (1966) in
order to avoid any adverse effects of inbreeding and to develop new breeding groups,
which he did over the subsequent years (Sopikov, 1967, 1980). These results were eventually
confirmed by a number of researchers in the USSR as described and summarized in an
excellent review by Liu [31]

Western European workers also confirmed these results. For example, Stroun et al. [21]
used repeated injections of blood from the grey guinea fowl into White Leghorn variety
birds. The progeny showed some grey or black-flecked feathers in the second and later
generations. In addition, studies on Rhode Island Red fowls that were repeatedly injected
with blood from guinea fowl [32–36] confirmed the initial results of the Soviet workers and
Stroun et al. [21].

Such preliminary experiments indicated a possible expression of DNA, transferred via
the graft, in a subsequent generation (reviewed by [29]).

These plant experiments were paralleled by a number of similar studies on animals
by various researchers [29]. Stroun et al. [21] used repeated injections of blood from the
gray guinea fowl into White Leghorn variety birds. The progeny showed some gray or
black-flecked feathers in the second and later generations. During this time period and
earlier, many such experiments were performed in the USSR [37] in the same time period
yielding similar outcomes.

The apparent mobility of DNA was also noted by Gahan and Chayen [17] with a
cytoplasmic fraction that appeared to be capable of moving into the nucleus. Overall, the
apparent DNA mobility led to experiments being run in order to determine if cells were
able to release DNA into their local environment, and if free DNA could be taken up by
cells and tissues without degradation. If so, what changes, if any, could such DNA induce
in the recipient cells/tissues?

DNA circulation and uptake was demonstratable in both plants and animals. 3H-DNA
was isolated from thymine-deficient Escherichia coli and injected into mice. The radioactive
DNA was found in ovarian tissues and especially in the oocyte nuclei. Confirmation was
achieved through both CsCl centrifugation and autoradiography [38].

In plants, uptake of DNA into nuclei, mitochondria and plastids of the epidermis,
cortex and vascular tissues occurred when cut shoots of Solanum esculentum were fed
with E. coli 3H-DNA. Again, the E. coli 3H-DNA presence was confirmed by both CsCl
centrifugation and autoradiography [39–42]. It was at this point that the study by Koffler
et al. [3] indicated increased DNA levels occurring in the blood of lupus erythematosus
patients. By 1977, there were many studies indicating the release and uptake of DNA
(reviewed by Stroun et al. [4], yet many people were not convinced by the data. Thus,
one referee rejected a paper by Gahan, remarking “you should forget the DNA work and
concentrate upon the more readily resolvable problems of cell biology”, whilst Stroun and
Anker were subject to political attacks and accusations of fraudulent results leading to their
failure to obtain research grants [43].

More recently, with the discovery of exosomes, a new DNA carrier exists in blood [44].
Exosomes have been identified as carriers of especially RNAs and proteins [45] between
healthy cells, between tumor cells and in both directions between cancer and healthy cells.
There is some discussion as to whether or not DNA is also carried by these vesicles [46].
Genomic DNA has been shown to be present [47], and some workers argue that the DNA
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is attached to the outer surface of the exosomes rather than being inside them. Both whole
active mitochondria as well as damaged mitochondria and mitochondrial components—
and hence, mitochondrial DNA—have been identified as being present in exosomes [48,49].

5. Major Impact Studies

Nevertheless, Leon et al. [50] showed increased DNA levels in the blood of cancer
patients. This stimulated a number of studies of which two have been of great importance.
The first, in cancer diagnosis, occurred when Stroun et al. [42,51,52] demonstrated the
presence of cancer-derived DNA fragments in the blood from patients with a variety of
cancer types. This encouraged the search for DNA markers for specific cancer types not
only from plasma and serum, but also from other bodily fluids including urine, milk,
sputum, saliva, cerebro-spinal fluid, peritoneal fluid and bronchial lavage.

The second important finding was that of Lo et al. [53] in which it was shown that
the blood of pregnant women contained fetal DNA fragments. This was followed by the
sequencing of this DNA to reveal the genome-wide genetic and mutational profile of the
fetus [54]. These results led to the development of a non-invasive, standard technique as
opposed to the invasive amniocentesis that can result in fetal death. It has become the
method of choice to check human embryos in the first trimester for genetic abnormalities
as well as permitting fetal sex and Rhesus status determination [55]. Currently, it is
readily available in France and Germany as well as in the UK through the National Health
Service [56].

One factor remained in that upon ultra-centrifugation of the cell-culture medium, even
at 300k rpm, a newly synthesized DNA remained in the supernatant fraction. This was
accompanied by newly synthesized RNA and protein. Efforts to remove the DNA by either
centrifuging down a cesium chloride gradient or up a sucrose gradient failed. The outcome
was the proposal that the newly synthesized fractions were released from cells as a complex
that has been termed a virtosome [57].

Thus, subsequent to the year 2000, the emphasis has very much been on the search for
specific markers of various cancer types. Nevertheless, in addition to cancer and exercise
studies, the use of cfDNA (cell-free DNA) has been extended to a broad range of clinical
studies including multiple sclerosis, cardiovascular disease, stroke, sepsis, hemodialysis,
liver and kidney diseases, pancreatitis, tissue transplantation and trauma [58].

6. Methodological Development

Such investigations on tumor-derived DNA fragments in blood have led to the need
not only to develop analytical methodology to purify and identify the relevant DNA
fragments, but also to determine the ideal method of blood drawing, the relevant type of
containers to safeguard the drawn blood, blood storage, and the preparation of serum and
plasma from drawn blood in order to maintain high-quality cfDNA fragments [59]. Such
fragments can be isolated and sequenced.

Some examples of techniques for analyzing cfDNA are shown in Figure 1 and have
been detailed and described by Volik et al. [60].
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Figure 1. Genetic and epigenetic technologies of DNA. A descriptive summary and pictorial depiction
of genetic (A) and epigenetic (B) technologies of DNA is shown. These diverse techniques were
described in detail by Volik et al. [60].

7. Evolution of Sequencing

Fifteen years after the discovery of the double helix [12,13] in 1953, the first sequence
of a short DNA molecule was published by Wu and Kaiser who analyzed the structure and
base sequence at the cohesive ends of bacteriophage lambda DNA [61]. Due to the length
of DNA molecules, it was difficult to sequence them. The detection of type II restriction en-
zymes in 1970 finally prepared the way for successful DNA sequencing [62,63]. This made
it possible to cleave large DNA molecules into several smaller fragments in order to sub-
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sequently separate them by size by gel electrophoresis. These enzymes recognize specific
short nucleotide sequences and cleave them at 4–6 bp in length. The specifically generated
ends of these cleaved DNA fragments served as start sequences for DNA sequencing as
has occurred in subsequent years.

As reviewed in detail by Hutchison [64], early studies used techniques similar to
those used for RNA sequencing. For example, these methods employed either base-
specific depurination or E. coli (Escherichia coli) nuclease IV, to generate DNA fragments
in the range of 10–20 bp at lengths that were separated by either chromatography or
electrophoresis. Using these elementary methods resulted in the determination of the
operator sequence from the E. coli lac operon [65] and a repressor binding site from phage
lambda [66].

A further step towards modern DNA sequencing was the plus-and-minus technique
developed in 1975 by Sanger and Coulson [67]. In this system, DNA polymerase begins
synthesis from a DNA primer by incorporating radio-labeled nucleotides. This labeled
product is divided into eight aliquots and used to prime a second round of DNA polymerase
reactions. The plus reaction only employs a nucleotide of the four nucleoside triphosphates,
thus resulting in all extensions ending with this base. In contrast, the minus reaction uses
three of the four nucleotides and produces sequences up to the position before the next
missing nucleotide. Following electrophoresis of the eight reactions, a sequence of about
50 bases could be deduced from the developed film.

In 1977, modern DNA sequencing began with the synthesis of the complete DNA
sequence of phage φX174 by Sanger et al. [68]. These researchers developed further their
plus-and-minus method by establishing the dideoxy method [69]. At the same time as the
publication of the Sanger dideoxy method appeared, Maxam and Gilbert [70] produced
a DNA-sequencing method that was similar to that of Sanger et al. Their method uses a
radio-labeled, double-stranded DNA restriction fragment that is cleaved by base-specific
chemical reactions. In contrast, Sanger sequencing is based on the random incorporation
of chain-terminating dideoxynucleotides by DNA polymerase during DNA replication.
For over 40 years, the Sanger technique became the most widely used DNA-sequencing
method, and, ten years later, was first commercialized by Applied Biosystems. Eventually,
dideoxy sequencers, such as the ABI PRISM, developed by the Leroy Hood group [71]
and produced by Applied Biosystems, allowed simultaneous sequencing of hundreds of
samples. This approach was employed in the Human Genome Project [72]. The currently
used unmodified Sanger method still employs a differently labeled primer in each of the
four dideoxy sequencing reactions. After electrophoresis in a single polyacrylamide gel
tube, DNA molecules are detected by fluorescent signals as they pass across a detector.
The four bases are distinguished by their different dyes that allow deduction of the base
sequence. For his contribution to establishing a sequencing method that permits a quick
and relatively easy DNA sequencing, Frederick Sanger was awarded a second Nobel Prize
in Chemistry in 1980, the first in 1958 for the sequencing of the 51 chain-like amino acids
in insulin in 1955 [73]. Such findings advanced sequencing and led to the publication of
the three-billion-base sequence of the human genome [72,74]. Sanger DNA sequencing has
now been replaced by next-generation sequencing (NGS). However, the Sanger method
remains the method of choice for smaller-scale projects.

Different NGS technologies emerged between 1994 and 1998 and have been commer-
cially available since 2005. The common feature of these different procedures is that they
are massively parallel, meaning that the number of sequences read in a single experiment
is significantly higher than those obtained from capillary-electrophoresis-based Sanger se-
quencers. They use miniaturized and parallelized platforms for the sequencing of 1 million
to 43 billion short reads (50 to 400 bases each) per instrument run [75]. The first of the
massively parallel methods to be brought to market was developed by 454 Life Sciences and
is based on the pyrosequencing technique [76,77], whilst the Solexa technology differs from
the 454 methods by using chain-terminating nucleotides [78]. These and further sequencing
methods were described in detail by Hutchison [64] and Heather et al. [79].



Diagnostics 2022, 12, 1192 7 of 15

8. Polymerase Chain Reaction (PCR) Evolution

In the early seventies, the Norwegian postdoc Kjell Kleppe suggested the amplification
of DNA using two flanking primers, but the idea was not realized and fell out of use. In
1983, Kary Mullis developed the modern PCR technique. His intention was to develop a
novel DNA-synthesis method that artificially duplicates DNA by repeatedly duplicating it
in multiple cycles using DNA polymerase. In 1993, Mullis was awarded the Nobel Prize in
Chemistry [80] for the method of amplifying DNA to generate several millions of copies of
a specific DNA region from a low amount of starting material [81]. In 1985, Saiki et al. [82]
enzymatically amplified, for the first time, the sequences of the β-globin, being the first to
use PCR [83].

Many different technologies have evolved from original PCR. Among others, digital
PCR (dPCR) is capable of determining the absolute quantification of the DNA copy number.
This is based on splitting a PCR sample into a thousand subsamples with each having
either a single or no copy in each subsample. It is either droplet-based or chip-based. In
1999, dPCR was first mentioned by Vogelstein and Kinzler [84]. Using this method, they
quantified ras mutations in a reaction by partitioning the sample to perform a series of
PCRs. However, the method that they described was not new, having been used over
the previous decade. It was termed “single molecule PCR” or “limiting dilution PCR”
(reviewed in [85]).

In droplet-based digital PCR (ddPCR), the sample is passed through a microfluidic
chip causing the portioning into tens of thousands of droplets separated by mineral oil to
form an emulsion. Following PCR, the sample is processed by a flow cytometer to count
the number of droplets that include PCR products [86].

In chip-based digital PCR (cdPCR), the sample is loaded into silicon chips. Following
the thermal cycling, the chip is imaged by fluorescence microscopy to determine the number
of wells containing PCR products [87].

The isothermal nucleic-acid amplification, such as loop-mediated isothermal amplifica-
tion (LAMP) [88] and recombinase polymerase amplification [89] requires no temperature
cycling and has the advantage of having a simpler device design.

However, quantitative real-time PCR using a TaqMan or SYBR Green is the most
popular and commonly used technique. The TaqMan real-time PCR [90] uses a TaqMan
probe which is a fluorescent DNA probe and is based on the 5′ to 3′ exonuclease activity of
Taq polymerase. The oligonucleotide probe, with a reporter fluorescent dye labelled at its
5′ end and a quencher dye labelled at its 3′ end, hybridizes to its target gene. During PCR
amplification, the quencher dye is cut by the 5′ nuclease activity of Taq polymerase, leading
to the release of the fluorescent dye. In contrast, the SYBR Green assay [91] uses the SYBR
Green I dye, which specifically binds to double-stranded DNA, enabling the detection of
products accumulating during the PCR. This assay is simpler and less expensive than the
TaqMan but does not use a probe specific to the nucleotide sequence of its DNA target [81].

To date, the development of PCR that delivers high concentrations of pure DNA
facilitates DNA sequencing. For example, the Illumina platform uses a modified PCR tech-
nique to prepare clusters of single-molecule DNA templates each containing approximately
1000 DNA copies. The Ion Torrent technology discovers protons released as nucleotides
and incorporates them during DNA synthesis. For sequencing, the DNA fragments are
linked with specific adapters and then amplified by emulsion PCR on the surface of
3-micron-diameter beads [92].

9. The Current Status of the Use of cfDNA
9.1. In Cancer

The main reasons that the tumor DNA fraction of cfDNA has not been routinely
applied in clinics are the low abundance of ctDNA in the pool of cfDNA and the fragmen-
tation of cfDNA in cancer patients [93]. DNA is released into the bloodstream by different
sources, including the primary tumor, circulating tumor cells (CTCs), micrometastatic
deposits and normal cell types, such as hematopoietic and stromal cells [94]. Thus, both



Diagnostics 2022, 12, 1192 8 of 15

tumor and normal cfDNA circulate in the blood of cancer patients. The amount of ctDNA
present in blood may vary due to either the size of the primary tumor or the presence of
metastases. Thus, for example, a patient with a tumor weighing 100 g and corresponding
to ca. 3 × 1010 tumor cells may release up to 3.3% of tumor DNA into the blood circulation
daily [95]. Besides, the DNA fragmentation caused by its primarily apoptotic origin and
digestion by DNases impedes its analysis [48,50].

However, over the past decade, advances in the development of ctDNA-detection
methods have revolutionized the diagnosis and treatment of cancer. These methods include
real-time PCR, dPCR, ddPCR, and NGS-based sequencing [96], which also includes Tagged-
Amplicon deep sequencing (TAM-Seq) [97]. They have become very sensitive, being able to
assess the low amounts of fragmented ctDNA in the blood of cancer patients with decreased
detection errors and background noise. In particular, ctDNA analyses using NGS cancer
gene panels have been demonstrated to have the potential to increase the access of ctDNA
assays to clinical trials [98].

Below, only a few examples of studies are mentioned reporting recent advances and
regarding the multiple clinical applications of ctDNA in the field of precision medicine for
cancer patients.

The application of these cfDNA assays in clinical settings, and their ability to identify
common mutations and gene fusions may guide personalized targeted therapies [99,100].
In particular, analyses of ctDNA are informative when no tumor tissue is available. Since
the extraction of cfDNA occurs in real time, its assessment permits therapy-associated
modulations by checking the response to treatment. To date, the relevance of ctDNA testing
to guide targeted molecular therapy has also been widely evaluated in non-small-cell lung
cancer (NSCLC) patients with epidermal-growth-factor (EGF)-receptor mutations. The
ENSURE study showed that plasma EGF-receptor mutations were useful in detecting
patients who would benefit from erlotinib treatment [101]. This led to the subsequent
US Food and Drug Administration (FDA) approval of the Cobas EGFR Mutation Test v2
(Roche Diagnostics) as the first liquid biopsy test and as a companion diagnostic tool to
guide treatment settings.

In addition, the assessment of PIK3CA (phosphatidylinositol 3-kinases) mutations in
ctDNA is already an established predictive biomarker. The PIK3CA mutations are attractive
therapy targets, so that in May 2019, the FDA approved the drug alpelisib in combination
with fulvestrant as a second-line therapy for postmenopausal patients with hormone-
receptor-positive, HER2-negative, and PIK3CA-mutated metastatic breast cancer [102]. In
patients with metastatic breast cancer, estrogen-receptor-1 (ESR1) mutations in ctDNA are
also critical circulating biomarkers. They are frequently subclonal and appear later during
metastatic aromatase-inhibitor therapy. In the SoFEA trial, ctDNA analysis showed that
ESR1 mutations detected in plasma are useful to direct the choice of further endocrine-based
therapy [103].

As reviewed in detail by Ignatiadis et al. [104], the FDA has approved several addi-
tional single-gene as well as multigene assays to detect mutations in ctDNA for use as
companion diagnostics for specific molecularly targeted therapies for cancer.

For cancer diagnosis, blood tests seem to be useful in discriminating cancer patients
from healthy controls and to allow for the detection of early cancer types [105,106]. For
example, the detection of circulating, cancer-derived Epstein Barr Virus (EBV) DNA in
plasma can be a useful screening technique for nasopharyngeal carcinoma in asymptomatic
subjects [107].

In clinical settings, the molecular basis of the acquired resistance to targeted therapies
is one of the main challenges. Serial ctDNA analyses have emerged as promising assays to
identify acquired resistance and its underlying mechanisms of action. Multiple genomic
alterations in genes, such as ESR1, genes of the mitogen-activated protein kinase (MAPK)
pathway as well as RB1, KRAS and BRAF that are caused by various therapies have been
detected in ctDNA [108].
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Increasing evidence suggests that ctDNA may be a predictor of relapse risk. For exam-
ple, the occurrence of ctDNA in follow-up samples was associated with future recurrence
of breast cancer [109]. Moreover, nonmetastatic colorectal cancer patients with a positive
ctDNA profile had a recurrence of three months before radiologic or clinical evidence and
an incidence of 77%. With a median follow-up time of 49 months, none of these patients
without a ctDNA profile had a recurrence [110]. Therefore, ctDNA may be utilized to
identify early-stage cancer and predict recurrence.

9.2. In General Medicine

The potential clinical utility of cfDNA also plays a role in general medicine [58], rang-
ing from the non-invasive monitoring of infections to the early diagnosis of graft rejection
after solid-organ transplantation [111,112], characterization allogenic bone grafting [113],
and detection of fetal aneuploidy in pregnant women [114].

In particular, the advancement of PCR and NGS have allowed the detection of low
levels of cfDNA from a background signal mixture in physiological conditions and benign
diseases [85]. One of the most relevant discoveries for applying cfDNA was identifying
fetal cfDNA in maternal blood [53], leading to genetic assays in prenatal diagnostics. The
percentage of fetal cfDNA only represents a minor fraction of 3–25% of the total cfDNA level
but increases with gestational age and body-mass index, and better detection is possible at
about ten weeks of pregnancy [115,116].

As detailed in a review by Polina et al. [117], cfDNA is a diagnostic and prognostic
marker for cardiovascular diseases. Thus, uncontrolled hypertension is an independent
determinant for elevated cfDNA levels. Furthermore, a multimarker cfDNA test may
complement creatine kinase and troponin testing to assess myocardial infarction and
ischemic heart failure.

Allograft rejection is one of the major post-transplantation complications affecting
graft outcome and survival. The analysis of donor-derived cfDNA in blood serves as a
potential tool for early detection of allograft rejection [118].

Neurodegenerative diseases, such as Alzheimer’s, Parkinson’s, Huntington’s diseases,
Friedreich’s ataxia, and multiple sclerosis cause the progressive loss of neurons from the
nervous system. Nuclear factor-erythroid 2-related factor 2 (Nrf2) is a transcriptional
master regulator that supports the redox homeostasis in cells by provoking expression of
antioxidant, anti-inflammatory and cytoprotective genes. The analysis of Nrf2 cfDNA can
be applied in therapeutic strategies to treat neurodegenerative diseases [119].

Concerning the high prevalence of bacterial and viral infections worldwide, cfDNA is
also the most eligible for their diagnosis and prognosis. The identification of such cfDNA
and any byproducts can be achieved by PCR and NGS in cfDNA, and is important for a
better understanding of their pathogenesis [120].

10. Future of cfDNA

The liquid biopsy was originally confined to plasma or serum (Crowley et al., 2013),
but has now been expanded to include fluids such as saliva, sputum, urine, breast milk,
peritoneal fluid, bronchial lavage, cerebro-spinal fluid and seminal fluid. The additional
biopsy systems are of importance since they generally contain larger amounts of ctDNA
than are found in plasma/serum. They are becoming increasingly involved in the serial
profiling and individualized management of malignant and benign diseases. At present,
clinically approved cfDNA assays based on genetic alterations and levels serve as compan-
ion diagnostics that facilitate therapy guidance. However, mutation analysis requires a
comparatively large amount of cfDNA and therefore high cost for analyses and technical
platforms. Test costs vary as a function of the test involved, ranging from £275–£2000
for NIPD tests (plus an additional cost for counselling [121]. Price comparisons of CTC
samples depend upon the method employed, with BEAMING costing €486–821 whilst
ddPCR costs were €39–298 per sample [122].
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The introduction of automation has advanced the possibility of cf/ctDNA-analysis
inclusion into routine hospital use with the production of a number of automated systems.
Such systems can have minimal human contact periods and turn-around times as low as
two hours. However, at present, costs for purchase and maintenance are high and the range
of validated tests are low, making the hospital use of such a machine a low priority.

Such automated systems range from those simply determining fragment-size selection
of cf/ctDNA to improve the accuracy of next-generation sequencing [123] to those complet-
ing the isolation and application of cf/ctDNA in the characterization of relevant disorders
linked to specific ctDNA fragments, e.g., AVENIO ctDNA Targeted Kit, the IDYLLATM

platform for mutations in KRAS, BRAF and NRAS and the Agena liquid biopsy mass array
system that is currently only for research use. The major application, to date, for such
equipment concerns fetal screening with specific systems available to determine trisomy
13, 28 and 21, as well as fetal sex [124,125].

At present, predicting the presence of a primary tumor in advance, as well as knowing
when to commence screening, has proved to be extremely difficult, with few methods
yielding 100% specificity and sensitivity. This has been exemplified in the mathematical
study of cfDNA that can also predict tumor size [126].

Such automated systems will need to be expanded and linked to artificial-intelligence
(AI) systems, e.g., machine learning [127]. Its specific ability to identify defined disease
signatures will be key to the molecular information achieved from microchip-based diag-
nostics [128].

However, there are still several further challenges that must be met prior to such
machine-learning clinical translation of cfDNA analyses. To date, numerous proof-of-
principle studies have shown that there is still a lack of validation studies in larger multi-
center clinical studies. In addition, the low level of ctDNA often present in plasma/serum
is camouflaged by non-tumor cfDNA that is mainly derived from leukocytes, although
this can be improved in some cases by the use of the alternative liquid-biopsy sources.
Therefore, techniques such as ddPCR and NGS that target specific circulating molecules
may advance the introduction of cfDNA into the clinic. However, extensive analyses and
bioinformatic expertise will be required to identify disease-specific markers and to avoid
detection errors and background noise.

11. Ethical Considerations

The extensive development and use of cfDNA in clinical diagnosis raises a number
of ethical questions. Some of these have already been addressed for the application of
NIPD [129]. However, this will become even more complex with the advent of next-
generation sequencing linked to AI and will result in the ability to identify a series of
mutant genes for any individual. This raises a number of questions that are only now
beginning to be considered and acted upon.

Some of the mutations will be known to be linked to the development of a clinical
disorder. Will the patient eventually suffer from one or more of these disorders?

Should the patient be made aware of such possibilities, e.g., in the case of BBRC1 and
BBRC2 and breast cancer? In this case, that patient will have the possibility to either wait
and see or accept the traumatic mastectomy. In other situations, the options will not be so
clear-cut. The question also arises as to when such analyses should occur given the fact
that mutations can be induced throughout the life of an individual.

In a more general situation, a large amount of clinical information will be derived for
each individual. How will this information be stored in a safe fashion and who will have
access to the data? In addition to the possibility of affecting the patient’s well-being by
being clinically screened throughout life, there is the downside that such information could
be used to judge if a person is fit for a particular form of work. How will such information
be used in a personal life, e.g., for insurance (life, household, travel, etc.)? Will such data
lead to problems in buying a car, house or in getting a financial loan for such purposes?

We urgently need answers to such questions.
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