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Introduction 

Protein-binding regions in the context of chromatin have been detected by the chromatin 
immunoprecipitation (ChIP) method. Since the first ChIP coupled with high-through-
put DNA sequencing (ChIP-Seq) technology for histone modification mapping was in-
troduced with the combination of ChIP and next-generation sequencing, a large amount 
of ChIP-Seq data has been produced at the genome level, and the development of data 
analysis tools should thus be emphasized [1-3]. 

The basic building block of chromatin, the nucleosome, consists of 146 base pairs (bp) 
of DNA and a histone octamer composed of four core histones: H2A, H2B, H3, and H4. 
Post-translational modifications of histone tails play an important role in the epigenetic 
regulation of genome activity. These modifications include acetylation, methylation, 
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phosphorylation, and ubiquitination. Depending on the types of 
histone modifications and binding sites, different enrichment pat-
terns and related biological effects are expected. For example, 
acetylated histones provide a chromatin environment easily acces-
sible to the transcriptional machinery by changing the chromatin 
conformation. Some histone methylations, such as H3K4me2 and 
H3K4me3, are mostly located on promoters, whereas H3K36me3 
is predominantly found on the gene bodies of transcriptionally ac-
tive genes [4,5]. 

The Encyclopedia of DNA Elements (ENCODE) Consortium, 
aiming at the identification of all functional elements in the human 
genome, proposed a guideline for categorizing protein-bound re-
gions occupied by point source factors, broad source factors, and 
mixed source factors [6]. 

The distribution patterns of ChIP-Seq data on the genome have 
been analyzed using many different software programs with spe-
cific algorithms, which use different strategies for searching poten-
tial binding regions, judging the peaks, and calculating significance 
[7-10]. Most previous studies have focused on detecting the en-
riched peaks, and several groups have already evaluated peak call-
ing programs [11-16]. Although most previous studies compared 
the performance of each program for analyzing transcription factor 
binding patterns, some tested histone modifications, including 
H3K4me3, H3K9me3, H3K27me3, and H3K36me3 [11,12,14]. 
However, the performance evaluation of ChIP-Seq analysis pro-
grams needs to be more extensively examined to understand the 
nature of enrichment of various types of histone modifications. 
Herein, we tested ChIP-Seq data from 12 histone modifications 
covering three source types with five peak calling programs 
(CisGenome, MACS1, MACS2, PeakSeq, and SISSRs). 

Methods 

Data filtering and cross-correlation analysis 
The ChIP-Seq datasets of 12 histone modification types, input, 
and RNA-sequencing of human embryonic stem cell line (H1) 
were downloaded from the NIH Roadmap Epigenomics Project 
Gene Expression Omnibus (GEO) repository (http://www.ncbi.
nlm.nih.gov/geo/roadmap/epigenomics/) (Supplementary Table 
1). The downloaded SRA format files were converted to the 
FASTQ format via fastq-dump in SRA Toolkit (version 2.4.5). 
Raw sequencing reads were filtered by fastq_quality_filter 
(FASTX-Toolkit version 0.0.13.2) with the following options (-p 
80, -q 20, and -Q33). High-quality reads were mapped to the hu-
man genome (hg19) using Bowtie (version 1.1.1) with the default 
options (-n 2, -e 70, -l 28, -I 0, -X 250, and -maxbts 250) [17]. 

To evaluate the signal-to-noise ratio of a ChIP-Seq experiment, 

strand cross-correlation analysis was performed using the SPP 
program with the default options (-s -100:5:600, and -x 10), con-
sidering two metrics: (1) the normalized strand coefficient, which 
quantifies the fragment length cross-correlation over the back-
ground cross-correlation rate, and (2) the relative strand correla-
tion, which calculates the ratio of cross-correlation observed at the 
predicted fragment size against the artifactual cross-correlation ob-
served at the read length [18]. 

Identification of regions enriched with specific histone 
modifications 
To detect peaks, CisGenome (version 2.0), MACS1 (version 
1.4.2), MACS2 (version 2.1.0), PeakSeq (version 1.31), and SIS-
SRs (version 1.4), were used with the default options and recom-
mended parameters for a direct comparison without any optimiza-
tion (Supplementary Table 2). For CisGenome, the Bowtie-for-
mat output files were converted into the aln format and the se-
qpeak command was used. For MACS1, the options of –p 1e-5, 
-m 10:30, and --keep-dup 1 were used and for MACS2, the default 
options (-q 0.01, -m 5:50, and --keep dup 1) were applied. In 
MACS2, the broad options (-q 0.1, -m 5:50, and --keep-dup 1) 
were also used for the broad source peaks. The signal map was pre-
pared from the Bowtie output using the PeakSeq -preprocess com-
mand. During the step of PeakSeq -peak_selection, the default op-
tions were used, such as Enrichment_mapped_fragment_length 
200, target_FDR 0.05, N_Simulations 10, Minimum_interpeak_
distance 200, and max_Qvalue 0.05. SISSRs detected peaks with 
the recommend options (-F 0.001, -e 10, -p 0.001, -m 0.8, -w 20, 
-E 2, and -L 500). All peaks in each set were ranked by the follow-
ing guidelines: CisGenome and PeakSeq, pre-sorted peak lists; 
MACS1 and MACS2, sorted by the significance level (10 ×  
2log10(p-value)) and then by the fold enrichment; SISSRs, 
ranked by the fold enrichment and by the significance level (p-val-
ue). Frequently detected false positive peaks, regardless of cell line 
or experiment (called the ENCODE blacklist) were removed for 
quality control of peaks [19,20]. 

Comparison of peak calling performance 
The coincidence of peak positions obtained by the individual pro-
grams was examined using the intersectBed and multiIntersectBed 
functions (BEDTools version 2.23.0) with a minimum overlap-
ping size of 1 bp [21]. Pearson correlation coefficients based on 
peak ranks between overlapped peaks were calculated, because the 
peak rank represents the order of importance according to algo-
rithm characteristics. For the multiple comparison analyses of each 
histone mark, we used multiIntersectBed in BEDTools. The multi-
IntersectBed function provided a comparison among the multiple 
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files. 
The Jaccard similarity coefficients (or index J) were calculated 

for the measurement of variability: J(A, B) =  |A ∩ B| / |A∪B| 
where A and B are sets of enriched regions in base pairs identified 
by peak calling programs. Irreproducibility discovery rate (IDR) 
analysis with all replicates was performed using the recommended 
parameters (peak.half.width ‒1, min.overlap.ratio 0, is.broadpeak F, 
and ranking.measure p.value for MACS1 and MACS2; q.value for 
CisGenome and PeakSeq; signal.value for SISSRs) [22]. For the 
specificity test, the control sequence reads were mixed with the 
original ChIP-Seq data and then the performance was computed. 
At a different sequencing read depth, the genomic coverage of the 
enriched regions was calculated by genomeCoverageBed in BED-
Tools. 

The genomic coverage of the regions was calculated by genome-
CoverageBed in BEDTools by considering randomly selected 
reads (0.5, 0.75, 1.0, 2.5, 5.0, 7.5, 10, 15, 20, and 30 million). To 
detect enriched regions in subsampled data, the algorithms with 
the same parameters as in the above analysis were used. The speci-
ficity of the immunoprecipitated signals to nonspecific noise was 
examined by mixing the ChIP-Seq data with different noise levels 
(50% 100%, and 150% of control reads). 

Results 

Overview of ChIP-Seq data analysis 
For the comparative analysis of ChIP-Seq peak calling programs, 
data on 12 types of histone modifications were initially filtered and 
only high-quality mappable reads were used for further analysis 
(Supplementary Table 3). The histone modification marks were 
grouped into narrow (4 histone modifications), broad (5), and 
mixed (3) sources according to the ENCODE guideline. Peaks 
were called by five commonly used programs [7-10] and their 
number, position, coverage, and specificity were compared individ-
ually. An overview of this study is summarized in Fig. 1. 

Concordance of peak regions 
The peaks representing the enrichment patterns of each histone 
modification were more affected by histone types than by peak 
calling programs. The peak counts of H3K4me3, H3K9ac, 
H3K27me3, and H3K56ac were similar in most peak calling pro-
grams except SISSRs. Peak lengths were strongly affected by the 
program used, with the average length varying from 57.7 to 1941.8 
bp (Supplementary Table 4). Peaks from MACS2 with the broad 
option and PeakSeq covered a longer genomic region, while 
CisGenome, MACS1, MACS2 with the default, and SISSRs sug-
gested relatively short regions as peaks. Notably, SISSRs identified 

the shortest peaks. The concordance or co-occupancy of peaks re-
gions identified from two different callers were calculated at the 
same genomic loci. The peaks from H3K4me2, H3K4me3, H3K-
9ac, H3K27me3, and H3K36me3 varied in length. As a represen-
tative example, the number of peaks enriched with H3K4me3, a 
typical narrow source mark, ranged from 24,000 to 37,000 and its 
enrichment profile was very similar at promoters of actively tran-
scribed genes with all peak callers (Fig. 2A). The peak positional 
variability was highly dependent on the histone mark type. His-
tone marks such as H3K4me2, H3K4me3, H3K27ac, and H3K-
9ac, which are associated with transcriptional activation, showed a 
high level of concordance. The overlapping ratio of H3K4ac and 
H3K79me1 was below 60% on average. Our results indicated that 
histone marks that covered narrow regions with high enrichment 
could be identified by any of the peak callers used in this study, but 
peak positions from broad source marks differed according to the 
peak calling algorithm. 

Fig. 1. Overview of the analysis. (A) Histone modifications are 
classified as narrow, broad, and mixed types. (B) Five programs 
were used for data preparation and peak calling. MACS2 was 
executed with the default or broad option. (C) The called peaks 
were compared in terms of enrichment, consistency, and specificity.
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The significance of the identified peaks was examined by Pear-
son correlation coefficients. To explore peak coherence among al-
gorithms, the correlation coefficients of histone types were catego-
rized (Fig. 2B). The highest correlations were obtained from the 
peaks of H3K4me2, H3K4me3, H3K9ac, and H3K27ac. The low-
est group included H3K4ac, H3K4me1, H3K9me3, H3K36me3, 
and H3K79me1. 

Peak consistency between replicates 
The reproducibility of the peak calling algorithm across biological 

replicates was measured by considering the Jaccard similarity and 
the IDR [22]. The Jaccard similarity coefficients between repli-
cates at a single base level were computed except for H3K27ac, for 
which the duplicated data set was not provided. H3K4me2, 
H3K4me3, H3K9ac, and H3K27me3 had high similarity between 
replicates in all peak callers except SISSRs (Fig. 3A). The mean 
values of the Jaccard similarity coefficients between H3K4me3 
replicates were above 0.5. Interestingly, the similarity between 
H3K36me3 replicates was higher only in MACS2 with the broad 
option than in any other callers, which means that H3K36me3 

Fig. 2. Pairwise comparison of shared regions. (A) Percentage of peaks recaptured by programs shown pairwise. Each panel shows the 
percentage of total peaks from one method (column) that was recaptured by another peak caller (row) after filtering blacklist peaks. (B) The 
concordance rate of peak regions derived from two peak callers. The ranked coincidence weas calculated and the values of percentage and 
correlation coefficients were denoted after filtering blacklist peaks.
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mark clearly belongs to the group of broad source marks. The con-
sistency of other histone modifications was fairly low. Some signif-
icant histone type-dependent consistency was detected, such as 
for H3K4me1, H3K9me3, and H3K79me1 with MACS2 with the 
broad option; H3K4ac and H3K79me2 with PeakSeq; and H3K-
56ac with MACS2 with the broad option and PeakSeq. 

According to the ENCODE guidelines [6], the IDR should be 
used for narrow peaks such as transcription factors, as well as for 
punctate chromatin marks such as H3K4me1, H3K4me3, H3K-
9ac, and H3K27ac. Considering the average number of peaks re-
ducible in replicate pairs with an IDR threshold of 0.01%, the re-
producibility of different peak callers was dependent on the his-
tone type (Fig. 3B). H3K4me2 and H3K4me3 showed a relatively 
large number of reproducible peaks. The MACS1 program gave 
the most reproducible results across replicates in these histone 

modifications. The peaks identified from H3K4ac, H3K56ac, 
H3K79me1, and H3K79me2 seemed not to be reproducible. 

Peak coverage with different sequencing depths 
The importance of sequencing depth has been emphasized for 
measuring the experimental validity of ChIP-Seq. To assess the 
number of peaks at the level of sequencing read saturation by dif-
ferent peak calling algorithms, the peak calling procedure was re-
peatedly applied with different numbers of subsampled reads from 
the total number of sequencing reads (Fig. 4). The peak coverage 
of point source marks in all peak callers except SISSRs dramatical-
ly increased at a lower depth ( ≤ 2.5 million reads for H3K4me2 
and ≤ 1 million reads for H3K4me3). Broad source marks like 
H3K9ac, H3K27ac, H3K27me3, and H3K36me3 needed more 
reads to reach the level of saturation and their coverage of enriched 
genomic regions was consistently increased at > 10 million reads. 
The size of enriched regions derived from MACS2 with a broad 
option generally covered larger loci than any other algorithms. 

Specificity of peak calling against the noise signal 
The peak specificity called by different algorithms was compared 
by mixing the ChIP-Seq reads with randomly-selected input con-
trol reads (50%, 100%, and 150% of the corresponding ChIP-Seq 
reads). The percentage of enriched regions recaptured by 
CisGenome, MACS1, and PeakSeq was not substantially affected 
by the noise level (Fig. 5). CisGenome and PeakSeq recaptured 
over 80% of the enriched regions even with noise reads for 
H3K4me1, H3K4me3, H3K9ac, H3K27me3, and H3K36me3. In 
particular, MACS2 was very responsive to the noise and the recap-
tured peak ratio fell down to the minimum level when it was tested 
with the H3K4ac, H3K56ac, and H3K79me1 marks. SISSRs had 
the lowest performance for peak recapturing. Interestingly, the re-
captured peak ratio of the H3K9me3 mark was dramatically de-
creased with all peak callers, which implied that the sequencing 
depth and the number of peaks for this modification might not 
reach the saturation level. 

Discussion 

The identification of exact protein-binding sites on chromatin is 
the most important step for ChIP-Seq analysis. Many ChIP-Seq 
peak calling programs and algorithms have been published. Some 
of them compared individual performance for transcription factor 
binding profiles. In this study, to obtain relevant information for 
the practical usage of peak callers, we analyzed the enrichment of 
12 histone marks at specific genomic regions with respect to dif-
ferent sequencing depths, consistency between replicates, specific-

Fig. 3. Peak consistency between replicates. (A) Jaccard correlation 
coefficient between biological duplicates for each histone ChIP-Seq 
data. (B) Reproducible peak numbers passing the irreproducibility 
discovery rate threshold of 0.01%.
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ity, and correlation. Generally, narrow source histone modifica-
tions like H3K4me2, H3K4me3, H3K9ac, and H3K27ac showed 
relatively consistent peaks across the peak callers. However, the 
peaks identified from H3K4ac, H3K56ac, H3K79me1, and 
H3K79me2 ChIP-Seq data varied depending on the peak caller, 
which means that the proper choice of a peak caller is critical. 

For the evaluation of reproducibility of peak detection, the Jac-
card similarity coefficient and the IDR were considered and both 
gave fairly good results with point source marks. The broad source 
marks had lower Jaccard correlation coefficients and low repro-
ducibility. 

The sequencing depth, or the count of sequencing reads, is an 
important factor for identifying the region occupied by a specific 

protein factor in the genome. A recent study suggested that a suffi-
cient sequencing depth for human ChIP-Seq is 40–50 million 
reads [9]. However, most published ChIP-Seq data did not reach 
this read count, probably due to the sequencing cost. Considering 
sequencing depth, we also analyzed the effect of peak calling per-
formance with different numbers of sequencing reads. The size 
distribution of enriched regions occupied by peaks was saturated 
under 1 million reads for H3K4me3 and 2.5 million reads for 
H3K4me2, but most broad source marks like H3K4me1, 
H3K9me3, H3K27me3, H3K36me3, and H3K79me2 did not 
show a distinct saturation profile due to the low sequencing depth 
or a histone modification type-specific feature. 

The validity of ChIP-Seq data can be assessed by the specificity 
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of peaks distinguishing true peaks from noise. Randomly selected 
noise reads from ChIP-Seq input data were used to test the speci-
ficity. The individual peak callers showed a good performance 
with 50% of noise reads, but with a high amount of noise signal, 
only two callers (CisGenome and PeakSeq) could recapture the 
original peak regions consistently. 

The purpose of this comparative study was to provide practical 
suggestions for the selection of ChIP-Seq peak calling programs, 
and thus the comparison of the algorithms and/or statistics used 
in each program was beyond our research scope. Our results indi-
cated that a proper selection of the peak caller considering the his-
tone modification type is a critical step for the identification of 
protein-enriched regions specifically. In particular, the peaks occu-
pied by broad and mixed histone marks were dramatically affected 
by the performance of the peak caller. Based on this study, we con-
structed an optimal analysis pipeline for ChIP-Seq data and have 
provided a free ChIP-Seq analysis tool at the Korean Bioinforma-
tion Center (KOBIC) (https://closha.kobic.re.kr/). 
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