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Non-alcoholic fatty liver disease (NAFLD) occurs in 25% of the global population

and manifests as lipid deposition, hepatocyte injury, activation of Kupffer and

stellate cells, and steatohepatitis. Predominantly expressed in hepatocytes, the

augmenter of liver regeneration (ALR) is a key factor in liver regulation that can

alleviate fatty liver disease and protect the liver from abnormal liver lipid

metabolism. ALR has three isoforms (15-, 21-, and 23-kDa), amongst which

23-kDa ALR is the most extensively studied. The 23-kDa ALR isoform is a

sulfhydryl oxidase that resides primarily in the mitochondrial intermembrane

space (IMS), whereby it protects the liver against various types of injury. In this

review, we describe the role of ALR in regulating hepatocytes in the context of

NAFLD. We also discuss questions about ALR that remain to be explored in the

future. In conclusion, ALR appears to be a promising therapeutic target for

treating NAFLD.
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Introduction

Non-alcoholic fatty liver disease (NAFLD) is a spectrum of diseases that initially

manifest as non-alcoholic fatty liver (NAFL) or non-alcoholic steatohepatitis (NASH).

NAFL is characterized as simple steatosis without histological evidence of hepatocyte

injury or inflammation, whereas NASH occurs with the presence of hepatic

inflammation and ballooning degeneration (Schwimmer et al., 2005). When further

aggravated, NASH may progress toward liver fibrosis and subsequently drive

progression to advanced stages, including cirrhosis, hepatic decompensation, and

hepatocellular carcinoma (Kim et al., 2018; Huang et al., 2021a). The liver has a

powerful regenerative ability in many vertebrates. The augmenter of liver regeneration

(ALR) is one of the key factors contributing to liver growth and regeneration (Gupta

and Venugopal, 2018). The specific stimulatory and protective effects of ALR against

various injuries have caught the eye of the scientific community, including researchers

investigating NAFLD (Nalesnik et al., 2017). Mitochondrial dysfunction is a major
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contributor to the development of NAFLD, and ALR has

critical mitochondrial functions (Kumar et al., 2020).

Herein, we focused on the main isoform, 23-kDa ALR,

located in mitochondria. This isoform protects hepatocytes

against NAFLD via the modulation of mitochondrial

homeostasis and mitophagy, suppression of oxidative stress,

and promotion of cell regeneration.

Etiology of non-alcoholic fatty liver
disease

With economic growth and changing lifestyles, the

prevalence of NAFLD has increased rapidly to become a

global burden. NAFLD occurs in 25% of the general

population, especially in developed countries (Younossi et al.,

2016; Cotter and Rinella, 2020; Gallego-Duran et al., 2021). It is

estimated that the annual incidence of hepatocellular carcinoma

is between 0.5% and 2.6% in patients with NAFLD and cirrhosis

(Huang et al., 2021a). Given the vast proportion of patients with

NFALD and its complications worldwide, the economic burden

is huge.

Genetic factors in non-alcoholic fatty
liver disease

The pathogenesis of NAFLD is not fully understood.

Currently, the “multiple- or continuous-hit” hypothesis is the

most accepted explanation (Gupta and Venugopal, 2018). An

unhealthy lifestyle and its associated metabolic disorders, as well

as genetic factors, contribute to the progression of NAFLD.

Nonetheless, NAFLD is considered to result from an

imbalance of energy metabolism in the liver (Mezhibovsky

et al., 2021). Thus far, several genes have been identified to be

critically involved in NAFLD.

Patatin-like phospholipase domain-
containing protein 3

Pennacchio et al. and Kim et al. identified the PNPLA3 gene

as the most important genetic factor related to NAFLD to date

(Romeo et al., 2008; Moon et al., 2022). The gene variant

PNPLA3(148M) is a major risk factor for fatty liver, as it

promotes steatosis through comparative gene identification

58- (CGI-58-) dependent inhibition of adipose triglyceride

lipase (ATGL) during the progression of liver disease. CGI-58

is a cofactor of ATGL that significantly enhances the triglyceride

(TG) hydrolase activity. Wang et al. speculated that the

accumulation of PNPLA3(148M) sequestered the function of

CGI-58, thereby limiting its access to ATGL or other lipases

(Powell et al., 2019).

Membrane-bond O-acyltransferase
domain-containing 7

A variant of MBOAT7, which incorporates arachidonic acid

into phosphatidylinositol (PI) (Lee et al., 2012), is also associated

with the entire spectrum of NAFLD (Luukkonen et al., 2016;

Mancina et al., 2016). The MBOAT7 gene encodes

lysophosphatidylinositol acyltransferase 1 (LPIAT1), which

preferentially binds arachidonic acid to PI (Lee et al., 2008),

which is a constituent of membrane phospholipids and a

precursor of phosphoinositide. Tanaka et al. demonstrated

that the depletion of LPIAT1 in cultured hepatic cells caused

a high PI turnover, which continuously produced diacylglycerol,

a substrate for TG synthesis. This directly caused TG

accumulation and collagen deposition within hepatocytes.

Ultimately, this novel lipogenesis pathway is involved in the

progression of NAFLD and may be a therapeutic target for

NAFLD treatment (Tanaka et al., 2021).

Transmembrane 6 superfamily antigen 2

The TM6SF2 gene encodes a protein involved in regulating

hepatic TG secretion. A glutamic acid to lysine substitution at

amino acid position 167 of the TM6SF2 protein (E167K) disrupts

the secretion of very low-density lipoprotein (VLDL). Deletion of

TM6SF2 resulted in abnormal VLDL-TG secretion, which

progressed to hepatic steatosis (Carlsson et al., 2020). The

lipidation of VLDL is a two-step process, with phospholipids

and polyunsaturated fatty acids as key players in the second stage;

TM6SF2 may also be involved in the second step of lipidation

(Luo et al., 2022). Luukkonen et al. reported reduced levels of

liver polyunsaturated fatty acids, serum TG, and hepatic

phosphorylcholine in patients carrying the TM6SF2(E167K)

variant. Knockdown of TM6SF2 in Huh7 and HepG2 cell

lines reduced the expression of diacylglycerol

O-acyltransferase 1 and 2 (Martin et al., 2021), which are two

key enzymes in TG synthesis. In conclusion, the function of

TM6SF2 is vital for the lipidation of VLDL (Luukkonen et al.,

2017; Luo et al., 2022).

Lipodystrophy-associated genes

Lipodystrophy syndromes are extremely rare disorders of

body fat deficiency associated with potentially serious metabolic

complications, including diabetes, hypertriglyceridemia,

steatohepatitis, and NAFLD (Brown et al., 2016). Mutations in

genes associated with lipodystrophy, such as the peroxisome

proliferator-activated receptor-gamma (PPARγ), lamin A/C

(LMNA), and hormone-sensitive lipase genes, are potential

therapeutic targets for NAFLD (DiStefano and Gerhard,

2022). PPARγ is part of the nuclear receptor family of
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transcription factors consisting of PPARγ, PPARα, and PPARδ
(Liss and Finck, 2017). PPARγ performs different functions in

various cells of the liver. In hepatocytes, PPARγ mediates the

expression of adipogenesis genes, such as AP2 and CD36, which

induce an increased uptake of free fatty acid (FFA).

Simultaneously, the accumulation of FFA promotes

intracellular TG accumulation (Chui et al., 2005; Wu et al.,

2010). In hepatic macrophages, Kupffer cells (KCs) and

monocytes, PPARγ promotes the activation of activated

macrophages (M2) while inhibiting the activation of classical

macrophages (M1). This reduces the release of inflammatory

cytokines, such as tumor necrosis factor-α (TNF-α) and

monocyte chemoattractant protein 1, and growth factors such

as transforming growth factor-β (TGF-β), leading to reduced

inflammation and activation of hepatic stellate cells (HSCs),

consequently attenuating fibrosis. PPARγ is also associated

with the quiescent phenotype of HSCs, limiting HSC

activation and subsequent fibrosis (Skat-Rordam et al., 2019).

Mahdi et al. described a 42-year-old female with lipodystrophy

and NAFLD due to a pathogenic gene variant LMNA(D300N)

(Peng et al., 2020). A polymorphism in the promoter of this

hormone-sensitive lipase gene was associated with hepatic

steatosis, obesity, diabetes, and dyslipidemia. Hsiao et al.

found that patients with NAFLD often had complex metabolic

abnormalities. Notably, the coexistence of NAFLD and glucose

intolerance was shown to have a synergistic effect on increasing

the body mass index, serum insulin levels, and homeostatic

model assessment of insulin resistance. Body mass index and

fat-insulin resistance, but not the homeostatic model assessment

of insulin resistance, are consistent indices of insulin resistance in

NAFLD studies. Thus, fat-insulin resistance may have the

greatest effect on the elevation of serum TG in a state of

glucose intolerance (Hsiao et al., 2013).

Metabolic disorders in non-alcoholic fatty
liver disease

With economic growth, the global prevalence of metabolic

syndromes, such as obesity, diabetes, and dyslipidemia, increases

annually (Iacob and Iacob, 2022). Excessive intake of fructose,

refined carbohydrates, sugar-sweetened beverages, saturated fat,

and animal protein was identified as a major factor in the

development of NAFLD (Parry and Hodson, 2017). For

example, regular fructose consumption can induce hepatic

lipogenesis and endoplasmic stress, impair fatty acid

oxidation, deplete beneficial bacteria in the gut, and cause

liver inflammation resulting from the production of uric

acid and gut-derived endotoxins (Vos and Lavine, 2013;

Jones et al., 2019). The World Health Organization reported

that the number of obese people in China was below 0.1 million

in 1975 and rose to 43.2 million in 2014, accounting for 16.3%

of global obesity. A high-fat and high-carbohydrate diet and

unhealthy lifestyle are the main causes of overweight/obesity

and impair insulin resistance, which is key to the

physiopathology of hepatic steatosis. Moreover, obesity-

related hyperlipidemia worsens lipid metabolism disorders

and is the most distinct feature of NAFLD. Given the

increasing rates of obesity, type 2 diabetes mellitus, and

other metabolic syndromes, coupled with an aging

population, the incidence of NAFLD is projected to increase

dramatically over time (Marjot et al., 2020).

Mitochondrial dysfunction is frequently related to the

development of NAFLD. Indeed, structural and functional

alterations of mitochondria significantly contribute to changes

in cellular lipid metabolism and oxidant stress responses (Auger

et al., 2015). Domínguez-Pérez et al. found that cholesterol

overload in the mouse liver induced by a high-cholesterol diet

led to cholesterol and TG accumulation within hepatocytes,

particularly their mitochondria. Moreover, this overload

induced remarkable transcriptomic changes, mainly associated

with mitochondrial function and dynamics favoring oxidative

stress and apoptosis resistance, which could promote

transformation (Dominguez-Perez et al., 2019). Dysfunction of

hepatocyte endoplasmic reticulum (ER) homeostasis and the

disturbance of its interaction with mitochondria also play an

important role in NAFLD pathophysiology. The ER uses the

unfolded protein response pathway to maintain protein and lipid

homeostasis whenever exposed to hyperlipidemia, insulin

resistance, inflammation, drugs, or other disturbances (Flessa

et al., 2022).

In addition to hepatocytes, KCs andHSCs are associated with

the occurrence of NAFLD and progression to NASH during

different stages of the NAFLD spectrum (You et al., 2008; Leroux

et al., 2012; Teratani et al., 2012). The KCs are tissue-resident

cells capable of self-renewal and the maintenance of liver

homeostasis. Under normal conditions, KCs tend to suppress

inflammation by secreting cytokines such as interleukin 4 (IL-4),

IL-10, and IL-13 (Dixon et al., 2013). Hepatocytes express a series

of membrane and cytoplasmic pattern recognition receptors,

such as Toll-like receptor-4 (TLR-4), all of which stimulate

KC activation and trigger a phenotypic switch of macrophages

from M2 to M1 (Wan et al., 2014). Activated KCs promote the

release of various inflammatory chemokines, including IL-1β,
TNF-α, and IL-6 (Musso et al., 2013). These cytokines further

recruit large numbers of monocyte-derived infiltrating

macrophages to the damaged area, worsening inflammation

and hepatocyte injury (Tacke, 2017).

Chronic inflammation sustains these inflammatory stimuli

and induces HSCs to initiate fibrotic processes. Located in the

space of Disse in the liver, HSCs are physically quiescent cells that

function as a store of vitamin A. Following sustained

inflammation, HSCs are activated by cytokines and free

radicals released from the surrounding cells, such as

hepatocytes, T cells, and KCs. Once activated, HSCs undergo

a phenotypic switch from adipocyte-like quiescent cells to
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myogenic cells with increased protein expression of alpha-

smooth muscle cell actin (α-SMA) and extracellular matrix

(ECM) proteins (Dooley et al., 2000). Increased ECM

synthesis and reduced ECM degradation lead to excessive

collagen deposition and the progression of fibrosis in the liver.

Collectively, the crosstalk among hepatic cells substantially

contributes to the development of NAFLD (Figure 1). Thus,

determining how to protect hepatic cells from death and control

the propagation of inflammation is essential for further

understanding the pathology of NAFLD.

Augmenter of liver regeneration

Brief introduction
ALR was first identified in 1975 in crude extracts of liver

homogenates in weaning rats (LaBrecque and Pesch, 1975).

Injection of the purified substance into mice with partial

hepatectomy stimulated liver regeneration. Therefore, it was

named hepatic regenerative stimulator substance. More

recently, it was formally named “augmenter of liver

regeneration” (ALR). ALR is widely distributed in the testis,

liver, kidney, brain, and other tissues, with maximum expression

in the testis and liver (Lisowsky, 1996). Inside the liver, ALR is

predominately expressed in hepatocytes and, to a lesser extent, in

stellate cells (Gupta and Venugopal, 2018). Regarding subcellular

localization, ALR is expressed in the nucleus and cytosol, as well

as mitochondria (Weiss et al., 2017). Deletion of ALR was lethal

in a yeast system (Becher et al., 1999).

Gene sequence and protein structure of
augmenter of liver regeneration

The human ALR gene (growth factor erv1-like gene, GFER)

is located on chromosome 16 and consists of three exons and two

introns (Hagiya et al., 1994; Lisowsky et al., 1995), comprising a

299-bp 5ʹ untranslated region, a 375-bp coding sequence, and

550-bp 3ʹ untranslated region (Hagiya et al., 1994). A cDNA

clone was more than 1.5-kb in length, and GFER has a “TATA-

less” promoter (Shanks et al., 1993). Thus far, three isoforms of

human ALR have been identified.

The human ALR protein yields bands at 15-, 21-, and 23-

kDa under reducing conditions, corresponding to 36-, 38-, and

40-kDa under non-reducing conditions, respectively (Dayoub

et al., 2011; Dayoub et al., 2013; Gandhi et al., 2015; Weiss et al.,

2017; Ibrahim et al., 2018). The 15-kDa ALR is secreted from

hepatocytes into the extracellular environment, whereby it

displays anti-apoptotic and anti-oxidative properties as

well as inflammation- and metabolism-modulating effects

(Ibrahim and Weiss, 2019). The 23-kDa ALR is a sulfhydryl

oxidase that resides primarily in the mitochondrial

FIGURE 1
Crosstalk between hepatic cells in the progression of non-alcoholic fatty liver disease. Excessive accumulations of triglyceride, cholesterol, and
lipid deposition are considered the first steps to induce hepatocellular lipotoxicity, followed by oxidative stress, peroxidation, mitochondrial
dysfunction, and reactive oxygen species (ROS) production. These factors promote hepatocyte death and the release of DAMPs and TLRs, resulting in
Kupffer cell activation. Activated Kupffer cells produce a series of proinflammatory cytokines to recruit blood monocytes to strengthen
inflammation. When chronic inflammation is sustained, hepatic stellate cells are activated and undergo a phenotype switch from adipocyte-like
quiescent cells to myogenic cells with increased expression levels of α-SMA and ECM proteins. Increased ECM synthesis and reduced ECM
degradation lead to excessive collagen deposition and fibrosis progression in the liver. α-SMA, alpha-smooth muscle cell actin; DAMPs, damage-
associated molecular patterns; ECM, extracellular matrix; ER, endoplasmic reticulum; IL, interleukin; ROS, reactive oxygen species; TNF-α, tumor
necrosis factor alpha; TLRs, Toll-like receptors.
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intermembrane space (IMS), whereby it exerts liver protection

effect against various types of injury (Mordas and Tokatlidis,

2015; Nalesnik et al., 2017; Weng et al., 2017; Jiang et al., 2019).

Studies of 21-kDa ALR are limited. In this review, we focused

on 23-kDa ALR.

Regulation of augmenter of liver
regeneration gene expression

The promoter region of GFER contains sites that bind

inducers and repressors that positively or negatively regulate

the ALR expression. Inducers include specific protein 1 (SP1),

forkhead box A2 (FOXA2), early growth response protein 1

(Egr-1), and hepatocyte nuclear factor 4α (HNF4α).
Repressors include activator protein 1/activator protein 4

(AP1/AP4), CCAAT/enhancer binding proteins (C/EBPβ),
and HNF4α (Ibrahim et al., 2018). Binding of HNF4α to

the promoter region (−209 to −204 bp) reduces GFER

expression, whereas binding to another site (+421 to

+432 bp) induces GFER expression (Guo et al., 2008). The

downstream inducing effect of HNF4α is diminished upon the

activation of the small heterodimer partner protein (SHP)

(Ibrahim et al., 2018).

There are two inducing response elements within the GFER

promoter region. An upstream antioxidant response element

(ARE) located between −27 and −19 bp induces GFER

expression upon binding nuclear factor erythroid 2-related

factor 2 (Nrf2) when hepatocytes are exposed to oxidative

stress (Dayoub et al., 2013). In addition, a downstream site

binding the IL-6 response element binding protein (IL-6-RE-

BP) can increase the activating effect of FOXA2 (Dayoub et al.,

2010).

The promoter structure and regulation of the ALR gene are

shown in Figure 2.

Augmenter of liver regeneration variants

Mutations of GFER lead to severe mitochondrial disease.

Fonzo et al. identified a c.581G→A homozygous mutation in the

C-terminus of ALR, which results in a p. R194H substitution in

children with autosomal recessive myopathy. At the cellular level,

this mutation leads to respiratory chain defects, such as abnormal

mitochondrial morphology and unstable mtDNA (Di Fonzo

et al., 2009). Daithanker et al. characterized the R194H

mutation in the context of enzymological studies of human

ALR. The R194H mutation affected the thermal stability of

mitochondria, as well their flavin adenine dinucleotide (FAD)

binding and sensitivity to protein hydrolysis (Daithankar et al.,

2010). The yeast ortholog Erv1p, a key protein in the

mitochondrial disulfide relay system, oxidizes the disulfide

carrier mitochondrial import and assembly protein 40

(Mia40), which in turn transfers disulfide bonds to newly

synthesized small cysteine proteins in the IMS. Erv1p is then

re-oxidized to transfer its electrons to molecular oxygen through

interactions with cytochrome C and cytochrome C oxidase,

linking the disulfide relay system to respiratory chain activity.

Erv1p depletion prevents the import of these essential proteins,

leading to mtDNA aberrations and abnormal mitochondrial

morphology. Rat and human ALR proteins act as sulfhydryl

oxidase and may play a role similar to that of yeast Erv1p (Di

Fonzo et al., 2009). The features of ALR variants are summarized

in Table 1.

Protective role of augmenter of liver
regeneration in hepatocytes in non-
alcoholic fatty liver disease

At the organelle level, 23-kDa ALR is mainly located in the

IMS, whereby it regulates mitochondrial biogenesis and function.

FIGURE 2
Structure and regulation of the augmenter of liver regeneration (ALR) gene promoter. The blue boxes represent repressors, and the orange
boxes are inducers. ARE and IL-6 RE-BP are inducing response elements. NRF2 binds to ARE and induces ALR gene expressionwhen hepatocytes are
exposed to oxidative stress. When IL-6 RE-BP is activated by IL-6, it increases the activating effect of FOXA2. AP1/AP4, activator protein 1/activator
protein 4; C/EBPβ, CCAAT/enhancer binding protein-beta; HNF4α, hepatocyte nuclear factor 4 alpha; SP1, specific protein 1; ARE, antioxidant
response element; NRF2, nuclear factor erythroid 2-related factor 2; IL-6, interleukin-6; IL-6-RE-BP, IL-6 response element binding protein; FOXA2,
forkhead box A2; Egr-1, early growth response protein 1.
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The FAD-dependent sulfhydryl oxidase activity of ALR allows it

to enhance the oxidative phosphorylation capacity of

mitochondria (Daithankar et al., 2009). Compelling evidence

indicates that ALR inhibits apoptosis, promotes hepatocyte

regeneration, and prohibits fibrotic progression in various

murine models of NAFLD (Xiao et al., 2015; Xu et al., 2016;

Weiss et al., 2017; Kumar et al., 2020;Wang et al., 2020). All these

beneficial effects of ALR in hepatocytes are directly or indirectly

related to its regulation of mitochondria. Below, we focus on the

protective effects of ALR in hepatocytes in the aspects of cell

death, regeneration, and anti-fibrosis in NAFLD.

Augmenter of liver regeneration in
hepatocyte apoptosis and autophagy

Excessive accumulation of TG, cholesterol, and lipid

deposition are considered the first steps to induce

hepatocellular lipotoxicity, followed by oxidative stress, lipid

peroxidation, mitochondrial dysfunction, and excessive

reactive oxygen species production (Dewidar et al., 2020).

Taking cholesterol accumulation as an example, the activation

of the adenosine monophosphate-activated protein kinase

(AMPK) signaling pathway improves insulin resistance and

lipid accumulation (Hsiao et al., 2013). Wang et al. showed

that cholesterol accumulation within hepatocytes can be

regulated by ALR via the liver kinase B1- (LKB1-) AMPK-

sterol regulatory element binding protein 2- (SREBP2-) low-

density lipoprotein receptor pathway. LKB1 is an upstream

activator of AMPK. Knockdown of ALR expression inhibits

LKB1 phosphorylation, leading to AMPK inactivation and

SREBP2 maturation/nuclear translocation. SREBP2 and low-

density lipoprotein receptor actions are closely associated with

cholesterol accumulation within hepatocytes. Thus, alterations in

these events can lead to extensive cholesterol accumulation and

the development of lipid metabolism disorders (Wang et al.,

2020).

Results from many research groups have illustrated that ALR

inhibits apoptosis and helps overcome cell injury induced by

CCl4, ethanol, and other toxic factors. Studies in liver cells show

that the downregulation of ALR results in increased activation of

caspase-3 and caspase-9, an increased ratio of Bax/Bcl-

2 expression, and reduced ATP content (Francavilla et al.,

2014; Zhang et al., 2014; Dong et al., 2021). Beyond its role in

cell apoptosis, there has been considerable evidence indicating a

role for ALR in reducing autophagy. For example, in an in vivo

ethanol-induced acute liver injury mouse model, the

downregulation of ALR attenuated hepatotoxicity by

activating autophagy, and in vitro experiments in the

HepG2 cell line showed that protection was mediated by the

inactivation of the Akt/mTOR pathway (Liu et al., 2019).

Augmenter of liver regeneration in
mitochondrial homeostasis

From mechanistic insights, mitochondria play a central role in

hepatocyte survival. The transfection of ALR into steatotic

hepatocytes upregulates carnitine palmitoyl transferase 1 (CPT1)

expression to enhance long-chain fatty acid transport into

mitochondria for usage (Xiao et al., 2015). Dynamin-related

protein 1 (Drp1) is one of the major pro-fission proteins to

clear damaged mitochondrial debris and govern mitochondrial

homeostasis (Jin et al., 2021). In a murine model of hepatic

ischemic reperfusion injury, the Drp1 activity increased, which

promoted mitochondrial fission. Binding with transcription factor

Yin Yang-1 (YY1) with ALR prohibited YY1 nuclear translocation

and transcriptional activation. As one of the target genes of YY1,

UBA2 is a subunit of the SUMO-E1 enzyme and catalyzes

Drp1 SUMOylation. By doing so, ALR attenuated

TABLE 1 Summary of human ALR variants.

Allelic variants Type of mutations Clinical features References

GFER, ARG194HIS arg-to-his(R194H) substitution Myopathy, mitochondrial progressive, with congenital cataract and
developmental delay

Di Fonzo et al. (2009)

GFER, GLN125TER gln-to-ter(Q125X) substitution Myopathy, mitochondrial progressive, with congenital cataract and
developmental delay

Calderwood et al.
(2016)

GFER, 1-BP DEL,
219C

Frameshift and premature termination
codon

Myopathy, mitochondrial progressive, with congenital cataract and
developmental delay

Nambot et al. (2017)

GFER Myopathy, mitochondrial progressive, with congenital cataract and
developmental delay

GFER, 1-BP DEL,
217G

Myopathy, mitochondrial progressive, with congenital cataract and
developmental delay

ALR, augmenter of liver regeneration; ARG, arginine; BP, base pair; DEL, deletion; GFER, growth factor erv1-like gene; GLN, glutamine; HIS, histidine; TER, threonine.
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mitochondrial fission and retained its function (Huang et al.,

2021b). Mitofusin-2 (Mfn-2) is an essential GTPase-related

mitochondrial dynamics protein. In the same murine model of

hepatic ischemic reperfusion injury, ALR administration

accelerated Parkin translocation for transcriptional activation of

Mfn2, leading to enhanced mitophagy (Kong et al., 2022).

Most soluble IMS proteins rely on a mitochondria-targeting

sequence for import, and ALR participates in protein import and

export by cooperating with Mia40 (Finger and Riemer, 2020).

Mia40 is reduced during the process of disulfide bond formation,

and ALR can re-oxidize reduced Mia40 to make it available for

the next round of disulfide bond formation (Grumbt et al., 2007;

Bien et al., 2010; Banci et al., 2011). This function of ALR ensures

adequate protein folding during import and export to the IMS,

which is necessary for functioning mitochondria. Recent

progress in the field revealed that the coiled-coil-helix-coiled-

coil-helix domain-containing 4 (CHCHD4) proteins, the

evolutionarily conserved human homolog of yeast Mia40,

control antioxidant responses and lipid homeostasis

(Reinhardt et al., 2020). Hence, CHCHD4/Mia40 could be a

novel target for NAFLD investigations.

Gandhi et al. successfully developed mice with liver-specific

depletion of ALR (ALR-L-KO), which showed that a lack of ALR

accelerated the development of steatohepatitis and hepatocellular

carcinoma (Gandhi et al., 2015). Two weeks after birth, the ALR-

L-KO mice showed reduced mitochondrial respiratory function,

increased oxidative stress, and extensive steatosis and apoptosis.

Furthermore, ALR depletion resulted in decreased expression of

genes involved in lipid metabolism, such as CPT1α, and ATP

synthesis, such as ATP synthase subunit ATP5G1. This model

provides a useful tool to investigate the pathogenesis of

steatohepatitis and its complications and further showed that

ALR is required for mitochondrial function and lipid

homeostasis in the liver.

The anti-oxidative properties of
augmenter of liver regeneration

Peroxisome proliferator-activated receptor-alpha (PPAR-α),
CPT1-α, peroxisomal membrane protein 70 (PMP70), and acyl-

CoA oxidase 1 (ACOX1) are a series of antioxidant proteins,

FIGURE 3
Protective role of augmenter of liver regeneration (ALR) in hepatocytes in non-alcoholic fatty liver disease. 23-kDa ALR is located in the
intermembrane space of mitochondria and regulates hepatocyte function through different mechanisms. In the aspect of mitochondrial
homeostasis, ALR upregulates the expression of CPT1, increasing the transport of long-chain fatty acids into mitochondria. In the aspect of anti-
oxidative stress, ALR cooperates with Mia40 ensuring the adequate folding of IMS-proteins during import and export to IMS and functioning in
mitochondria. ALR binds to ABCB8 and plays a role in Fe/S cluster transport. In addition, ALR suppresses the expression of miR-540, which increases
the expression of several proteins involved in anti-oxidative stress. ALR also promotes cell proliferation and liver regeneration andmaintains stem cell
“stemness” and survival. Overexpression of ALR decreases the expression of caspase-3, thereby decreasing cell apoptosis. CPT1, carnitine palmitoyl
transferase-1; IMS, mitochondrial intermembrane space; Mia40, mitochondrial import and assembly protein 40; CHCHD4, coiled-coil-helix-coiled-
coil-helix domain-containing 4; PPAR-α, peroxisome proliferator-activated receptor alpha; PMP70, peroxisomal membrane protein 70; ACOX1,
acyl-CoA oxidase 1; Fe/S, iron/sulfur clusters; ABCB8, ATP-binding cassette B8; miR-540, microRNA 540; TFAM, mitochondrial transcription
factor A.
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which are targeted by miR540 (Kumar et al., 2019). In ALR-

deficient hepatocytes, the miR540 expression was increased and

the expression levels of PPARα, PMP70, ACOX1, and CPT1α
were decreased. In contrast, antioxidant N-acetylcysteine and

recombinant ALR rescued anti-oxidative stress responses by

suppressing miR-540 expression and lipid accumulation in

ALR-deficient hepatocytes. In agreement with these results,

the exogenous administration of recombinant ALR to

ALR−/−KO mice inhibited miR-540 expression and steatosis

(Kumar et al., 2019).

Augmenter of liver regeneration in
endoplasmic reticulum stress

FFA can induce steatosis and lipotoxicity, which are

correlated with the severity of NAFLD. Moreover, the

involvement of ER stress in lipotoxicity has been reported

(Malhi and Kaufman, 2011). Xu et al. investigated the role of

endogenous and exogenous ALR for FFA-induced ER stress and

lipotoxicity. When hepatocytes treated with ALR or expressing

ALR were incubated with palmitic acid in vitro, caspase-3 activity

and Bax protein expression were reduced, therefore reducing

lipotoxicity. These results indicate that ALR exerted its lipid-

lowering and anti-apoptotic actions by elevating the

mitochondrial FFA transporter CPT1α, increasing toxic FFA

β-oxidation in mitochondria, and decreasing the delivery of

toxic FFA metabolites. In vivo, reduced mRNA levels of ALR

and FOXA2 (a transcription factor inducing ALR expression)

were found in mice fed a high-fat diet, human patients with

steatosis, and NASH liver samples. These results demonstrate the

role of ALR in reducing lipid deposition and increasing β-
oxidation in patients with NASH (Xu et al., 2016). Xiao et al.

further confirmed that the protective role of ALR against steatosis

occurred via the inhibition of calcium transport from the ER to

mitochondria, and the inhibition of ER stress by ALR was

associated with an interrupted interaction between Bcl2 and

the inositol 1,4,5-trisphosphate receptor (IP3R) (Xiao et al.,

2018).

Augmenter of liver regeneration in
hepatocyte regeneration

The removal of 75% of rat liver tissue led to increased ALR

mRNA expression levels in hepatocytes after 12 h, but DNA

synthesis in liver tissue reached a peak 24 h later (Francavilla

et al., 2014). This suggests that ALR is a significant factor in the

process of liver regeneration (Fausto, 1991; Gandhi et al., 1999;

Polimeno et al., 2011). The use of MitoBloCK-6 to

pharmacologically inhibit ALR reduced the proliferation of

hepatocellular carcinoma cells, an effect that links ALR

function to mitochondrial iron homeostasis (Kabiri et al.,

2021). Silencing of ALR inhibited the proliferation and

triggered the apoptosis of U266 human multiple myeloma

cells (Zeng et al., 2017). Conversely, ALR overexpression in

hepatic cells enhanced cell proliferation via the microRNA-

26a/p-Akt/cyclin D1 pathway (Gupta et al., 2019a).

Kupffer cells (KCs) play a protective role in liver regeneration

(Selzner et al., 2003), and a relationship between KCs and ALR

has been reported. Yang et al. suggested that the activation of KCs

was another mechanism by which ALR stimulates hepatocyte

proliferation because there are high-affinity receptors for ALR on

hepatic KCs, and ALR can stimulate KC proliferation (Wang

et al., 2006). Similarly, when hepatocytes were co-cultured with

KCs, the levels of hepatocyte DNA and protein in the supernatant

were significantly increased (Kinoshita et al., 2005). These events

indicate that ALR can regulate KCs to secrete certain growth

factors which promote hepatocyte proliferation.

Acute response cytokines, such as IL-6 and TNF-α, are
mainly released from KCs and are associated with hepatocyte

proliferation (Olthoff, 2002). As described above, ALR binds to

KCs via high-affinity receptors. The activation of KCs induces

the release of various cytokines that trigger hepatocyte

proliferation.

Anti-fibrotic property of augmenter of
liver regeneration

Therefore, there is no evidence for a direct anti-fibrotic effect

of ALR on hepatocytes. Nevertheless, ALR inhibits fibrotic

progression in the liver by suppressing hepatic stellate cell

(HSC) activation in NAFLD.

Among all inflammatory cytokines, TGF-β1 is the most

potent stimulator of HSC activation (Mu et al., 2018; Xiang

et al., 2020; Cheng et al., 2021). The binding of TGF-β1 to its

receptors on HSCs results in the phosphorylation of several serine

and threonine residues, which stimulate Smad2 and Smad3 kinase

activation and the formation of the Smad2/Smad3/Smad4 complex.

This complex is then translocated into the nucleus, whereby it

transcriptionally activates the expression of fibrotic genes, including

the mitogen-activated protein kinase 1 (MAPK), phosphoinositide

3-kinase (PI3K), nuclear factor-κB (NF-κB), NADPH oxidase, and

connective tissue growth factor genes (Pei and Li, 2021). In LX-12

cells treated with TGF-β1, miR-181 was upregulated, further

increasing TGF-β receptor II expression on HSCs to potentiate

fibrotic pathways. However, when LX-12 cells were transfected with

an ALR plasmid, the overexpression of ALR counteracted TGF-β-
induced miR-181 and TGF-β receptor II expression (Gupta et al.,

2019b). Likewise, in cultivated renal tubular cells, the addition of

human recombinant ALR decreased the TGF-β receptor II

expression and phosphorylation of Smad2 and NF-κB (Liao

et al., 2014).

Metalloproteinases, which play a dominant role in ECM

degradation, are inhibited by tissue inhibitors of
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metalloproteinase (TIMP). Of the four TIMPs, only TIMP-1 and

TIMP-2 are detected in liver tissue, with TIMP-1 expression

being more pronounced than TIMP-2. In a rat hepatic fibrosis

model induced by porcine serum injection, the administration of

ALR plasmid decreased the expression levels of TIMP-1 mRNA

and protein and was accompanied by reduced deposition of

collagen I and collagen II in the liver (Li et al., 2005).

Cell motility is ATP-consuming and mediated by

microfilament assembly. In vitro, ALR knockdown by shRNA

promoted mitochondrial fission and elongation, which led to

enhanced ATP production for HSC migration. Moreover, the

proportions of F-actin and G-actin were higher in ALR-deficient

HSCs following shRNA transfection. Conversely, ALR

overexpression slowed HSC migration by reducing energy

supply and inhibiting mitochondrial fusion (Ai et al., 2018).

The proposed mechanism by which ALR protects

hepatocytes in NAFLD is summarized in Figure 3.

Perspective

Nearly 50 years of research on ALR has consistently

demonstrated its involvement in the spectrum of NAFLD.

Despite this progress, how ALR expression is regulated in the

context of NAFLD is not well defined. Moreover, most ALR

studies focus on the liver. Thus, whether ALR in other organs,

such as the kidney and brain, communicate with the liver to

participate in NAFLD remains an open question. Additionally,

although 21-kDa ALR is one of the main isoforms, its role is not

fully understood. There are still mysteries surrounding ALR

worth exploring in the future.

In conclusion, ALR promotes mitochondrial homeostasis,

protects hepatocyte survival and function, and suppresses

macrophage and HSC activation. Collectively, these features

make ALR a potential therapeutic target for the treatment of

NAFLD.
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