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Abstract
Experimental studies have shown that one key factor in driving the emergence of drug resis-

tance in solid tumors is tumor hypoxia, which leads to the formation of localized environ-

mental niches where drug-resistant cell populations can evolve and survive. Hypoxia-

activated prodrugs (HAPs) are compounds designed to penetrate to hypoxic regions of a

tumor and release cytotoxic or cytostatic agents; several of these HAPs are currently in clin-

ical trial. However, preliminary results have not shown a survival benefit in several of these

trials. We hypothesize that the efficacy of treatments involving these prodrugs depends

heavily on identifying the correct treatment schedule, and that mathematical modeling can

be used to help design potential therapeutic strategies combining HAPs with standard ther-

apies to achieve long-term tumor control or eradication. We develop this framework in the

specific context of EGFR-driven non-small cell lung cancer, which is commonly treated with

the tyrosine kinase inhibitor erlotinib. We develop a stochastic mathematical model, param-

etrized using clinical and experimental data, to explore a spectrum of treatment regimens

combining a HAP, evofosfamide, with erlotinib. We design combination toxicity constraint

models and optimize treatment strategies over the space of tolerated schedules to identify

specific combination schedules that lead to optimal tumor control. We find that (i) combining

these therapies delays resistance longer than any monotherapy schedule with either evo-

fosfamide or erlotinib alone, (ii) sequentially alternating single doses of each drug leads to

minimal tumor burden and maximal reduction in probability of developing resistance, and

(iii) strategies minimizing the length of time after an evofosfamide dose and before erlotinib

confer further benefits in reduction of tumor burden. These results provide insights into how

hypoxia-activated prodrugs may be used to enhance therapeutic effectiveness in the clinic.

Author Summary

It has been suggested that one key factor driving the emergence of drug resistance is the
spatial heterogeneity in the distribution of drug and oxygen throughout a tumor due to
disorganized tumor vasculatures. Researchers have developed a class of novel drugs that
penetrate to hypoxic regions where they are activated to kill tumor cells. The inclusion of
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these drugs, called hypoxia-activated prodrugs (HAPs) alongside standard therapies in
combination may be the key to long-term tumor control or eradication. However, identi-
fying the right timing and administration sequence of combination therapies is an
extremely difficult task, and the time and human costs of clinical trials to investigate even
a few options is often prohibitive. In this work we design a mathematical model based
upon evolutionary principles to investigate the potential of combining HAPs with stan-
dard targeted therapy for a specific example in non-small cell lung cancer. We formulate
novel toxicity constraints from existing clinical data to estimate the shape of the tolerated
drug combination treatment space. We find that (i) combining these therapies delays resis-
tance longer than any monotherapy schedule with either evofosfamide or erlotinib alone,
and (ii) the best strategy for combination involves single doses of each drug sequentially
administered in an alternating sequence. These model predictions of tumor dynamics dur-
ing treatment provide insight into the role of the tumor microenvironment in combination
therapy and identify treatment hypotheses for further experimental and clinical testing.

Introduction
Solid tumor vasculature is characterized by a disorganized, aberrant network structure of tortu-
ous, hyperpermeable blood vessels [1]. These characteristics lead to nonuniform spatial distri-
butions of drug and oxygen (as well as other nutrients and growth factors) throughout tumors,
which in turn have been implicated in the emergence and evolution of resistance [2–7]. Indeed,
several recent studies have demonstrated that the presence of spatial gradients of drug in an
environment can accelerate the emergence of antibiotic resistance in bacteria [8, 9]. One expla-
nation for this phenomenon is that regions of low drug concentration generate local niches
where sustained cell proliferation drives the production of new genetic variants. These spatial
regions often coincide with hypoxic (low oxygen) conditions where drug-resistant variants
may possess a survival advantage over drug-sensitive cells [2, 10–13], thus enabling the estab-
lishment of stable pockets of drug resistance in tumor regions not easily accessible by drugs.
In light of these observations, one strategy proposed is to design therapy regimens that exploit
the interaction between tumor cell populations and their environments to achieve long-term
tumor eradication or control.

Hypoxia is defined as reduced levels of molecular oxygen (typically less than 1%) in tissue.
In contrast, ambient air exists at approximately 21% and most human organs have oxygen lev-
els in the range of 2% to 9% [14]. The prevalence of hypoxic regions in solid tumors has led to
the development of hypoxia-activated prodrugs (HAPs), which are compounds designed to
metabolize into active drugs upon entry into hypoxic environments [15–18]. For example, one
such compound, evofosfamide, consists of a radical anion linked to a potent DNA-alkylating
agent which penetrates effectively through tissues under normoxic (normal oxygen) condi-
tions. Under hypoxic conditions, however, the radical anion undergoes irreversible fragmenta-
tion and releases the activated drug into the tumor [18, 19]. This type of novel action allows
evofosfamide to penetrate and target cancer cells within hypoxic region of a tumor, unlike stan-
dard therapies whose range is often confined to well-vascularized, normoxic regions.

Currently, several HAPs are in clinical trials [20]. Tirapazamine was the first HAP to be
tested in the clinic, in combination with both chemotherapy and radiotherapy; however, results
did not show any significant therapeutic benefit. It was thought that off-target toxicity and
insufficient tissue penetration were the primary contributing factors to this result. More
recently, evofosfamide, which has a superior tissue-penetration ability, underwent Phase III
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testing in combination with chemotherapies for pancreatic cancer and soft tissue sarcoma. Nei-
ther of these trials demonstrated a significant survival benefit. However, given the response
kinetics of hypoxic cancer cells to these therapies in preclinical studies, we hypothesize that the
potential of HAPs has not yet been fully realized in previous clinical trials, and that mathemati-
cal modeling may be beneficial in identifying the combination treatment strategies that lead to
survival benefit. We have demonstrated in previous work that identifying the right dosing
schedule is important in improving cancer treatment outcomes, and further that mathematical
modeling is an effective tool to help identify optimal administration strategies [21–23]. In par-
ticular, we demonstrated in [23] that altering the timing of treatment periods in sequential
combination therapies may prevent or delay the emergence of drug resistance.

This work builds upon a large body of literature on evolutionary modeling of drug resistance
in cancer (see, e.g. the review [24] and references therein). Here we discuss a few recent contri-
butions to modeling combination therapies in cancer. For example, Komarova et. al. [25] uti-
lized a stochastic birth-death process model to study the impact of combination therapies in
Chronic Myeloid Leukemia, finding that a combination of two but not three drugs should be
used in the prevention of drug resistance. In a later work by the same authors, Katouli et. al.
[26] designed a general algorithm to compare combination treatment protocols in Chronic
Myeloid Leukemia according to their cross-resistance properties, and to identify the protocols
with the highest probability of treatment success. Most recently, Bozic et al. [27] developed a
mathematical model that predicts responses to combinations of targeted inhibitors in mela-
noma patients. Using this model, the author predicted that combinations of two or three drugs
will be far more effective than sequential treatment with the same agents, with the potential for
complete cure.

Here we will focus our modeling efforts on designing HAP-targeted combination treatment
strategies for non-small cell lung cancer (NSCLC). Erlotinib is a tyrosine kinase inhibitor com-
monly used to treat EGFR-mutant non-small cell lung cancer [28–30]. However, most patients
develop resistance and disease progression within 12–18 months of starting treatment [31].
Consequently, novel approaches to prevent, or at least delay, the onset of resistance to erlotinib
are of great clinical importance. A significant amount of research has been dedicated to
improving treatment of non-small cell lung cancer. Several studies have shown that it may be
beneficial to continue therapy with tyrosine kinase inhibitors such as erlotinib even after the
point of disease progression [32–34]. Previous work has focused on the use of mathematical
models of tumor growth and resistance during erlotinib treatment to optimize therapeutic
strategies and minimize a patient’s risk of resistance [21, 22]. Another approach that has been
extensively studied is the use of combination therapy to mitigate resistance to erlotinib [23, 35,
36]. However, these studies lack a consideration for the heterogeneous oxygen and drug distri-
butions throughout the tumor, and in particular their role in mediating tumor response to
therapy and the emergence of drug resistance. Recently, we have demonstrated through model-
ing efforts that the consideration of heterogeneous tumor oxygenation and drug concentration
reveals dramatically different treatment outcomes and evolutionary responses to therapy when
compared to models under homogeneous environmental conditions [2].

In this work, we investigate the potential benefits of using a HAP in combination with stan-
dard therapy to prevent the emergence of resistance to erlotinib in non-small cell lung cancer.
We design a stochastic mathematical model, with parameters informed by experimental data, to
describe the evolutionary dynamics of a cancer cell population within a heterogeneous tumor
microenvironment during treatment with erlotinib and evofosfamide. Using this model, we
show that a combination treatment strategy results in treatment outcomes preferable to those
resulting frommonotherapy with either of these drugs alone. We also use a novel approach to
define toxicity constraints for this combination therapy, which allows us to optimize treatment
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strategies over the space of tolerated dosing schedules using both drugs in order to minimize
tumor burden and probability of resistance. Determining toxicity constraint profiles for combi-
nation therapies could have significant clinical implications as severe toxicity issues is one of the
major reasons that HAP combinations have not been successful in clinical trials.

Methods
In the following we describe an evolutionary mathematical modeling approach to evaluate the
impact of combination erlotinib-evofosfamide therapy on a NSCLC tumor cell population, in
which each tumor cell response is dependent upon local environmental concentrations of oxy-
gen and drug. The pseudo-spatial model is comprised of a weighted series of environmental
compartments whose oxygen and drug profiles mirror tumor physiologic data. The model is
parameterized using (i) experimentally calculated growth rates under a spectrum of environ-
mental perturbations of oxygen and erlotinib concentration, (ii) published experimental results
on cell viability in response to evofosfamide therapy, (iii) tumor oxygenation measurements,
and (iv) pharmacokinetic data mapping evofosfamide and erlotinib dose to plasma concentra-
tion. We also utilize clinical trial data for both therapies to design a methodology for inferring
toxicity constraints on the space of possible combination treatment strategies.

Evolutionary Model
In order to model tumor evolution within an environment with heterogeneous oxygen and
drug concentrations, we consider a stochastic population dynamic process in which the cell
population is distributed amongst a series of habitats with varying oxygen and drug profiles.
Oxygen concentration within the tumor decays exponentially as a function of distance from
the nearest blood vessel. This decay rate is parameterized in the model based on estimates of
the half-length away from the blood vessel [2]. This is used to define the oxygen concentration
in each microenvironmental compartment; hence every compartment corresponds to a volume
some distance from the nearest blood vessel. To estimate the relative contributions of each of
these compartments to the tumor microenvironment, we utilize experimental data capturing
relative frequencies of a spectrum of oxygen partial pressures throughout solid tumors [37].
We consider a total of 32 environmental compartments in which compartment i has an oxygen
partial pressure of 2.5 � immHg to mirror this data. We then construct a mixture model of
compartments in which the weighting of each compartment is determined based on the relative
frequency of its corresponding oxygen partial pressure in the experimental profile. A schematic
of this process is depicted in Fig 1.

Within each compartment, we use a multi-type, non-homogeneous, continuous-time birth-
death process to model the population of cancer cells during treatment. We assume for now
that the evolutionary dynamics within each microenvironmental compartment are indepen-
dent. (This assumption will be relaxed later, see section on Migration in S1 Text.) The number
of erlotinib-sensitive cells in compartment i at time t is denoted by Xi(t), and the number of
erlotinib-resistant cells in compartment i at time t is given by Yi(t). The joint process Xi(t) =
(Xi(t), Yi(t)) represents the combined state of the sensitive and resistant cell populations in
compartment i at time t. In compartment i, erlotinib-sensitive cells proliferate and die with
rates λX,i(t) and μX,i(t), respectively, while erlotinib-resistant cells proliferate and die with rates
λY,i(t) and μY,i(t). These birth and death rates reflect the effect of treatment on the cancer cell
population in an environmental compartment i, and therefore depend on the concentrations
of oxygen and both drugs found in that compartment at time t. During every sensitive cell divi-
sion, a mutation may arise with some small probability u, giving rise to a new resistant cell.
This mutation rate falls in the range between 10−8 and 10−6 [21, 38, 39]. Here we use u = 10−7.
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We consider an initial population ofM = 1.6 � 106 erlotinib-sensitive cancer cells and zero resis-
tant cells. The number of sensitive cellsMi initially in compartment i is calculated using the rel-
ative compartment weights.

The evolutionary dynamics within each microenvironmental compartment can be
described using analytic approximations for the probability of resistance and means of the sen-
sitive and resistant cell populations. The derivations of these analytic expressions are outlined
elsewhere [40]. Because u is very small, we approximate 1 − u� 1 in the following. Then the
population of sensitive cells Xi(t) in compartment i can be described using a simple birth-death
process. Hence the mean number of sensitive cells at time t in this compartment is

E½XiðtÞ� ¼ Mi exp
Z t

0

lX;iðtÞ � mX;iðtÞ
� �

dt
� �

: ð1Þ

The mean number of resistant cells in this compartment at time t is

E½YiðtÞ� ¼
Z t

0

biðtÞ exp
Z t�t

0

lY ;iðtþ ZÞ � mY ;iðtþ ZÞ� �
dZ

� �
dt; ð2Þ

where bi(t), the rate of production at time t of the resistant cells from the sensitive cell popula-
tion in compartment i, is given by the formula

biðtÞ ¼ Mi exp
Z t

0

lX;iðtÞ � mX;iðtÞ
� �

dt
� �

lX;iðtÞu:

Lastly, the probability of resistance in compartment i at time t is

P½YiðtÞ > 0� ¼ 1� exp
Z t

0

�biðTÞ 1� Pext
i ðT; tÞ� �

dT

� �
: ð3Þ

Pext
i ðT; tÞ represents the probability that a group of resistant cells originating from a single

resistant cell produced at time T in compartment i is completely extinct by time t, and is given

Fig 1. Tumor microenvironment modeling process. This schematic shows the process used to model the tumor microenvironment as a set
of discrete compartments. A series of compartments is defined based on various distances from the nearest blood vessel, and the oxygen
concentration in each compartment is calculated accordingly. The relative weights of the compartments are determined based on
experimental observations of oxygen partial pressure distribution in solid tumors.

doi:10.1371/journal.pcbi.1005077.g001
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by the formula

Pext
i ðT; tÞ ¼

R t�T

0
mY ;iðtþ TÞoiðt;TÞdt

1þ R t�T

0
mY;iðtþ TÞoiðt;TÞdt

;

where

oiðt;TÞ ¼ exp
Z t

0

mY ;iðZþ TÞ � lY ;iðZþ TÞ� �
dZ

� �
:

Now we calculate the probability of resistance and means of the sensitive and resistant cell
populations in the entire tumor at time t. We can obtain the means at time t of the sensitive cell
population X(t) and the resistant cell population Y(t) in the entire tumor by summing over all
compartments:

E½XðtÞ� ¼
X

i

E½XiðtÞ�;

E½YðtÞ� ¼
X

i

E½YiðtÞ�:

Here, E½XiðtÞ� and E½YiðtÞ� are given by Eqs (1) and (2), respectively. The mean tumor size at
time t is given by

E½XðtÞ þ YðtÞ� ¼ E½XðtÞ� þ E½YðtÞ�:
The probability that there exists one or more resistant cells in compartment i at time t is
P½YiðtÞ > 0�. Then 1� P½YiðtÞ > 0� is the probability of having zero resistant cells in this com-
partment at time t. Since we assume independence of the microenvironmental compartments,
this implies the probability of having no resistant cells in the entire tumor at time t is given byQ

ið1� P½YiðtÞ > 0�Þ. Therefore, the probability of resistance at time t is

P½YðtÞ > 0� ¼ 1�
Y
i

1� P½YiðtÞ > 0�ð Þ;

where P½YiðtÞ > 0� is given by Eq (3).

Model Parameterization
The evolutionary dynamics of the tumor cell population depend on the birth and death rates of
sensitive and resistant cells in each microenvironmental compartment. These rates, in turn,
vary as the concentrations of both drugs change over time. To reflect this variation, we first
define distinct functions describing the individual effects of erlotinib and evofosfamide on
these birth and death rates. The growth kinetics of the cancer cell population during treatment
by each of these drugs are estimated using a combination of pharmacokinetic and experimental
cell viability data. In the following sections, functions pertaining to erlotinib are denoted with
1’s and functions pertaining to evofosfamide are denoted using 2’s. We note that the birth and
death rates used in this parameterization are taken from in vitro data. Thus the specific time
scale and cell population sizes of the model predictions are relevant to the in vitro setting.

Effect of erlotinib and oxygen on growth kinetics. Our recent experimental results have
demonstrated that the response of non-small cell lung cancer tumor cells to erlotinib is depen-
dent on the tumor microenvironment and, in particular, oxygen concentration. In [2], this
dependence was quantified by obtaining live/dead cell counts for isogenic HCC827 sensitive and
resistant (harboring the T790M resistance mutation) cell lines in vitro at varying concentrations
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of oxygen and drug. We then calculated birth and death rates as functions of oxygen and erloti-
nib concentration using an exponential growth model. Please see S1 Text for a detailed descrip-
tion of these functions. For each compartment, by setting the oxygen concentration in these
functions equal to the oxygen concentration in that compartment, we obtain birth and death
rates of sensitive and resistant cells as functions of erlotinib concentration. For example, Fig 2A
shows the net growth rates of sensitive and resistant cells as functions of erlotinib concentration
at a low oxygen concentration (0.33%) as well as a high oxygen concentration (10.5%). These val-
ues correspond to the concentrations of oxygen in the compartment furthest from the blood ves-
sel and closest to the blood vessel, respectively. We observe that overall drug response for both
cell types is more pronounced in high oxygen compartments than in low oxygen compartments,
which actually comprise the tumor bulk. Strikingly, the resistant cells display essentially com-
plete resistance under low oxygen levels but only partial resistance under high oxygen levels,

Fig 2. Net growth rate and plasma concentration functions for erlotinib and evofosfamide. Examples of net growth rates of sensitive and
resistant cells are shown as functions of erlotinib concentration in (A) and evofosfamide concentration in (C). These rates are shown in blue for a low
oxygen concentration (0.33%), corresponding to that which is found in the compartment furthest from the blood vessel, as well as in red for high
oxygen concentration (10.5%), corresponding to that which is found in the compartment closest to the blood vessel. Solid lines represent sensitive cell
growth rates, and dotted lines represent resistant cell growth rates. Examples of plasma concentration functions over time are shown for erlotinib in
(B) and evofosfamide in (D). Given a standard dosing schedule of 150 mg erlotinib administered daily, the red curve in (B) shows the concentration of
erlotinib found in the compartment closest to the nearest blood vessel, and the blue curve in (B) shows the erlotinib concentration found in the
compartment furthest from the nearest blood vessel. (D) shows an example of a periodic function for evofosfamide plasma concentration over time,
given a dosing schedule of 575 mg/m2 administered weekly.

doi:10.1371/journal.pcbi.1005077.g002
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whereas the sensitive cells exhibit only a minor increase in drug tolerance under low-oxygen lev-
els. During the course of treatment with erlotinib, we let the birth and death rates of the sensitive

cell population in compartment i be denoted by l1

X;iðtÞ and m1
X;iðtÞ, and we let l1

Y;iðtÞ and m1
Y;iðtÞ

represent the birth and death rates of the resistant cell population in compartment i.
Analysis of erlotinib pharmacokinetic data.During treatment the concentration of erlotinib

within each compartment fluctuates in time, according to the dosing schedule. Assume erlotinib
is administered in doses ofD1 mg every T1 hours. We first determine how the drug concentration
varies at the blood vessel over the course of treatment using clinical pharmacokinetic data [21,
41, 42]. The plasma concentration after one dose of erlotinib as a function of time is defined as:

r1ðtÞ ¼ ð7D1 þ 365Þe�0:0307t: ð4Þ
The details of this function derivation and fit are outlined in S1 Text. Using this function for
plasma concentration after one dose of erlotinib, we define a function to describe plasma concen-
tration over time for the entire course of treatment with erlotinib. The concentration of erlotinib
at the blood vessel at some time t 2 [nT1, (n + 1)T1) for n = 0, 1, 2, . . . is given by

C1ðtÞ ¼
Xn

i¼0

r1ðt � iT1Þ: ð5Þ

Erlotinib concentration decays spatially away from the vessel exponentially. Since experimental
characterization of erlotinib drug penetration in solid tumors is unavailable currently, this decay
rate is parameterized based on the decay rate of doxorubicin, which has a similar molecular
weight to erlotinib [3]; in [2] we investigated a range of decay rates to account for differences in
cellular uptake rate between these two molecules. Combining this decay rate with C1(t) fully
specifies a new function C1,i(t) for the concentration of erlotinib in each compartment i at time t.
For example, the concentration of erlotinib over time, given a standard dosing schedule of 150
mg erlotinib daily, is plotted for two different compartments (the compartments closest to and
furthest from the nearest blood vessel) in Fig 2B.

By substituting C1,i(t) into these expressions, we obtain functions describing the birth and
death rates of sensitive and resistant cells in compartment i at any time t during treatment:

l1X;iðtÞ ¼ l1X;iðC1;iðtÞÞ;
m1
X;iðtÞ ¼ m1

X;iðC1;iðtÞÞ;
l1Y ;iðtÞ ¼ l1Y ;iðC1;iðtÞÞ;
m1
Y ;iðtÞ ¼ m1

Y;iðC1;iðtÞÞ:

ð6Þ

Effect of evofosfamide and oxygen on growth kinetics. Next we consider the effect of
evofosfamide on the erlotinib-sensitive and erlotinib-resistant cell populations in each micro-
environmental compartment. Note that the mechanisms of action differ greatly between erloti-
nib and evofosfamide. In particular, the mutation conferring resistance to erlotinib occurs in
the EGFR kinase domain which is independent of the action of evofosfamide; thus the presence
of this mutation is not thought to impact evofosfamide response. So we assume the same
response of erlotinib-sensitive and erlotinib-resistant cells to evofosfamide. The net growth
rate dependence on evofosfamide concentration in each microenvironmental compartment is
calculated from cell viability experiments performed in [19]. These functions are plotted in Fig
2C for a low oxygen concentration (0.33%) and a high oxygen concentration (10.5%). Since
evofosfamide releases a cytotoxic agent in hypoxic regions, we assume that its primary effect is
to increase cellular death rate rather than to decrease cellular birth rates. Using this
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assumption, birth and death rates are derived from the net growth rates. For a detailed outline
of the derivation of these birth and death rates, see S1 Text. In the following we denote the
birth and death rates of sensitive cells in compartment i during treatment with evofosfamide

by l2X;iðtÞ and m2
X;iðtÞ, and we let l2Y ;iðtÞ and m2

Y ;iðtÞ represent the birth and death rates of resis-

tant cells in compartment i.
Analysis of evofosfamide pharmacokinetic data. Next we consider how the concentration of

evofosfamide changes during treatment. The plasma concentration after a dose of D2 mg/m2 of
evofosfamide as a function of time is given by:

r2ðtÞ ¼
2cmax

2 ðD2Þt t <
1

2

cmax
2 ðD2Þe�k2ðD2Þðt�1=2Þ t � 1

2
:

ð7Þ

8>><
>>:

Here, the functions describing maximum plasma concentration and decay rate in terms of dose
are given by

cmax
2 ðD2Þ ¼ ð2:008 � 10�7ÞD3

2 � 0:0003276D2
2 þ 0:1753D2 � 12:54;

k2ðD2Þ ¼ ð1:302 � 10�7ÞD3
2 � 0:0002043D2

2 þ 0:08873D2 � 5:829:

The interested reader should consult S1 Text for the details of this derivation, using pharmaco-
kinetic data from a phase 1 clinical trial [43]. Since evofosfamide is very quickly eliminated
from the blood stream (half-life of 0.81 hours [43]), for treatment schedules where doses are
spaced at least 6 hours apart, the plasma concentration over the course of treatment C2(t) can
be approximated as a periodic function. Then for n = 0, 1, 2, . . . and t 2 [nT2, (n + 1)T2), where
T2 is the number of hours between doses and T2 � 6, the concentration of evofosfamide at the
blood vessel at time t is given by

C2ðtÞ ¼ r2ðt � nT2Þ: ð8Þ

Fig 2D shows the plasma concentration function corresponding to a dosing schedule of 575
mg/m2 evofosfamide given every week.

Next we consider how the birth and death rates of sensitive and resistant cells change across
environmental compartments at various oxygen levels. Experimental studies have quantified
the distribution of apoptotic and proliferative markers within tumor tissue after treatment with
evofosfamide and showed relatively uniform expression levels with respect to distance from the
nearest blood vessel [44]. This suggests that cell birth and death are also approximately uni-
form in these compartments until one reaches the more hypoxic regions of the tumor where
apoptosis and DNA damage levels increase. Therefore, unlike with erlotinib, we assume the
concentration of evofosfamide in every compartment of the tumor microenvironment at any
given time is equal to the concentration C2(t) at the blood vessel at that time.

Finally, using C2(t) we obtain birth and death rates of sensitive and resistant cells in each
compartment i at any time t during treatment:

l2X;iðtÞ ¼ lc
X;i;

m2
X;iðtÞ ¼ mc

X;i �
1

2
ln ½viðC2ðtÞÞ�;

l2Y ;iðtÞ ¼ lc
X;i;

m2
Y ;iðtÞ ¼ mc

Y;i �
1

2
ln ½viðC2ðtÞÞ�:

ð9Þ
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In the above equations, the superscript c denotes the control growth rates in the absence of
drug. These are defined in the first section of S1 Text. vi is the function describing cell viability
in terms of evofosfamide concentration, as defined in S1 Text.

Growth kinetics during Combination therapy. Consider a combination dosing regimen
consisting of some number of identical cycles, each of length t1 + t2 hours. During each cycle,
assume the first t1 hours are dedicated to treatment with erlotinib, whereas the last t2 hours
are used for evofosfamide treatment. For the reasons discussed above, given a sufficient
amount of time between the last dose of evofosfamide in one cycle and the first dose of erloti-
nib in the next cycle, we may assume that during the erlotinib treatment phase there is no
residual evofosfamide. Therefore the birth and death rates during the first t1 hours in every
cycle are governed by erlotinib response kinetics. Since erlotinib has a much longer half-life
than evofosfamide, during the last t2 hours of evofosfamide treatment it is possible that some
erlotinib will remain in the blood stream by the beginning of this period. Therefore the cellular
birth and death rates must reflect responses to both drugs. However, since erlotinib is primar-
ily cytostatic while evofosfamide is primarily cytotoxic, we assume that during this period of
time, cellular birth rates reflect the response to erlotinib while cellular death rates reflect the
response to evofosfamide.

Since cycles are identical, functions describing birth and death rates over the course of
treatment are periodic with period t1 + t2. Using the equations in Eqs (6) and (9), we define
birth and death rates of the sensitive and resistant cell populations in compartment i at time
t 2 [0, t1 + t2) by

lX;iðtÞ ¼ l1X;iðC1;iðtÞÞ;

mX;iðtÞ ¼
m1
X;iðC1;iðtÞÞ t 2 ½0; t1Þ

mc
X;i �

1

2
ln ½viðC2ðtÞÞ� t 2 ½t1; t1 þ t2Þ;

8><
>:

lY;iðtÞ ¼ l1Y ;iðC1;iðtÞÞ;

mY;iðtÞ ¼
m1
Y;iðC1;iðtÞÞ t 2 ½0; t1Þ

mc
Y;i �

1

2
ln ½viðC2ðtÞÞ� t 2 ½t1; t1 þ t2Þ:

8><
>:

ð10Þ

These functions are used in Eqs (1), (2) and (3) to predict tumor evolutionary dynamics over
the course of treatment.

Model parameter notations. We have summarized the parameters used in our model in
Table 1. These parameters are listed in order of appearance in the paper. The first column in
this table provides a variable name (if given in the paper) for the parameter and the second col-
umn provides its biological meaning. The third column gives the value of the constant parame-
ters in the model.

Results
Using the stochastic model, we examined the evolutionary dynamics of a tumor undergoing
therapy with a wide variety of dosing regimens using erlotinib and evofosfamide, both sepa-
rately and in combination. We first developed a model for the toxicity constraints governing
both single-agent and combination therapies, based on reported toxicities and side effects
of the two drugs in Phase I/II trials. We then optimized combination treatment strategies in
order to predict which types of dosing strategies could lead to the best treatment outcomes for
patients diagnosed with non-small cell lung cancer.
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Toxicity Constraints
We defined the space of all tolerated single-agent and combination therapy dosing schedules
using clinical trial data on drug tolerability. For each single-agent treatment we defined a toxic-
ity constraint curve representing the relationship between frequency of drug administration
and maximum tolerated dose. In addition, we analyzed the overlapping toxicities between the
two drugs as well as each drug elimination rate to determine the necessary conditions for safely
administering both drugs in succession. This combination therapy constraint, together with

Table 1. Model parameter notations. The parameters used in our model are summarized in the table below,
in order of appearance in the paper. The first column contains the variable name of the parameter, if applica-
ble. The second column summarizes the biological meaning of this parameter. The third column gives the
units as well as values for any parameters which are constant in the model. The subscript i represents quanti-
ties in compartment i.

Name Biological Meaning Value and Units

– oxygen decay rate (spatial) −0.0385

λX,i(t) sensitive cell birth rate hours-1 (see Eq (10))

μX,i(t) sensitive cell death rate hours-1 (see Eq (10))

λY,i(t) resistant cell birth rate hours-1 (see Eq (10))

μY,i(t) resistant cell death rate hours-1 (see Eq (10))

u mutation rate 10−7

M initial number of sensitive cells in tumor 1.6 � 106
Mi initial number of sensitive cells (from compartment weights)

l1

X;iðtÞ sensitive cell birth rate due to erlotinib hours-1 (see Eq (6))

m1
X;iðtÞ sensitive cell death rate due to erlotinib hours-1 (see Eq (6))

l1Y ;iðtÞ resistant cell birth rate due to erlotinib hours-1 (see Eq (6))

m1
Y ;iðtÞ resistant cell death rate due to erlotinib hours-1 (see Eq (6))

D1 dose of erlotinib mg

T1 time between erlotinib doses hours

ρ1(t) plasma concentration after one dose erlotinib ng/mL (see Eq (4))

C1(t) plasma concentration during erlotinib treatment ng/mL (see Eq (5))

– erlotinib decay rate (spatial) −0.0173

C1,i(t) erlotinib concentration in compartment i μM (calculated using C1(t) and i)

l2

X;iðtÞ sensitive cell birth rate due to evofosfamide hours-1 (see Eq (9))

m2
X;iðtÞ sensitive cell death rate due to evofosfamide hours-1 (see Eq (9))

l2Y ;iðtÞ resistant cell birth rate due to evofosfamide hours-1 (see Eq (9))

m2
Y ;iðtÞ resistant cell death rate due to evofosfamide hours-1 (see Eq (9))

D2 dose of evofosfamide mg/m2

T2 time between evofosfamide doses hours

ρ2(t) plasma concentration after one dose evofosfamide μg/mL (see Eq (7))

C2(t) evofosfamide plasma concentration μg/mL (see Eq (8))

lcX;i sensitive cell control birth rate hours-1 (see SI section 1)

mc
X;i sensitive cell control death rate hours-1 (see SI section 1)

lcY ;i resistant cell control birth rate hours-1 (see SI section 1)

mc
Y ;i resistant cell control death rate hours-1 (see SI section 1)

vi(C2) cell viability due to evofosfamide (see SI section 3)

t1 duration of erlotinib treatment hours

t2 duration of evofosfamide treatment hours

doi:10.1371/journal.pcbi.1005077.t001

Hypoxia-Activated Prodrugs in Treatment of Solid Tumors

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005077 August 25, 2016 11 / 25



the toxicity constraint curves corresponding to each of the monotherapies, defines the space of
all tolerated dosing schedules.

Monotherapy toxicity constraints. For each drug, we derive a toxicity constraint curve
such that all points on and below the curve correspond to tolerated dosing schedules, whereas
all points above the curve correspond to dosing schedules which lead to dose-limiting toxici-
ties. These curves are constructed using data from clinical trials on the tolerability and toxicity
of each drug. For each dosing schedule tested in clinical trials, we convert the schedule to an
ordered pair describing the relationship between frequency of drug administration and dose as
follows: the first coordinate is defined to be the number of times the drug is administered in a
3-week period, and the second coordinate is given by the corresponding dose. The location of
each ordered pair relative to the toxicity constraint curve is determined based on whether or
not that dosing schedule was tolerated in clinical trials. Each of these clinically tested dosing
schedules is listed in Table 2, along with its corresponding ordered pair and location relative to
the toxicity constraint curve. Note that in order to handle the discrepancy between clinical trial
data sets for the 200 mg/day erlotinib dosing schedule, we err on the side of caution and assume
this dosing schedule is not tolerated.

Using the data from Table 2, we construct toxicity constraint curves for erlotinib and evo-
fosfamide. For each drug, we define a function to describe the relationship between maximum
tolerated dose and frequency of drug administration such that the criteria in the last two col-
umns of Table 2 are satisfied. The erlotinib toxicity constraint curve is defined as follows,
where n is the number of times erlotinib is administered in a 3-week period and D1 represents
the maximum tolerated erlotinib dose (in mg) corresponding to that particular dosing sched-
ule:

D1ðnÞ ¼
2000 n � 3

2000e�0:1439ðn�3Þ n � 3:

(

The toxicity constraint curve for evofosfamide is given by the following function, where n rep-
resents the number of times evofosfamide is administered in a 3-week period and D2 is the
maximum tolerated dose of evofosfamide (in mg/m2) associated to the dosing schedule defined
by the value of n:

D2ðnÞ ¼
670 n � 1

670e�0:076454ðn�1Þ n � 1:

(

These curves, along with the corresponding data points from Table 2, are shown in Fig 3.
Combination therapy toxicity constraints. To characterize the toxicity constraints rele-

vant for considering alternating dosing combination strategies, we study the minimum length
of time that should pass between the last dose of one drug and the first dose of the other drug.
Since evofosfamide is eliminated from the blood stream in a matter of a few hours, we assume
that as long as six or more hours have elapsed since the last dose of evofosfamide, a patient can
safely take a dose of erlotinib without the worry of compounding side effects from the two
drugs.

Next, we aim to determine the necessary waiting time between a last dose of erlotinib and a
first dose of evofosfamide. Since the half-life of erlotinib is much longer than that of evofosfa-
mide, it may not be reasonable to wait until erlotinib has been completely eliminated from the
blood stream before administering evofosfamide, as waiting this long with so little drug in the
blood stream could allow the cancer cells to rapidly proliferate. Analysis of clinical trial data
for both drugs indicates that erotinib and evofosfamide can both cause skin and mucosal
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toxicities, but there are no other overlapping toxicities reported. When erlotinib is adminis-
tered three days every week, skin toxicities are observable at a dose of 50 mg, but not a dose of
25 mg [45]. Similarly, when erlotinib is given daily, mucosal toxicities are observable at a dose
of 150 mg, but not at 100 mg [45]. Hence we assume that a patient taking 25 mg erlotinib
three days every week experiences neither skin nor mucosal toxicities. Given this dosing
schedule, a maximum plasma concentration of 2.357 μM is achieved, according to the previ-
ously defined erlotinib plasma concentration function. Thus we assume that once erlotinib
plasma concentration has fallen to 2.357 μM or lower, it is safe to administer evofosfamide
since this concentration of erlotinib will not cause any side effects overlapping with those
caused by evofosfamide. Although this is most likely a simplification of the true combination

Table 2. Drug tolerability data from clinical trials. Details regarding erlotinib and evofosfamide dosing schedules tested in clinical trials and how this data
informs the construction of the toxicity constraint curve for each drug. The dose administered is shown in the first column, and the corresponding dosing
schedule is shown in the second column. The third column shows whether or not this particular dosing schedule was tolerated in the clinical trial. The fourth
column shows the ordered pair this dosing schedule corresponds to, and the last column shows the location of this point relative to the toxicity constraint
curve. We assume that any point corresponding to a maximum tolerated dosing schedule tested in a clinical trial can either lie on or below the toxicity con-
straint curve to account for the possibility that a higher dose (which was not tested in the trial) is tolerated.

Erlotinib

Dose (mg) Schedule Tolerated? (n,D1) Location

25 daily for 3 days/week yes [45] (9, 25) below curve

50 daily for 3 days/week yes [45] (9, 50) below curve

50 daily yes [45] (21, 50) below curve

100 daily for 3 days/week yes [45] (9, 100) on/below curve

100 daily yes [41, 45] (21, 100) below curve

100 twice daily no [45] (42, 100) above curve

150 daily yes [41, 45] (21, 150) on/below curve

200 daily yes [41], no [45] (21, 200) above curve

250 daily no [41] (21, 250) above curve

1200 weekly yes [46] (3, 1200) below curve

1600 weekly yes [46] (3, 1600) below curve

2000 weekly yes [46] (3, 2000) on/below curve

Evofosfamide

Dose (mg/m2) Schedule Tolerated? (n,D2) Location

7.5 weekly yes [43] (3, 7.5) below curve

15 weekly yes [43] (3, 15) below curve

30 weekly yes [43] (3, 30) below curve

60 weekly yes [43] (3, 60) below curve

120 weekly yes [43] (3, 120) below curve

120 5 days every 3 weeks yes [47] (5, 120) below curve

170 5 days every 3 weeks yes [47] (5, 170) below curve

240 weekly yes [43] (3, 240) below curve

240 5 days every 3 weeks yes [47] (5, 240) below curve

330 5 days every 3 weeks yes [47] (5, 330) below curve

460 5 days every 3 weeks yes [47] (5, 460) on/below curve

480 weekly yes [43] (3, 480) below curve

550 5 days every 3 weeks no [47] (5, 550) above curve

575 weekly yes [43] (3, 575) on/below curve

670 weekly no [43] (3, 670) above curve

670 once every 3 weeks yes [43] (1, 670) on/below curve

940 once every 3 weeks no [43] (1, 940) above curve

doi:10.1371/journal.pcbi.1005077.t002
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toxicity constraints, we feel it is a realistic assumption based on the single-agent toxicity data
available.

Comparison of combination strategies with standard monotherapy
schedules
To investigate the potential of combination therapies, we first compare treatment outcomes
resulting from several combination therapies with the monotherapy schedules currently in
clinical use. The standard dosing schedule for erlotinib is 150 mg/day. Two evofosfamide dos-
ing schedules have been tested in a clinical trial and designated as maximum tolerated dosing
schedules: 670 mg/m2 given every 3 weeks and 575 mg/m2 given weekly. We consider combi-
nation schedules which are clinically feasible and satisfy the toxicity constraints described in
the previous section. Table 3 provides an overview of all of these dosing schedules. Schedule A
is the standard erlotinib dosing schedule, and schedules B and C are the two evofosfamide dos-
ing schedules. The remaining schedules (D through J) represent all combination therapies
considered in this analysis. Since the toxicity constraints for erlotinib and evofosfamide are for-
mulated in terms of the number of doses administered in a 3-week period, we define these
schedules based on 3-week cycles, and hence only show dosing protocols for the first 21 days
since this pattern repeats every 3 weeks for each schedule. Entries in Table 3 represent doses of
either erlotinib in mg (subscript 1) or evofosfamide in mg/m2 (subscript 2). For a fixed sched-
ule (column) and day (row), a single entry represents the one dose scheduled for that day, and
the lack of an entry indicates that no drugs are administered on that day. Two entries on a sin-
gle day for a given schedule represent the scheduling of two doses on the same day.

For each of the ten dosing schedules in Table 3, the mean tumor size and probability of
resistance over the course of treatment is predicted using the model. The results of these calcu-
lations up to recurrence time (the time at which the cancer cell population reaches its initial
size once again) are plotted in Fig 4A and 4B, respectively. The red curves show the evolution-
ary dynamics of a tumor during treatment with erlotinib alone, the blue curves show the
dynamics during monotherapy with evofosfamide, and the green curves show the evolutionary

Fig 3. Toxicity constraint curves for erlotinib and evofosfamide. These curves depict the maximum tolerated doses of erlotinib (A) and
evofosfamide (B) as functions of frequency of dose administration. The black points are the coordinates from Table 2 corresponding to tolerated
dosing schedules, and the red points are the ordered pairs in Table 2 associated to dosing schedules that were not tolerated in clinical trials. All
points contained in the areas on and below these two curves make up the space of tolerated monotherapy dosing schedules, and all points
contained in the areas above these two curves make up the space of dosing schedules which lead to dose-limiting toxicities. The curves
themselves represent the space of all monotherapy maximum tolerated dosing schedules.

doi:10.1371/journal.pcbi.1005077.g003
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dynamics of the cancer cell population during combination therapy. The label on each curve
indicates which dosing schedule from Table 3 corresponds to those results. The means of the
sensitive and resistant cell populations are shown separately in Fig 4C for one of each type of
dosing schedule: erlotinib alone, evofosfamide alone, and combination therapy. Fig 4D shows
the mean tumor size for the combination schedules, averaged only over those that develop
resistance.

We find that all the combination therapies considered produce treatment outcomes supe-
rior to the standard monotherapy schedules. Fig 4A demonstrates that the combination sched-
ules result in lower average tumor sizes over the course of treatment than those resulting from
either of the monotherapies. Even more significantly, Fig 4B shows that the probability of
developing resistance decreases dramatically with the use of combination therapy. Under
monotherapy with either drug, the probability of resistance eventually reaches one (in agree-
ment with clinical results); this is due to the fact that sensitive cell division is not sufficiently
inhibited by therapy to prevent the emergence of resistance before eradication of the tumor.
However the model predicts that for a significant fraction of patients tumor eradication is pos-
sible under combination therapy.

The breakdown of sensitive and resistant cell populations under therapy is shown in Fig 4C.
Erlotinib monotherapy yields a steady but slow decline of the sensitive cell population, due to
the fact that the tumor oxygen distribution consists primarily of hypoxic regions and erlotinib
does not penetrate well to these areas. On the other hand, treatment with evofosfamide alone
targets hypoxic regions which comprise the majority of the cell population, leading to an initial

Table 3. Dosing schedules considered in the comparison of single-agent and combination therapies. Each lettered column denotes a distinct dosing
schedule containing repeating 3-week cycles defined by the dosing protocols in that column. The entries with subscripts of 1 are doses of erlotinib in mg and
the entries with subscripts of 2 are doses of evofosfamide in mg/m2. For a fixed schedule (column) and day (row), a single entry represents the one dose of
either erlotinib or evofosfamide scheduled for that day. A missing entry for a fixed schedule and day corresponds to a day with neither erlotinib nor evofosfa-
mide. Two entries for a given schedule on a single day represent the scheduling of two doses, either one dose of each drug or two doses of the same drug.

Day A B C D E F G H I J

1 1501 6702 5752 1501 1501 71 71 71 71 1501 1501 1501 1452
2 1501 1501 1501 71 71 71 71 1501 1501 1501 1452
3 1501 1501 1501 71 71 71 71 1501 1501 1501 1452
4 1501 1501 1501 71 71 71 71 1501 1501 1501 1452
5 1501 1501 1501 71 71 71 71 1501 1501 1501 1452
6 1501 1501 71 71 71 71 1501 1501 1501 1452
7 1501 1501 5752 71 71 5752 1501 5752 1501 1452
8 1501 5752 1501 1501 71 71 71 71 1501 1501 1501 1452
9 1501 1501 1501 71 71 71 71 1501 1501 1501 1452
10 1501 1501 1501 71 71 71 71 1501 1501 1501 1452
11 1501 1501 1501 71 71 71 71 1501 1501 1501 1452
12 1501 1501 1501 71 71 71 71 1501 1501 1501 1452
13 1501 1501 71 71 71 71 1501 1501 1501 1452
14 1501 1501 5752 71 71 5752 1501 5752 1501 1452
15 1501 5752 1501 1501 71 71 71 71 1501 1501 1501 1452
16 1501 1501 1501 71 71 71 71 1501 1501 1501 1452
17 1501 1501 1501 71 71 71 71 1501 1501 1501 1452
18 1501 1501 1501 71 71 71 71 1501 1501 1501 1452
19 1501 1501 1501 71 71 71 71 1501 1501 1501 1452
20 1501 71 71 71 1501 1501 1501 1452
21 1501 6702 5752 6702 5752 6702 5752 1501 1452

doi:10.1371/journal.pcbi.1005077.t003
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steep decline of the sensitive cell population. However, due to the toxicity constraint during
the subsequent break in treatment the mean of the sensitive cells quickly surpasses the initial
population size and drives the production of erlotinib-resistant mutants. During combination
therapy, however, the cancer cell population demonstrates an initial steep decline due to evo-
fosfamide, followed by a long-term controlled phase due to the combination of evofosfamide
and erlotinib. This tight control over the sensitive cell population during combination therapy
is possible due to the fact that cancer cells close to blood vessels are receiving lethal concentra-
tions of erlotinib while cancer cells in hypoxic regions are targeted by evofosfamide. Fig 4D
demonstrates that for the patients who develop resistance, the average length of time until
tumor recurrence is longer for all of the combination therapy dosing schedules than it is for
either of the standard monotherapies. For example, it takes patients who develop resistance
40.54% longer to rebound on Schedule I compared with standard erlotinib therapy. However,
the length of time until recurrence as well as the overall probability of resistance varies between

Fig 4. Tumor evolutionary dynamics over time, given a variety of single-agent and combination therapies.Mean tumor size (A) and
probability of resistance (B) are calculated up to recurrence time for a tumor with an initial population of 1.6 � 106 sensitive cells undergoing
treatment with each of the ten dosing schedules defined in Table 3. Each labeled curve corresponds to the dosing schedule with the matching letter
in Table 3. For the sake of comparison, results due to dosing schedules using erlotinib alone are shown in red, results due to dosing schedules
using evofosfamide alone are shown in blue, and results due to combination therapies are shown in green. Mean tumor size for one of each of these
three types of dosing schedules is broken down into the means of sensitive and resistant cells in (C). (D) shows the expected tumor size for
combination strategies, conditioned upon the event of developing resistance.

doi:10.1371/journal.pcbi.1005077.g004
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specific combination schedules; this serves as motivation for identifying the optimal timing
and dosage sequence for combination schedules in the following section. Finally, we note that
the combination strategies were also compared to optimized monotherapies (subject to the tox-
icity constraints developed in the previous section), and we found that no tolerated monother-
apy schedule could outperform combinations in delaying or preventing resistance.

Optimized combination strategies
We next utilize the mathematical model to optimize over the space of tolerated combination
treatment strategies (constrained by toxicity constraints derived in the previous section) to
minimize the probability of developing resistance or maximally delay recurrence.

We consider three distinct classes of combination therapies. Class 1 investigates schedules
created by systematically combining standard erlotinib monotherapy with a variety of evofosfa-
mide dosing schedules. However, the amount of time between administration of different
drugs can play an important role in the degree to which therapy affects the cancer cell popula-
tion. Thus the rationale for defining the other two classes are to investigate schedules decreas-
ing the amount of time after erlotinib but before evofosfamide dosing (Class 2), and after
evofosfamide but before erlotinib dosing (Class 3).

For each class, we start with a base erlotinib dosing schedule complying with the monother-
apy toxicity constraint curve in Fig 3A. Modifications to this schedule are then made to incorpo-
rate n doses of evofosfamide, where n varies from 0 (corresponding to erlotinib monotherapy)
to a maximal value N (corresponding to evofosfamide monotherapy), in a three-week period.
The dose of evofosfamide is determined by the toxicity constraint curve in Fig 3B. Whenever
necessary, the minimum number of erlotinib doses are removed to comply with the combina-
tion toxicity constraint described in the previous section.

To define each combination schedule, we begin by defining a single cycle of length L = 504/n
hours, consisting of the base erlotinib dosing schedule and a single dose of evofosfamide. This is
done using a 4-step process: (i) calculate the evofosfamide dose, (ii) place the evofosfamide dose
at either t = L − 24 or t = L − 6 depending on the class, (iii) fill the remaining time in the cycle
with the base erlotinib dosing schedule, and (iv) remove any necessary erlotinib doses to comply
with the combination toxicity constraint. For a detailed description of how to define a single
cycle of treatment for all combination dosing schedules, see S1 Text. These cycles are then
repeated some finite number of times to form complete dosing schedules. In Class 1, we use the
standard erlotinib monotherapy schedule of 150 mg/day, and the evofosfamide dose in each
cycle is given 24 hours before the start of the next cycle. In Class 2, we use a low-dose erlotinib
schedule of 7 mg twice daily, which allows for a shorter waiting period after erlotinib doses and
before evofosfamide doses. Class 3 uses the same standard erlotinib monotherapy as in Class 1;
however, the evofosfamide dose in each cycle is given 6 hours before the start of the next cycle
instead of 24, which decreases the amount of time after evofosfamide doses and before erlotinib
doses.

Fig 5 shows an example depicting dose schedule definition for one cycle of treatment for all
three optimization classes when n = 3. For the reasons stated in the above paragraph, a cycle in
Class 1 or 3 contains a standard erlotinib dosing schedule, whereas a cycle in Class 2 contains a
low-dose erlotinib schedule. When n = 3, each cycle is one week. So for Classes 1 and 2, the
evofosfamide dose in each cycle is given 24 hours before the end of the week, and for Class 3
the evofosfamide dose in each cycle is given 6 hours before the end of the week. This informa-
tion is all depicted in step 1 (the top row) of Fig 5. In step 2 (the bottom row), the necessary
number of erlotinib doses leading up to the evofosfamide infusion is removed in order to satisfy
the combination toxicity constraint. In Classes 1 and 3, the last dose of erlotinib shown in step
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1 is removed in step 2 to allow the erlotinib concentration to fall sufficiently low before the evo-
fosfamide infusion. Note that in Class 2 the removal of erlotinib is not necessary due to the
already low erlotinib concentration.

Combination schedules outperform monotherapy endpoints.We calculated the means of the
sensitive and resistant cells as well as the probability of resistance, after nine weeks of treatment
for every dosing schedule in each optimization class. Table 4 demonstrates that the tumor
population size under n = 0 or N (i.e. the monotherapies) after 9 weeks is O(1010) for any opti-
mization class or either drug type, whereas Fig 6 demonstrates that each of the combination
therapies considered yields a total population size of O(107) or less. In fact, when comparing
Table 4 to Fig 6 we observe that all of the combination therapies we have investigated yield a
considerable benefit (in terms of tumor population sizes as well as probability of resistance)
over any of the optimal monotherapies in each dosing class. Thus we do not include the end-
points corresponding to monotherapies in Fig 6 due to the large disparity in the sizes of these
results. Furthermore, at the end of treatment with evofosfamide, the tumor primarily consists
of sensitive cells, which agrees with our previous observation that evofosfamide is unable to
control the sensitive cell population without erlotinib. Note that some of the means are unreal-
istically high for an in vivo setting (> 1012), due to the fact that the model is parameterized
using in vitro growth rates.

Means of the sensitive and resistant cell populations for n = 1 . . . N − 1 (true combination
therapies) are plotted in Fig 6A and 6B, respectively. The sums of these means, or the mean
tumor sizes, are plotted in Fig 6C. Note the presence of two local minima in these three figures.

Fig 5. Example depicting dose schedule definition for one cycle of treatment with n = 3 for all optimization classes. This schematic shows the
process by which one cycle of treatment is defined for each optimization class with n = 3. A cycle in Class 1 or 3 contains a standard erlotinib dosing
schedule of 150 mg/day, whereas a cycle in Class 2 contains a low-dose erlotinib schedule of 7 mg twice daily. When n = 3, each cycle has length L = 168
(one week). For Classes 1 and 2, the evofosfamide dose in each cycle is given 24 hours before the end of the week, and for Class 3 the evofosfamide
dose in each cycle is given 6 hours before the end of the week. This is all depicted in step 1. Step 2 shows the removal of erlotinib doses required to
satisfy the combination toxicity constraint. Each of these cycles is then repeated to form the entire dosing schedule.

doi:10.1371/journal.pcbi.1005077.g005
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This phenomenon is explained in S1 Text. The probability of resistance for each dosing sched-
ule is plotted in Fig 6D. All four panels include results for Class 1 in blue, results for Class 2 in
red, and results for Class 3 in yellow. Note that in these figures, every integer on the x-axis cor-
responds to a combination dosing schedule given by the number of evofosfamide doses in a
3-week period, as defined previously.

Minimize treatment break after evofosfamide dosing. Next consider the results due to combi-
nation therapy shown in Fig 6. We note that all three classes lead to similar results, which sug-
gests that our findings regarding the characteristics of optimal combination dosing strategies
are quite robust. Upon closer examination, Fig 6 demonstrates that the tumor population sizes
under the Class 3 schedules are generally less than half the population sizes under Class 2, and
also less than those under Class 1. This suggests that designing schedules that minimize the
amount of time after a dose of evofosfamide and before a dose of erlotinib may lead to better
control of the tumor population. This finding is in agreement with our previous observations
that the tumor population response to evofosfamide is strong but short-lived; hence quickly
intervening in the subsequent population growth phase is important.

As we move along the spectrum of combination densities (horizontal axis) from monother-
apy with erlotinib to monotherapy with evofosfamide, there is a clear region in the interior
(approximately n = 9–17 evofosfamide doses) where the tumor size and sensitive and resistant
population size are minimized. This region also contains the region minimizing the probability
of developing resistance. To investigate this further, Table 5 shows the specfic n which opti-
mizes the given characteristic (means of sensitive, resistant, and total cancer cells as well as
probability of resistance are all minimized). In addition, the bottom row of Table 5 indicates
the best overall dosing schedule among all three classes which minimizes the particular value
that column represents.

Sequential alternating sequences are optimal. From Table 5 we observe that all optimal dos-
ing schedules correspond to values of n between 12 and 17. This implies that combination ther-
apies incorporating more frequent, smaller doses of evofosfamide result in better treatment
outcomes. Even more interestingly, all values of n in Table 5 correspond to the same type of
dosing schedule. Besides n = 12 in Class 2, every other optimal n corresponds to a dosing
schedule which alternates between a single dose of erlotinib and a single dose of evofosfamide.
We call these alternating dosing schedules. The dosing schedule corresponding to n = 12 in

Table 4. Probability of resistance andmeans of sensitive and resistant cells at the end of treatment
with monotherapy.Means of the sensitive cells (E½X�), resistant cells (E½Y �), and total tumor size (E½X þ Y �),
as well as the probability of resistance (P½Y > 0�), are calculated for a tumor with an initial population of 1.6 �
106 sensitive cells at the end of nine weeks of treatment. The dosing schedules depicted here include both
types of monotherapies (erlotinib alone and evofosfamide alone) from all three optimization classes.

Class 1

E½X� E½Y � E½X þ Y � P½Y > 0�
Erlotinib 5 � 105 1010 1010 0.16

Evofosfamide 9 � 1015 7 � 109 9 � 1015 1

Class 2

E½X� E½Y � E½X þ Y � P½Y > 0�
Erlotinib 106 4 � 1010 4 � 1010 0.22

Evofosfamide 3 � 1017 3 � 1011 3 � 1017 1

Class 3

E½X� E½Y � E½X þ Y � P½Y > 0�
Erlotinib 5 � 105 1010 1010 0.16

Evofosfamide 6 � 1018 1013 6 � 1018 1

doi:10.1371/journal.pcbi.1005077.t004
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Class 2 consists of two low doses of erlotinib for every dose of evofosfamide, which is still quite
similar to the alternating dosing schedules. Thus, even though the optimization ranged over a
full spectrum of treatment schedules incorporating variable dose densities for each drug, the
optimal therapies were those that utilized close to an equal number of doses of evofosfamide
and erlotinib in a sequential alternating fashion.

Fig 6. Probability of resistance andmeans of sensitive and resistant cells at the end of treatment with combination therapy. For every
dosing schedule in each optimization class, means of the sensitive cells (A), resistant cells (B), and total tumor size (C), as well as probability of
resistance (D), are calculated according to the model at the end of nine weeks of treatment for a tumor initially consisting of 1.6 � 106 sensitive cells.
The results shown here only include dosing schedules from Class 1 (blue), Class 2 (red), and Class 3 (yellow) which use a combination of both
erlotinib and evofosfamide. Every integer on the x-axis represents a combination dosing schedule defined by the number of evofosfamide doses
administered in three weeks.

doi:10.1371/journal.pcbi.1005077.g006

Table 5. Optimal dosing schedules for each class. For each class, this table shows the values of n for
which the means of sensitive, resistant, and total cancer cells, as well as probability of resistance, are each
minimized. For each column, the bottom row indicates which of the three classes produces the best overall
result for that characteristic of the cancer cell population at the end of treatment.

E½X � E½Y � E½X þ Y � P½Y > 0�
Class 1 n = 13 n = 13 n = 13 n = 13

Class 2 n = 12 n = 12 n = 12 n = 16

Class 3 n = 14 n = 14 n = 14 n = 17

Best Overall Class 3, n = 14 Class 3, n = 14 Class 3, n = 14 Class 2, n = 16

doi:10.1371/journal.pcbi.1005077.t005
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Discussion
In this work we considered an approach to investigate the use of hypoxia-activated prodrugs
(HAPs) to enhance the effectiveness of targeted therapies and in particular, prevent the (usually
inevitable) emergence of drug resistance. To this end we developed a model reflecting the het-
erogeneity of oxygen and drug concentrations throughout a tumor to describe the evolutionary
dynamics of resistance emerging under combination HAP-targeted therapy strategies. The
model was parametrized using experimental and clinical pharmacokinetic data to investigate
potential combinations of the HAP evofosfamide with the targeted tyrosine kinase inhibitor
erlotinib against EGFR-activated non small cell lung cancer. Our model predictions are useful
in comparing the outcomes of a spectrum of dosing schedules in the in vitro setting, and pro-
vide a means to use available experimental data to help inform and guide future clinical studies
in vivo.

We investigated combinations in which doses were not given simultaneously (to avoid tox-
icities) and our model predicted that the complementary action of evofosfamide and erlotinib
results in a combined ability to control the tumor’s evolution and growth. In particular:

1. Combination therapies outperform standard clinical monotherapies. This is most signifi-
cantly realized in reduction of the probability of developing resistance. The time to progres-
sion, for those who develop resistance, is 40.54% longer using an optimal combination
therapy rather than standard monotherapy with erlotinib.

2. Sequentially alternating single doses of each drug leads to minimal tumor burden and maxi-
mal reduction in probability of developing resistance. Deviating significantly from an equal
number of evofosfamide and erlotinib doses leads to an increase in both average tumor bur-
den and the probability of developing resistance.

3. Strategies minimizing the length of time after an evofosfamide dose and before erlotinib
confer further benefits in reduction of tumor burden. The tumor population response to
evofosfamide is strong but short-lived; hence quickly intervening in the subsequent popula-
tion growth phase is important.

These alternating dosing schedules (and other similar dosing schedules) are likely the most
effective because the constant switching between erlotinib and evofosfamide allows the
strengths of these drugs to complement one another. Too much time spent taking erlotinib
without evofosfamide allows the sensitive cell population to remain quite substantial for a long
period of time (due to the lack of targeting the hypoxic regions), which, in turn, leads to a high
probability of a resistance mutation arising. On the other hand, too much time spent on evofos-
famide without erlotinib allows the sensitive cell population to expand drastically since evofos-
famide is unable to control its long-term growth. Alternating between these two drugs allows
each one to provide the necessary control over the cancer cell population the other one is lack-
ing. In addition, it is important to consider the subpopulation of cancer cells each drug acts on.
Erlotinib acts primarily on portions of the tumor microenvironment close to blood vessels,
whereas evofosfamide acts primarily on hypoxic regions that are further from the blood stream.
Because of this, alternating frequently between the two drugs allows the entire population of
cancer cells in the tumor microenvironment to be constantly controlled by the drugs. This
same phenomenon has recently been observed with a different combination therapy utilizing
evofosfamide in neuroblastoma and rhabdomyosarcoma preclinical models [48].

These results demonstrate that incorporating HAPs in combination with targeted therapies
may be an effective tool in preventing resistance, and suggest an alternative use for HAPs. Cur-
rent clinical trials have combined HAPs not with targeted therapies but with chemotherapies
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to control tumor growth. In addition, these trials used dosing strategies involving simultaneous
drug administration rather than sequential administration, as is used in our model. It is diffi-
cult to draw conclusions about the outcome of these clinical trials using our model since this
would require growth rate parametrizations and pharmacokinetics for the chemotherapies
utilized in the combination treatment (gemcitabine and doxorubicin) in different cell types
(pancreatic cancers and soft tissue sarcomas). However, we did observe that the reduction in
probability of developing resistance is dependent on the exact timing and sequence of the com-
bination therapy. This highlights the importance of using mathematical modeling to predict
treatment outcomes and inform decisions regarding schedules to be tested in clinical trials.

In addition to its promising clinical implications, this work provides insight into the biologi-
cal factors which can cause a treatment strategy to either succeed or fail. Specifically, analysis
and comparison of the tumor evolutionary dynamics during single-agent and combination
therapy suggests that erlotinib and evofosfamide may be effective together because they target
separate subpopulations within the tumor microenvironment and on much different scales of
time with differing degrees of strength. This theory can be generalized to predict which types of
drugs have the potential to be strong partners in combination therapy; specifically, this meth-
odology can be applied to determine the biological and pharmacokinetic parameters that may
lead to treatment success or failure with monotherapy or combination therapy. These findings
highlight the importance of designing combination therapies with drugs whose strengths com-
plement each other in order to maximize the therapeutic benefits. Another important implica-
tion of this work, and something to consider when designing combination dosing regimens
using two or more drugs, is the role that variability in timing between the dosing of different
drugs plays in treatment outcomes.

This work gave rise to multiple promising improvements that could be made in the treat-
ment of non-small cell lung cancer. However, the dosing strategies proposed here need to be
tested in vivo to verify these model predictions. In addition, this work provided a novel frame-
work for defining drug toxicity constraints, which is sufficiently general to be extended to any
drug or combination of drugs. One planned extension of this work is to further study the impli-
cations of cellular migration within the microenvironment on the evolutionary dynamics of
the tumor. An initial investigation into this impact is shown in Section 7 of S1 Text. For this
study, experimental work investigating the details of the migration patterns and quantification
of migration rates in this system are necessary. Other extensions of this work include consider-
ing the possibility of pre-existing resistance as well as modeling the bystander effect, which
refers to the idea that evofosfamide, once activated in a hypoxic region of the tumor, diffuses
outward and affects cancer cells in normoxic regions as well [16, 19]. In addition, it would be
useful to explore the effect of HAPs other than evofosfamide on the probability of developing
resistance in order to determine whether the results presented here are specific to evofosfamide
or rather are a general phenomenon of HAPs used in combination with tyrosine kinase inhibi-
tors. Since evofosfamide is hypoxia-activated and birth and death rates due to erlotinib are
microenvironment-dependent, there is good reason to suspect that alterations to the tumor
microenvironment would have a large impact on treatment outcomes with both single-agent
and combination therapy.

Supporting Information
S1 Text. Additional details. Includes additional details pertaining to some derivations, defini-
tions, and results in the manuscript. Specifically, this includes details regarding the erlotinib
and evofosfamide plasma concentration function fits. Also included is the derivation of birth
and death rates in response to evofosfamide. The definition of a treatment cycle for the
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combination dosing strategies is given in full detail here. Additional analysis of the optimiza-
tion results is also provided. A section evaluating the impact of incorporating migration
between compartments is included.
(PDF)
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