
CRISPR Systems for COVID-19 Diagnosis
Hossein Rahimi, Marziyeh Salehiabar, Murat Barsbay, Mohammadreza Ghaffarlou, Taras Kavetskyy,
Ali Sharafi, Soodabeh Davaran, Subhash C. Chauhan, Hossein Danafar,* Saeed Kaboli,*
Hamed Nosrati,* Murali M. Yallapu,* and Joaõ Conde*
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ABSTRACT: The emergence of the new coronavirus 2019 (COVID-19) was first seen in December
2019, which has spread rapidly and become a global pandemic. The number of cases of COVID-19
and its associated mortality have raised serious concerns worldwide. Early diagnosis of viral infection
undoubtedly allows rapid intervention, disease management, and substantial control of the rapid
spread of the disease. Currently, the standard approach for COVID-19 diagnosis globally is the RT-
qPCR test; however, the limited access to kits and associated reagents, the need for specialized lab
equipment, and the need for highly skilled personnel has led to a detection slowdown. Recently, the
development of clustered regularly interspaced short palindromic repeats (CRISPR)-based diagnostic
systems has reshaped molecular diagnosis. The benefits of the CRISPR system such as speed,
precision, specificity, strength, efficiency, and versatility have inspired researchers to develop CRISPR-
based diagnostic and therapeutic methods. With the global COVID-19 outbreak, different groups
have begun to design and develop diagnostic and therapeutic programs based on the efficient CRISPR
system. CRISPR-based COVID-19 diagnostic systems have advantages such as a high detection speed
(i.e., 30 min from raw sample to reach a result), high sensitivity and precision, portability, and no need for specialized laboratory
equipment. Here, we review contemporary studies on the detection of COVID-19 based on the CRISPR system.
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The emergence of severe acute respiratory syndrome
coronavirus-2 (SARS-CoV-2), also known as the new

coronavirus 2019 (COVID-19), was first seen in Wuhan,
China in December 2019. This devastating disease has caused
a huge number of deaths worldwide, and the death toll is
increasing by the day. Coronaviruses, a large human and
animal pathogen, are a group of enveloped viruses and have an
RNA genome. Because of the crown-like structure on their
surface, these viruses are called coronaviruses (in Latin,
“corona” means “halo” or “crown”). This group of viruses
was first identified in chickens1 and humans2,3 in the 1930s and
1960s, respectively. These viruses constitute the largest group
in the order of the Nidovirales. Coronaviridae, Arteriviridae,
Mesoniviridae, and Roniviridae are the families of the
Nidovirales. The family of Coronaviridae is classified into
two groups, Coronavirinae and Torovirinae. The Coronavir-
inae subfamily is composed of alpha, beta, gamma, and delta
groups which infect humans by alpha (229E, NL63) and beta
(OC43, HKU1) groups. Middle east respiratory syndrome
(MERS) and severe acute respiratory syndrome (SARS)
coronaviruses are other human beta-group coronaviruses.4,5

Coronaviruses in humans can cause infections in respiratory,
gastrointestinal, and liver systems, leading to both mild
symptoms such as colds and fatalities such as MERS.
Moreover, the symptoms caused by these viruses are different
in other animal species; for example, they cause infections in

the upper respiratory tract of chickens, while they induce
diarrhea in cows and pigs.6−8 Animal-to-human transmission of
the virus and vice versa was observed with the outbreak of
acute respiratory syndrome (ARS) and MERS in 2002/2003
and 2012, respectively.9,10

The positive-sense RNA genome of coronaviruses is 26 to
32 kb in size and has a variable number of open reading frames
(ORFs) ranging from 6 to 11. The first ORF, which encodes
16 nonstructural proteins, represents approximately 67% of the
entire genome, while accessory and structural proteins are
encoded by other ORFs.9,11 Structural proteins encoded by the
genome of these viruses include spike (S), nucleocapsid
protein (N), membrane (M), small envelope protein (E), and
hemagglutinin-esterase glycoprotein (HE; Figure 1I).12 S
proteins are virus-binding mediators to host receptors through
domains that bind to the receptor.7 M protein, with an
approximate molecular weight of 25−30 kDa, is the virion’s
most abundant structural protein and is involved in defining
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the shape of the viral envelope.13 The M and E proteins form a
viral envelope together and interact to produce and release
viral particles.4,14 N protein is the only protein that binds to
the RNA genome of the virus and triggering nucleocapsid
formation.15

Early diagnosis of a viral infection may allow for rapid
intervention, which can effectively minimize the risk of
spreading the disease to others. PCR is one of the most
common techniques used to detect viral nucleic acids and, due
to its high sensitivity and accuracy, is used as the gold standard
technique for diagnosing viral infections. The quantitative PCR
(qPCR) test can be used to diagnose COVID-19, but limited
access to qPCR equipment and materials may slow down the
diagnosis process.16−19 Loop-mediated isothermal amplifica-
tion (LAMP) and recombinase polymerase amplification
(RPA) are approaches that have emerged as effective and
appealing alternatives to PCR due to their cheapness, high
speed, and versatility.20,21 The isothermal amplification feature,
which is performed at a constant temperature and does not
require thermal cycling, is one of the key aspects of RPA and
LAMP and can also be performed with minimal tools and
equipment.22 CRISPR, discovered in the 1980s and eventually
becoming a tool for genome editing, is an adaptive immune
system in prokaryotic organisms such as bacteria and archaea
that protects the organism against foreign and invasive genetic
elements such as viruses and plasmids. This system, which has

become currently a powerful genome editing system, relies on
RNA-guided activity of Cas proteins.23 In addition to genome
editing, CRISPR/Cas technology has recently gained a lot of
interest in the area of nucleic acid detection owing to its
unique features. To date, different variants of the CRISPR
systems have been used to design and develop simple, portable,
precise, efficient, rapid, and inexpensive molecular detection
methods. In general, there are two major parts in the CRISPR
system: Cas endonuclease (to break the target genomic site)
and guide RNA (to identify and direct Cas endonuclease to the
target region).24 Successful detection of nucleic acids by the
dead Cas9 (dCas9) system (is a mutant form of Cas9 whose
endonuclease activity is removed through point mutations in
its endonuclease domains) has been reported several
times.25,26 Cas12 and Cas13 endonucleases have collateral
cleavage activities that can be used to detect nucleic acid. For
example, cutting a fluorescent reporter using the collateral
cleavage activity of these endonucleases can produce a
fluorescent signal that results in diagnosis. In addition, Cas9
endonuclease specific cleavage activities have been used to
establish highly sensitive and accurate diagnostic tools for
DNA detection. RPA and LAMP isothermal amplification
approaches are typically used in CRISPR-based diagnostic
works to amplify target genomic sequences.27 However, in an
attempt, a Cas13a-based diagnostic system was developed to

Figure 1. Schematic representation of various diagnosis tools for SARS-CoV-2. I. Types of methods used to diagnose SARS-CoV-2 and II. SARS-
CoV-2 diagnostic methods results’ readout ways.
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detect SARS-CoV-2 that does not require preamplification of
the virus genome.28

■ DETECTION OF SARS-COV-2 BASED ON
MOLECULAR TECHNIQUES

Efficient detection of foreign genomes and pathogens in
clinical specimens, as well as changes in their sequences, are
critical to the diagnosis and management of specific diseases.
Early and efficient detection of SARS-CoV-2 was first
established by analysis of pathogenic sequences in respiratory
tract samples, which is important to limit transmission of the
virus and maintain disease control.29 A variety of methods
including RT-qPCR, sequencing-based methods, nanotechnol-
ogy-based assays, immunological assays, and the CRISPR/Cas
system have been used to diagnose SARS-CoV-2 (Figure 1I)
and along with appropriate readout (Figure 1II) were shown in
Figure 1. The medical nanotechnology revolution has opened a
window of hope for the treatment and diagnosis of a wide
range of diseases, especially cancer and viral diseases. Owing to
the unique properties of nanomaterials and the effectiveness of
medical nanotechnology against various infectious diseases
such as HIV-1, influenza virus, HBV, and respiratory syncytial
virus, researchers are urged to develop nanotechnology-based
tools for SARS-CoV-2 disease management.30,31 Rapid and
specific diagnosis of SARS-CoV-2, targeted delivery of antiviral
agents to different parts of the body, and preparation of
nanobased disinfectants are some of the applications of
nanotechnology in the management of SARS-CoV-2 disease.32

Immunological tests can detect the presence of COVID-19
antivirus antibodies or viral antigens (viral structural proteins).
Enzyme linked immunosorbent assays (ELISAs), chemilumi-
nescence immunoassays (CLIAs), and lateral flow immuno-
assays (LFIAs) are immunological methods that have recently
been used to diagnose SARS-CoV-2.33 While diagnostic tests
based on nucleic acid amplification are suitable for early stage
diagnosis of viral diseases, immunological diagnostic tests allow
the diagnosis of a past or ongoing infection, which provides a
better understanding of the mechanism and dynamics of
disease transmission.34 In the diagnosis of COVID-19,
immunological diagnostic tests mainly target the structural
proteins of the virus. Since the S protein is the major
transmembrane protein of SARS-CoV-2 and is highly
immunogenic, this protein may be a very suitable option as
an antigen in the diagnosis of SARS-Cov-2.34,35 In addition,
the receptor-binding domain (RBD) located along the
structural S protein is a target for the detection of COVID-
19-specific antibodies.34

One of the main ways to diagnose COVID-19 infection is to
identify the SARS-CoV-2 RNA genome.36,37 While molecular
diagnostics can be developed rapidly and provide very high
precision and sensitivity and also quantitative detection of
SARS-CoV-2 nucleic acid, it still faces issues such as high cost,
difficulty, and the need for highly skilled technicians and
equipped centers. For example, an RT-PCR kit can cost more
than $100 U.S., and sample analysis can take about 4 to 6 h,
and more than 24 h from raw sample to the final result may be
required. Information on the amount of detectable viral titer in
the respiratory tract at various stages of SARS-CoV-2 infection
is still expanding. The kinetics of viral load can also differ from
person to person and depend on various factors such as the
patient’s epidemiological history, immune response, and effects
of medication and treatment.38,39 Hence, one of the most

important limiting factors for molecular diagnosis is detection
time.40,41

There have been significant advances in the molecular
detection of COVID-19 since its outbreak. Although testing
capability cannot currently address the global need for rapid
COVID-19 diagnosis, fundamental issues such as false-negative
results and the development of faster, highly sensitive, and
affordable diagnostic procedures remain to be tackled. Delays
in patient care, as well as an increased risk of asymptomatic
spread to others, are concerns related to the false-negative
results in SARS-CoV-2 patients. False negative results can be
caused by factors such as sampling and sample analysis.42

Depending on the time of infection and the place where the
sample was taken, the viral load in a sample can be vary. For
instance, following the appearance of illness, the viral load
varies depending on the timing of collection between the nasal
and oral swabs.43 During the progression of the disease, the
variation in viral load at different locations makes sampling
more challenging and allows the production of false-negative
results. Some other factors, such as mistakes in the collection
of clinical samples, degradation of RNA, inefficient extraction
of RNA, and insufficient purification of RNA, may contribute
to false negative results. Positive RT-PCR test results
demonstrate SARS-CoV-2infection, but negative RT-PCR
results do not reject SARS-CoV-2 infection. Molecular
diagnosis should be used in combination with other diagnostic
information such as patient medical history, clinical observa-
tions, and epidemiological surveillance information to ensure
the diagnosis of the disease.42 The most common methods
used in the clinic to detect foreign gene material include qPCR,
next generation sequencing (NGS), and fluorescence in situ
hybridization (FISH), which have changed the landscape of
molecular detection. Despite fundamental improvements, the
use of such methods still presents challenges. While the qPCR
test is the primary tool utilized in clinical laboratories to
recognize the causative agent of the CoVID-19 (e.g., SARS-
CoV-2), it may face problems such as the need for highly
trained technicians, advanced thermocyclers, and well-
equipped laboratories.44−46

One of the valuable molecular tools used to study the
function and regulation of genes, and specifically viral
detection, is the in situ hybridization (ISH) technique. This
technique uses hybridization probes (made of single- or
double-stranded nucleic acids or synthetic oligonucleotides) to
detect and localize a specific nucleic acid in a tissue sample or
cell. By attaching a reporter to the complementary strand of
the desired nucleic acid in a known labeling method,
hybridization probes are produced. If fluorescence is used in
the ISH technique, this technique is called FISH.47,48 The
FISH approach also offers a single-cell system to analyze the
number of copies, replication, and gene rearrangement that
may influence targeted therapy. The requirement for long-term
high-temperature treatment to hybridize the FISH probe is
time-consuming, as well as cell morphology weakening, which
contributes to the possibility of missing spatial structure
information. Additionally, toxicity caused by formamide used
for denaturation of double-stranded DNA is another obstacle
in the FISH procedure.49 This technique also faces challenges
such as false positive and negative results, incomplete
hybridization, processing problems, nonspecific binding, and
photobleaching.48

The massively parallel sequencing technology, known as
next generation sequencing (NGS), has revolutionized
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molecular biology. The benefits of NGS technology including
ultrahigh throughput, speed, and scalability have allowed
researchers to conduct a broad variety of biological studies that
were not feasible until this technology was developed. This
technology can detect all kinds of nucleic acid sequences in a
single sample, so that NGS can recognize all known viruses as
well as new ones that have not yet been detected.50

Nevertheless, the widespread use of NGS is constrained by
concerns such as insufficient target enrichment, which raises
costs as well as reduces sensitivity.51,52 In reality, the biggest
obstacles to converting NGS technology into a routine
diagnostic test are the high cost and high processing time of
achieving the final result from the raw sample. Compared to
RT-PCR, NGS technology has a high cost and high
turnaround time. Therefore, the difficulty and time-consuming
nature of NGS-related methods restricts the usage of NGS
when rapid results are required.53

■ CRISPR/CAS-BASED SYSTEMS FOR COVID-19
DETECTION

The CRISPR system is a simple, efficient, and reliable system
that enables researchers to make desired changes in genomic
sequences that may alter gene function. This system, which
functions like a pair of molecular scissors and can cut DNA
strands, is a family of DNA sequences found in prokaryotes
such as bacteria and archaea.54−57 Generally, the CRISPR
system is divided into two main classes and six types.
The first class includes type I, III, and IV systems, while the

second class includes type II, V, and VI systems. In class I, type
I Cas3 nuclease is used to cut DNA, and type III Cas10
nuclease can cut RNA. In class II, type II systems use Cas9
endonuclease to cut DNA, and type V uses Cas12 to cut DNA.
In addition, Cas13 nuclease is used in class II, type VI systems
to make cuts in target RNA. The CRISPR system functions as
the bacteria and archaea’s adaptive immune system against
foreign elements including viruses or plasmids.58−62 Class II
CRISPR systems are used widely for genomic manipulation
and infectious disease diagnosis. For example, CRISPR/
Cas12a, CRISPR/Cas13a, and CRISPR/Cas13b systems have
been used in recent years to develop rapid and sensitive
diagnostic methods for human pathogen (bacteria and viruses)
detection.63−67 A multiplex diagnostic system developed by
Kellner et al.68 recently incorporated nucleic acid preamplifi-
cation with CRISPR/Cas enzymology to accurately identify
the targeted nucleic acid sequences. The developed system,
called specific high-sensitivity enzymatic reporter unlocking
(SHERLOCK; Figure 2), can detect clinical sample nucleic
acid sequences in a portable and ultrasensitive manner.68 DNA
endonuclease-targeted CRISPR trans reporter (DETECTR;
Figure 2) is another CRISPR-based diagnostic system
(CRISPR/Cas12) that detects viral infections rapidly (∼30
min), inexpensively, and accurately.60 The two aforementioned
diagnostic systems (SHERLOCK and DETECTR), which
have high specificity and sensitivity, are comparable to
conventional diagnostic methods such as PCR but do not
require expensive advanced equipment.60,68 To the best of our
knowledge, DETECTR and SHERLOCK diagnostic kits for
SARS-CoV-2 detection have been approved and are
commercially available.
PCR and other conventional approaches for amplifying

DNA or RNA sequences for recognition are reliable but still
demand nonportable tools that prevent their spread in the area
of diagnosis.69,70 Thus, in the near future, CRISPR based

detection systems may become widely available and replace
conventional methods such as PCR. The application of
CRISPR-based diagnosis systems in the molecular diagnostic
field has grown, and a variety of CRISPR-based diagnostic
tools for diagnosing infectious and noninfectious diseases have
been created so far. Here, we review all the studies conducted
to diagnose SARS-CoV-2 infection using the CRISPR/Cas
system (Cas12, Cas13, Cas9, and Cas3; Figure 3).71−74

Table 1 summarizes studies on the development and design
of CRISPR-based diagnostic systems for rapid and sensitive
diagnosis of COVID-19.

■ DIAGNOSIS OF SARS-COV-2 BASED ON
CRISPR/CAS12

Broughton et al.16 developed a CRISPR/Cas12a-based
precision technique, called SARS-CoV-2 DNA endonuclease-
targeted CRISPR trans reporter (DETECTR), which allows
for the simple and rapid diagnosis of SARS-CoV-2 RNA
extracted from patient respiratory tract swab samples in less
than 40 min. Actually, the developed method is the product of
combining the CRISPR/Cas12a DETECTR system with
isothermal amplification that simultaneously performs reverse
transcription and isothermal amplification by loop-mediated
replication (RT-LAMP) for purified RNA from nasophar-
yngeal or oropharyngeal swabs. Cas12a then detects
predetermined viral sequences, whereupon the reporter
molecule’s cleavage confirms the presence of a virus.
Eliminating the need for thermocycling and isothermal signal
amplification offers significant benefits compared to qRT-PCR,
such as fast turnaround time, target specificity for single
nucleotides, integration with usable and user-friendly reporting
formats like lateral flow strips, and no requirement for
sophisticated laboratory systems. The established system was
validated with reference samples and also United States patient
samples including 36 patients with COVID-19 and 42 patients
with other respiratory viral infections. This system is a high-
speed and visual alternative to rRT-PCR for detecting SARS-

Figure 2. Schematic illustration of SHERLOCK and DETECTR
workflow and the main mechanisms involved in CRISPR-based
diagnosis systems.
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CoV-2 with 95% and 100% agreement for positive and
negative prediction, respectively.16

The all-in-one dual CRISPR-Cas12a (AIOD-CRISPR)
system was developed by Ding et al.75 for faster, highly
sensitive, highly specific and optical-based nucleic acid
detection. This method uses dual crRNAs to efficiently detect
the target genome sequence. The AIOD-CRISPR system
integrates all the components needed for target nucleic acid
amplification as well as CRISPR system-based detection into a
single reaction that resulted in deletion of the need for separate
amplification and transfer of amplified product. The AIOD-
CRISPR system was designed to be used for the detection of
SARS-CoV-2 and HIV-1. As both viral agents are retroviruses,
the capability of the AIOD-CRISPR system to detect each of
their nucleic acid states (DNA and RNA) was assessed and
their nucleic acids were detected successfully.75

Among the various classes of CRISPR systems, the
CRISPR/Cas12 system, an RNA-guided DNase, causes
single-stranded DNA cleavage after identifying the target
region. The CRISPR/Cas12 ability to create collateral cleavage
in single-stranded DNA can be enjoyed to destroy single-
stranded reporter molecules that generate fluorescent signals.65

Thus, CRISPR-Cas12-related approaches can be used in real
time as an in situ diagnostic tool for diagnosing SARS-CoV-2
infection. The CRISPR/Cas12a system was implemented in
another attempt to identify the synthetic SARS-CoV-2 nucleic
acid sequences reliably, sensitively, and in a rapid manner.88

Synthetic sequences of the RdRp, ORF1b, and ORF1ab genes
were considered as references in this work. The lack of actual

samples of SARS-CoV-2 cases in this study may be criticized,
but no real samples were used in this study due to the lack of
reports of patients suffering from SARS-CoV-2 disease in the
study area (South America). To mimic real samples, synthetic
SARS-CoV-2 nucleic acid sequences were added to a healthy
person’s saliva sample. The use of saliva to diagnose SARS-
CoV-2 is a reasonable approach as it is completely noninvasive
and sampling is quick and easy. It was found that the CRISPR
diagnostic system used in this research is not inactivated in
saliva, so it is a promising tool for accurate and fast identify of
real SARS-CoV-2 samples.76

Wang et al.77 developed a rapid and accurate CRISPR/
Cas12a-based system that allows reading with the naked eye
(CRISPR/Cas12a-NER) to boost and accelerate the detection
of the SARS-COV-2 Genome.77 CRISPR/Cas12a-NER can
rapidly, reliably, and sensitively detect at least 10 copies of a
viral gene in 40 min without the demand for specialized
instruments. The designed system consists of Cas12 protein,
SARS-COV-2-specific crRNAs, and a single-stranded DNA
molecule as a reporter (labeled with a green fluorescent off−on
molecule). Where the genome of SARS-COV-2 is present in
the sample and detected by the designed diagnostic system, the
reporter molecule is cleaved by the Cas12 protein, resulting in
green fluorescent light visible to the naked eye at 458 nm.77

Inexpensive, highly sensitive, precise, high-throughput, and
highly effective methods are needed to control the disease and
recognize even asymptomatic patients in any region. Studies
have shown that, although SARS-COV-2 patients have no signs
or presymptoms, they are strongly contagious and can infect

Figure 3. Schematic illustration of the most commonly used CRISPR systems, CRISPR-Cas (Cas3, Cas9, Cas12, and Cas13), for detection of
SARS-CoV-2.

ACS Sensors pubs.acs.org/acssensors Review

https://dx.doi.org/10.1021/acssensors.0c02312
ACS Sens. XXXX, XXX, XXX−XXX

E

https://pubs.acs.org/doi/10.1021/acssensors.0c02312?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acssensors.0c02312?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acssensors.0c02312?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acssensors.0c02312?fig=fig3&ref=pdf
pubs.acs.org/acssensors?ref=pdf
https://dx.doi.org/10.1021/acssensors.0c02312?ref=pdf


T
ab
le

1.
R
ap
id

an
d
Se
ns
it
iv
e
D
et
ec
ti
on

of
C
O
V
ID

-1
9
w
it
h
C
R
IS
P
R
-B
as
ed

D
ia
gn
os
ti
c
P
la
tf
or
m
s

sy
st
em

C
as

ty
pe

te
st
tim

in
g

ad
va
nt
ag
es

sh
or
tc
om

in
gs

re
f

D
ET

EC
T
R

C
as
12
a

30
−
40

m
in

ac
cu
ra
te
,e
as
y-
to
-im

pl
em

en
t,
ra
pi
d
tu
rn
ar
ou
nd

tim
e,
no

ne
ed

fo
r
th
er
m
oc
yc
lin
g,
si
ng
le
nu
cl
eo
tid

e
ta
rg
et

sp
ec
ifi
ci
ty
,a
nd

no
ne
ed

fo
r
co
m
pl
ex

la
bo
ra
to
ry

in
fr
as
tr
uc
tu
re

ne
ed
s
fo
r
nu
cl
ei
c
ac
id

ex
tr
ac
tio

n,
lim

ite
d
ac
ce
ss

to
ex
tr
ac
tio

n,
ki
ts
an
d
re
ag
en
ts
,n

ee
ds

fo
r
pe
rs
on
al

pr
ot
ec
tiv
e
eq
ui
pm

en
t

16

A
IO

D
-

C
R
IS
PR

C
as
12
a

40
m
in

ra
pi
d,

hi
gh
ly
se
ns
iti
ve
,h

ig
hl
y
sp
ec
ifi
c,
on
e-
po
t
re
ac
tio

n,
no

ne
ed

fo
r
se
pa
ra
te

pr
ea
m
pl
ifi
ca
tio

n
an
d
am

pl
ifi
ed

pr
od
uc
t

tr
an
sf
er
ri
ng
,v
is
ib
ili
ty
of

re
su
lts

w
ith

th
e
na
ke
d
ey
e,
nu
cl
ei
c
ac
id
de
te
ct
io
n
in
bo
th

D
N
A
an
d
R
N
A
st
at
es
,p
er
fo
rm

ab
le
in

on
e-
st
ep
,s
in
gl
e-
m
ol
ec
ul
e
se
ns
iti
ve
,a
nd

ro
bu
st

ne
ed
s
fo
r
nu
cl
ei
c
ac
id

ex
tr
ac
tio

n,
lim

ite
d
ac
ce
ss

to
ex
tr
ac
tio

n,
ki
ts
an
d
re
ag
en
ts

75

C
R
IS
PR

-
C
as
12

ba
se
d

C
as
12
a

Le
ss

th
an

60
m
in

po
rt
ab
le
,s
en
si
tiv
e,
ra
pi
d,

an
d
lo
w
co
st

pa
tie
nt

sa
m
pl
es

ar
e
no
t
us
ed

an
d
re
qu
ir
es

ce
rt
ai
n

ki
ts

76

C
R
IS
PR

/
C
as
12
a-
N
ER

C
as
12
a

45
m
in

po
rt
ab
le
,s
im
pl
e,
se
ns
iti
ve
,s
pe
ci
fi
c,
no

ne
ed

fo
r
sp
ec
ia
l
in
st
ru
m
en
t,
ra
pi
d,

an
d
vi
si
bi
lit
y
of

re
su
lts

w
ith

th
e
na
ke
d
ey
e

ne
ed
s
fo
r
nu
cl
ei
c
ac
id

ex
tr
ac
tio

n,
lim

ite
d
ac
ce
ss

to
ex
tr
ac
tio

n,
ki
ts
an
d
re
ag
en
ts

77

C
R
IS
PR

-F
D
S

C
as
12
a

∼
50

m
in

se
ns
iti
ve
,r
ob
us
t,
ra
pi
d,

an
d
ca
n
be

do
ne

w
ith

av
ai
la
bl
e
eq
ui
pm

en
t

ne
ed
s
fo
r
nu
cl
ei
c
ac
id

ex
tr
ac
tio

n,
no
t
su
ita
bl
e
fo
r

qu
an
tif
yi
ng

vi
ra
l
lo
ad

78

SH
IN

E
C
as
13
a

50
m
in

se
ns
iti
ve
,s
pe
ci
fi
c,
si
ng
le
-s
te
p
re
ac
tio

n,
ca
n
be

us
ed

ou
ts
id
e
of

ho
sp
ita
ls
an
d
la
bo
ra
to
ri
es
,a
nd

no
ne
ed

fo
r
nu
cl
ei
c
ac
id

ex
tr
ac
tio

n
79

C
O
N
A
N

C
as
3

40
m
in

ra
pi
d,

se
ns
iti
ve
,l
ow

-c
os
t,
in
st
ru
m
en
t-
fr
ee
,a
nd

si
ng
le
-b
as
e-
pa
ir
di
sc
ri
m
in
at
io
n

ne
ed
s
fo
r
nu
cl
ei
c
ac
id

ex
tr
ac
tio

n,
lim

ite
d
ac
ce
ss

to
ex
tr
ac
tio

n,
ki
ts
an
d
re
ag
en
ts

80

iS
C
A
N

C
as
12
a

1
h

se
ns
iti
ve
,s
pe
ci
fi
c,
effi

ci
en
t,
ra
pi
d,

us
er
-fr
ie
nd
ly
,a
cc
ur
at
e,
fi
el
d-
de
pl
oy
ab
le
,a
nd

su
ita
bl
e
fo
r
la
rg
e-
sc
al
e

re
qu
ir
es

nu
cl
ei
c
ac
id

ex
tr
ac
tio

n,
lim

ite
d
ac
ce
ss

to
ex
tr
ac
tio

n,
ki
ts
an
d
re
ag
en
ts

81

C
A
Sd
et
ec

C
as
12
b

1
h

no
cr
os
s-
re
ac
tiv
ity
,r
ed
uc
ed

fa
ls
e
po
si
tiv
e
ra
te
,a
nd

ac
cu
ra
cy

ne
ed
s
fo
r
nu
cl
ei
c
ac
id

ex
tr
ac
tio

n,
lim

ite
d
ac
ce
ss

to
ex
tr
ac
tio

n,
ki
ts
an
d
re
ag
en
ts

82

V
aN

G
ua
rd

C
as
12
a

30
m
in

ro
bu
st
,r
ap
id
,s
en
si
tiv
e,
aff
or
da
bl
e,
sp
ec
ifi
c

83
C
R
ES

T
C
as
13
a

∼
2
h

sc
al
ab
le
,l
ow

-c
os
t,
no

ne
ed

fo
r
sp
ec
ia
liz
ed

in
st
ru
m
en
ta
tio

n,
hi
gh
ly
se
ns
iti
ve
,e
as
y
to

de
pl
oy

re
qu
ir
es

nu
cl
ei
c
ac
id

ex
tr
ac
tio

n,
lim

ite
d
ac
ce
ss

to
ex
tr
ac
tio

n,
ki
ts
an
d
re
ag
en
ts

84

ST
O
PC

ov
id

C
as
12
b

1
h

si
m
pl
e,
su
ita
bl
e
fo
r
po
in
t-
of
-c
ar
e
(P
O
C
)
an
al
ys
is
,s
en
si
tiv
e,
lo
w
-c
os
t,
av
ai
la
bi
lit
y
of

te
st
co
m
po
ne
nt
s,
no

ne
ed

fo
r
R
N
A

ex
tr
ac
tio

n
85

IT
P-
C
R
IS
PR

C
as
12
a

30
m
in

am
en
ab
le
to

au
to
m
at
io
n
an
d
th
e
us
e
of

a
m
in
im
um

vo
lu
m
e
of

re
ag
en
ts

86
SH

ER
LO

C
K

C
as
13
a

le
ss

th
an

1
h

ra
pi
d,

se
ns
iti
ve
,a
nd

no
ne
ed

fo
r
so
ph
is
tic
at
ed

eq
ui
pm

en
t

no
t
fi
t
to

te
st
cl
in
ic
al
sa
m
pl
es

87

ACS Sensors pubs.acs.org/acssensors Review

https://dx.doi.org/10.1021/acssensors.0c02312
ACS Sens. XXXX, XXX, XXX−XXX

F

pubs.acs.org/acssensors?ref=pdf
https://dx.doi.org/10.1021/acssensors.0c02312?ref=pdf


many others. Therefore, these conditions encourage research-
ers to establish fast, precise, and highly sensitive methods for
SARS-COV-2 detection on a large-scale. In an attempt to meet
these demands, a diagnostic system based on CRISPR was
developed by Huang et al.78 The method consists of CRISPR/
Cas12a system and a fluorescent probe to diagnosis RT-PCR
or RPA amplified amplicons, allowing sensitive and accurate
detection in areas that do not have a real-time PCR system. It
was observed that the developed system was capable of
detecting positive SARS-COV-2 samples in about 50 min, with
the limitation of detecting two copies of the target RNA
sequences for each sample. However, in samples with less than
five copies of the amplified target DNA, the qPCR test failed to
produce a detectable signal. The use of CRISPR in detection
has become very common due to the ability of Cas13 to bind
to the target RNA molecule and Cas12 to bind to the target
DNA molecule by the gRNA sequence to make a cleavage in
the probe to produce the detection signal.60,67 Most CRISPR-
based diagnostic methods use paper strips to detect the output
signal. Using paper strips to recognize single samples is a
reasonable strategy since the tests do not require special
equipment, but the limit of detection (LoD) value obtained is
very low compared to fluorescence-based approaches. The
CRISPR-FDS method developed by Huang et al.78 could be
conveniently implemented on 96-well microtiter plates that
can be used in most well equipped laboratories with precision
and ease using fluorescent plate readers.78 Overall, the results
of this study were comparable to the results of the RT-qPCR
test performed in public laboratories; however, the CRISPR-
FDS method provided more reliable results than those
reported in a clinical setting when the same RT-qPCR assay
was used. It should be stated that the CRISPR-FDS method
has provided positive results for certain samples that have
obtained negative results using the RT-qPCR test, although it
is not possible to decide if these results are false positives for
CRISPR-FDS or false negatives for RT-qPCR owing to a
shortage of valid follow-up data. Therefore, the CRISPR-FDS
method can be considered as a sensitive and powerful method
for producing results using tools and available equipment for
use in clinical laboratories as well as care facilities with
appropriate equipment. The CRISPR/FDS system is designed
so that it produces clear negative or positive results and cannot
quantify virus titers like RT-qPCR, which is a drawback for the
CRISPR/FDS system. However, given that the main goal is to
develop a quick, accurate, and reliable COVID-19 detection
system, this deficiency cannot be considered an important
flaw.78

A diagnostic method consisting of a combination of
CRISPR/Cas12a and RT-LAMP, called the in vitro specific
CRISPR-based assay for nucleic acid diagnosis (iSCAN)
system, was introduced in an attempt by Ali et al.89 to
overcome the shortcomings of SARS-CoV-2 detection.89 The
potential benefits of the iSCAN system include: (i) high speed,
(ii) precision (because of the diagnosis reliance on SARS-CoV-
2 nucleic acid sequences being detected and cut by Cas12),
(iii) field-deployability (since it needs only the basic tools),
and (iv) easy operation (since it provides easy access to test
results by incorporating a colorimetric reaction with lateral
immunochromatography flow). The iSCAN system is well
suited for early identification of COVID-19 carriers so that
they can be identified and quarantined early, thereby
preventing the virus from spreading widely.89 Another
diagnostic tool based on CRISPR called Cas12b-mediated

DNA detection (CDetection) was established for the detection
of SARS-CoV-2 in an attempt by Guo et al.82 By incorporating
sample treatment protocols and nucleic acid amplification
strategies with CDetection, they set up an integrated viral
nucleic acid detection systemCASdetect (CRISPR-assisted
detection). The CASdetect system’s limit of detection was 1 ×
104 copies/mL for the identification of the SARS-CoV-2
pseudovirus, without cross-reactivity to other human endemic
coronaviruses.82

Nucleic acid amplification based molecular detection is
currently the most reliable, fast, and inexpensive approach for
SARS-CoV-2 disease diagnosis; quite a few companies and
laboratories have developed rRT-PCR kits.90 The rRT-PCR
performance for SARS-CoV-2 detection presents a number of
urgent challenges particularly with uncertain negative or
positive results associated with the frequently encountered
“gray zone” designated with high Ct value.91−95 In addition to
user errors such as inaccurate sampling, poor quality reagents,
and uncalibrated instruments, ineffective RT reaction and PCR
proliferation of patient specimens with very poor virus titers
are probably main causes of inaccurate rRT-PCR readouts and
unclear diagnosis. While the diagnosis can be verified through
repeated sampling and control, troubleshooting efforts are
time-consuming, and low-viral load specimens will not be
detected in mild or asymptomatic patients or in advanced
cases, therefore this leads to a false negative result that may
raise concerns about fighting the disease.96 The identification
of nonspecific trans-cleavage activities in various Cas proteins,
including Cas12, Cas13, and Cas14, contributed to the rise of
the CRISPR-Diagnostics strategy (CRISPR-Dx).60,66,67,97−102

The mechanism of action of the CRISPR-Dx technique is
based, as demonstrated by the Cas12a-based HOLMES
system,103 on the efficient trans-cleavage activity of Cas12a
(upon detection of target DNA) against single-stranded DNA
labeled with a fluorophore quencher (FQ), whose fluorescence
signal increases exponentially within a few minutes. On the
basis of this mechanism, Huang et al.96 developed a specific
enhancer for the identification of nucleic acids amplified by
PCR (SENA) to improve the accuracy and efficiency of
detecting preamplified nucleic acid sequences of SARS-CoV-2.
In summary, they first analyzed SARS-CoV-2 samples using
rRT-PCR and then validated amplicons with unclear readouts
by SENA.96 The SENA diagnostic system was highly sensitive
and specific and was able to detect false positives and negatives
with a detection limit of two copies per reaction less than the
corresponding rRT-PCR test. Initially, the amplicon sequences
were determined from different rRT-PCR kits to design
suitable cRNAs for the SENA, and then a specific crRNA was
designed for each amplicon. Then, candidate crRNAs were
screened on the SENA consisting of Cas12a, crRNA, FQ-
reporter, and rRT-PCR products, and the best crRNAs were
selected for further SENA testing.
Owing to the sampling distribution of Poisson, replica

variations are very important when copies of templates are
designed to be small (below 3−4 copies/Rx), close to the LoD
for rRT-PCR, and very low (equal to and less than 1 copy/
Rx).104,105 To address the sampling issue, nine replicas were
conducted for groups of RNA templates with a half and one
copy/Rx, while six replicas were conducted in each of the other
concentration levels. Following the rRT-PCR reaction, all
amplicons were entered into three different SENA reactions
with crRNAs related to O and N genes and both (N-SENA, O-
SENA, and mix-SENA). By reducing RNA templates to less
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than three copies per reaction, it was found that Ct values
exceeded 38 (cutoff for positive) in some replicas mainly
related to the N gene, but when it drops below 40, it is
considered to enter the gray zone. As the concentration of
RNA templates decreases, Ct values increase steadily, with
most replicas indicating that one or both Ct values enter the
gray zone, and ultimately, they all become negative. Taking Ct
= 38 as the cutoff for positive detection, the detection limit for
O and N genes with a 95% confidence interval (CI) of this set
of rRT-PCR was estimated to be 3.3 ≤ 4.0 ≤ 6.1 and 4.0 ≤ 4.1
≤ 4.4, respectively. The rRT-PCR amplicons were then
examined with the SENA system to measure the signals of
fluorescence for each replica and after comparing the increase
in fluorescence versus the rate of fluorescence change between
samples at a given time relative to the negative control (FC),
the FC parameter was defined as the ratio of FC values
measured at the 10th and fifth minutes following the
fluorescence reading starting. It has also been found that the
effectiveness of rRT-PCR for both O and N genes is different
from that of the SENA system with decreasing template
concentration. The amplicons of the RNA template were
investigated via NGS, and it was found that the findings were
found to be consistent with O-SENA and mix-SENA results. In
addition to avoiding false-positive and false-negative diagnoses,
the highly sensitive SENA system can be useful in
demonstrating that the virus has been cleared from recovered
cases. Since the qPCR system is still the most popular
molecular detection system, and the SENA system is
remarkable for operational simplicity, the SENA system can
be widely used to solve fuzziness troubles of qPCR and other
molecular detection systems based on amplification of nucleic
acids.96

Recent trends in effective CRISPR-based diagnostic systems
demonstrate that the DTECTR diagnostic system can be
applied as a convenient, inexpensive, and rapid substitute to
qRT-PCR, avoiding the loss of sensitivity and specificity for
molecular detection. A comparison of the DETECTR system
with qRT-PCR for SARS-CoV-2 diagnosis in 378 patients
revealed a 95% consensus in an attempt by Brandsma et al.106

Clinical sample dilution assessments showed DETECTR’s
higher analytical sensitivity compared with qRT-PCR, but it
was not verified in a majority of patients. The findings revealed
that both DETECTR and qRT-PCR techniques were similarly
sensitive for the SARS-CoV-2 diagnosis. In the DETECTR
system, different gRNAs could be used simultaneously to
obviate negative results owing to N gene mutations. The
DETECTR system was 100% specific to detecting nucleic acid
sequences of SARS-CoV-2 and therefore could not recognize
other human coronaviruses. In addition, since the DETECTR
system for SARS-CoV-2 diagnosis does not require specialized
equipment and can be used as an independent qRT-PCR
method in diagnostic laboratories, PCR systems in the
laboratory can be used for other diagnostic works.106

CRISPR-based diagnostic systems are currently considered
as field-deployable solutions. The CRISPR-Cas12/gRNA
complex is a basic form of such systems. Cas12/gRNA is
activated when it specifically binds through gRNA to the target
DNA sequence and then nonspecifically cleaves the
fluorophore-quencher pair-labeled single-stranded DNA re-
porter probe. It has recently been shown that electric field
gradients can be used to control and accelerate this CRISPR-
based diagnostic system by cofocusing the Cas12/gRNA
complex, reporter, and target.88 An appropriate electric field

gradient could be obtained using isotachophoresis, a special
ionic focusing technique, applied to a microfluidic chip.
Overall, on-chip electric field control and microfluidics were
combined to perform two very important steps: (1) automatic
extraction of nucleic acid from primary biological samples
(here, nasopharyngeal samples of patients with COVID-19 and
healthy controls were used) and (2) application of an electric
field to monitor and influence the rapid enzymatic activity of
the CRISPR/Cas12 complex as soon as the target nucleic acid
sequence is detected. This allows simultaneous combination of
enzymatic reactions, preconcentration, and speed. This
developed microfluidic system not only needs a small volume
of reagents but also is open to automation. It was assessed for
detecting SARS-CoV-2 nucleic acid in COVID-19 positive and
healthy samples. Ultimately, as a remarkable difference
compared to current COVID-19 test procedures, this process
takes just 30 min from the raw sample to be completed.107

As discussed above, Cas12 has been used for the detection
of SARS-CoV-2 in three states. Cas12 is able to detect the
SARS-CoV-2 genome both before and after nucleic acid
extraction, which schematically is shown in Figure 4.

■ SARS-COV-2 DIAGNOSIS BASED ON
CRISPR/CAS13

The CRISPR/Cas13 based diagnostic system’s performance
depends on the base pairing between crRNA and the target
sequence, making such a system a highly accurate and
programmable diagnostic tool.66,108 Although such systems
have a high level of sensitivity and diagnostic efficiency, they
require nucleic acid extraction, which is often restricted in
terms of access to the extraction kits, as well as multiple sample
transfer steps that hinder ease of use. To eliminate the need for
nucleic acid extraction, Myhrvold et al.65 merged the heating

Figure 4. Overview of CRISPR/Cas12 based systems used for SARS-
CoV-2 detection.
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unextracted diagnostic samples to obliterate nucleases
(HUDSON) system with the SHERLOCK system. The
developed system employs chemical reduction and heat to
the degradation of nucleases that break down RNA and lysis
viral particles.65 Overall, it is practical to use the combined
SHERLOCK and HUDSON system in laboratories with
limited facilities, as only one heating system is needed.
However, its scalability has been limited due to the need to
prepare multiple reaction mixtures and transfer samples
between them. A fast and sensitive system called SHINE
(SHERLOCK and HUDSON integration to navigate epi-
demics) that did not require extraction of nucleic acid was
established in a worthy attempt to detect the SARS-CoV-2
nucleic acid. Following the development of a SARS-CoV-2
test,109 diagnostic steps based on the Cas13a system and
SHERLOCK’s amplification were combined, which shortened
both the testing time and operator interventions. The SHINE
system has been shown to be able to detect the SARS-CoV-2
genome in clinical samples treated with HUDSON in paper-
based colorimetric or in-tube fluorescent readout methods that
can be applied using portable devices and with a low
probability of contamination of samples. To evaluate the
performance of the SHINE system, 50 nasopharyngeal
specimens (30 RT-qPCR-confirmed SARS-CoV-2 positive
specimens and 20 SARS-CoV-2 negative specimens) were
examined. The SHINE system was evaluated on six positive
COVID-19 samples using the paper-based colorimetric
method, resulting in the SARS-CoV-2 nucleic acid being
identified in all six positive samples and not in negative control
samples, indicating 100% concordance. The use of the SHINE
system to test 50 samples using the in-tube fluorescence
method resulted in SARS-CoV-2 nucleic acid identification in
27 out of 30 positive samples of SARS-CoV-2 and no false
negative results within a sample-to-result period of 50 min,
indicating significantly higher specificity (100%) and sensitivity
(90%) in comparison with RT-qPCR.79

Metsky et al.109 developed a series of test designs and
experimental procedures for use in the diagnostic systems that
focused on CRISPR and could be useful for continuous
surveillance. The presented designs were developed to detect
67 species and subspecies of viruses, such as SARS-CoV-2. The
algorithms developed by Metsky et al.109 allow molecular
detection assay designs, the output of which is also promising
for improvement of diagnostics for the detection of viral
species. On the basis of the CRISPR/Cas13a (SHERLOCK)
system, they screened four of the existing designs for SARS-
CoV-2 diagnosis and then thoroughly evaluated the best
performing SARS-CoV-2 assays. This assay was used to
demonstrate the sensitivity of SARS-CoV-2 synthetic sequen-
ces, which was 10 copies per microliter.109

While special attention has been paid to the development of
diagnostic systems based on CRISPR for SARS-CoV-2 nucleic
acid detection rapidly, such systems have not addressed
mutations and genomic rearrangements related to the virus’s
nucleic acid. It is well-known that RNA viruses frequently
mutate to avoid attacks from hosts’ immune systems.
Numerous genomes of SARS-CoV-2 have been sequenced,
and different mutations have been identified, indicating that
the coronavirus will constantly adapt to its host. Especially,
such mutations have been reported in gene sequences that are
focal areas for SARS-CoV-2 diagnostic tests, which can affect
the efficiency of qRT-PCR assays.110−113 Most noticeably,
mutations in the gRNA binding site can trigger mismatches

that affect the CRISPR/Cas system’s ability to recognize the
target area. It has been shown recently that when SARS-CoV-2
enters the body its RNA genome is edited by the deaminases
including ADAR and APOBEC, which are part of the human
immune system against viral attacks.88 Changes in nucleotides
during conversions of adenosine-to-inosine and cytosine-to-
uracil can also affect the ability of the CRISPR/Cas system to
recognize the virus.
Therefore, the variant nucleotide guard procedure was

developed to overcome these challenges and increase the
capacity and strength of the diagnostic system for specific and
sensitive detection, as well as to identify mutated and altered
nucleic acid regions of SARS-CoV-2.83 The DETECTR system
and different forms of Cas12a enzymes were initially studied,
and it was found that enAsCas12a had the greatest tolerance in
the CRISPR target area for single mismatches. Interestingly,
enAsCas12a was highly specific to SARS-CoV-2 nucleic acid
and also demonstrated no cross-reactivity with SARS-CoV and
MERS-CoV, two other related coronaviruses. Additionally,
various gRNAs were investigated, and all nucleases tested,
except enRR, were found to show that S2 gRNA leads to
higher trans-cleavage activity. Thus, the enCas12a-S2 gRNA
has proven to be a powerful and very sensitive system for
detecting SARS-CoV-2 compared to LbCas12a-N-Mam
gRNA. Remarkably, this method can be applied using a
dipstick within 30 min.83

A protocol called Cas13a-based, rugged, equitable, scalable
testing (CREST) was developed by Rauch et al.84 to overcome
the scalable testing challenges of SARS-CoV-2 diagnosis, such
as access to tools and materials, highly skilled operators, and
investors. Based on CRISPR/Cas13a, this diagnostic protocol
uses readily available reagents and equipment and is also highly
sensitive to the detection of SARS-CoV-2. The CREST
technique utilizes the sensitivity and convenience of a
transcription-recognition reaction and also benefits from the
PCR method’s robustness and reliability. With management in
∼2 h, without the need for AC power or a sophisticated
facility, CREST can be carried out from an RNA sample to a
result.84

New alternatives to RT-qPCR have decreased RT-qPCR
dependency for the detection of SARS-CoV-2, which focuses
on the combination of isothermal amplification and CRISPR
systems, such as the SHERLOCK system. With this in mind, a
simple chemical method called SHERLOCK testing in one pot
(STOP) was established in a valuable effort to diagnose SARS-
CoV-2, which is suitable for use at the point of care and can be
carried out within an hour. The STOPCovid method is
comparable in sensitivity to RT-qPCR-based techniques and
also has an LoD of 100 copies per reaction of the viral genome
in the samples of saliva or NP. The test result is obtained using
a lateral flow or fluorescence readout within 70 and 40 min,
respectively. In addition, examination of NP specimens from
COVID-19 patients for further testing of the STOPCovid
method showed that 12 positive specimens and five negative
specimens out of three replicates could be detected by
STOPCovid. The STOPCovid method is a valuable technique
for point-of-care diagnostic systems development for detecting
SARS-Cov-2 and has the ability to assist in measures of test−
trace−isolation to end COVID-19 spread and restore public
health.85 Zhang et al.87 developed a protocol to improve and
advance the diagnosis of COVID-19, using a CRISPR-based
SHERLOCK method. Using artificial RNA fragments of the
virus, they were able to identify COVID-19 target sequences in
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the 20 and 200 aM range (10−100 copies per microliter of
input). The established protocol can be carried out in less than
1 h using RNA extracted from clinical samples, without the
need for advanced laboratories.87

■ FNCAS9-BASED DIAGNOSIS OF SARS-COV-2
With the aim of rapid and accurate nucleic acid detection,
Azhar et al.114 developed the FnCas9 editor linked uniform
detection assay (FELUDA) procedure, which uses a highly
accurate enzymatic readout to diagnose nucleic acid sequences.
Since the FELUDA approach does not require complicated
instruments and can be an effective and convenient alternative
to diagnostic methods such as PCR-based methods, it was
examined for the diagnosis of SARS-CoV-2. It was observed
that the use of FELUDA for the detection of SARS-CoV-2
using the specific FnCas9 RNP complex leads to clear
signatures of the SARS-CoV-2 sequence in synthetic DNA.
Surprisingly, the FELUDA method was able to differentiate
between sequences of SARS-CoV-2 and SARS-CoV-1 which
differed in one nucleotide. Ultimately, after effective detection
of viral signatures from small amounts of total RNA nucleic
acid collected from SARS-CoV-2 cases within 1 h, they verified
the validity of such lateral flow tools as a fast, inexpensive, and
machine-independent alternative to the existing detection
procedures.114

■ CRISPR/CAS3-BASED DIAGNOSIS OF SARS-COV-2
Recently, several groups have documented that class I, type I
CRISPR systems from Escherichia coli and Thermobif ida fusca,
both using Cas3 enzyme and the crRNA-bound complex, can
trigger targeted cleavage of DNA in human cells by long-range
deletions.80,115,116 Yoshimi et al.80 established an in vitro
nucleic acid diagnostic tool based on Cas3, Cas3-operated
nucleic acid detection N (CONAN). The CONAN tool is a
sensitive, fast, and device-free diagnostic system for SARS-
CoV-2 detection in combination with isothermal amplification
methods. To assess the efficiency of the CONAN system in
detecting nucleic acids of SARS-CoV-2, purified RNA nucleic
acids from NP swabs, including 10 positive COVID-19
samples (confirmed by PCR) and 15 negative samples
(confirmed by PCR), were evaluated using CONAN RT-
LAMP and DETCTR RT-LAMP. Tests conducted using the
CONAN RT-LAMP system resulted in SARS-Cov-2 detection
in nine out of 10 positive samples as well as the detection of
one sample from negative samples. In general, the SARS-CoV-
2 detection rate by the CONAN RT-LAMP system was found
to be comparable to the DETCTR RT-LAMP system.80 Table
2 summarizes the characteristics of all Cas proteins used to
diagnose SARS-CoV-2 infection, including Cas12, Cas13,
FnCas9, and Cas3.

■ SUPERIORITIES AND SHORTCOMINGS OF
CRISPR-BASED DIAGNOSTIC SYSTEMS

Similar to the Cas9 protein, Cas12a detects DNA sequences
and makes double-stranded breaks in the target site. Cas12
endonuclease, especially LbCas12a, causes nonspecific cleavage
of ssDNA molecules after binding to its target genomic region,
which ultimately leads to degradation of other ssDNAs in the
vicinity. This Cas12 activity led to the development of the
DETECTR method and was used for molecular detection. The
DETECTR is similar to RT-PCR in terms of accuracy but
surpasses RT-PCR in speed to a final result. In addition, the T
ab
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collateral cleavage activity of the Cas13 protein also led to the
development of the SHERLOCK method. This method uses
the nonspecific activity of the Cas13 protein to cleave the
fluorescent RNA reporter.27,60,66 Both DETECTR and
SHERLOCK methods can be adapted for detection by lateral
flow dipsticks. In general, there are challenges in the diagnosis
of the COVID-19 virus, such as access to staff safety facilities,
collection of samples, extraction of virus genomes, and access
to extraction kits and reagents in both RT-PCR and CRISPR-
based diagnostic methods. However, one of the advantages of
CRISPR-based diagnostic systems over RT-PCR is the use of
isothermal amplification methods that eliminate the need for
thermocycling.117 Other advantages are high speed to achieve
the final result, specificity to target single nucleotides, no need
for specialized laboratory equipment, and the use of accessible
reporting techniques such as lateral flow strips. The ability of
the CRISPR systems to quickly recognize a variety of
infectious diseases caused by emerging viruses such as
coronavirus is one of the significant capabilities of this system.
In addition, the CRISPR system is able to detect coronavirus
mutant types with high accuracy. In CRISPR-based diag-
nostics, since protected areas are used to design the gRNA, the
diagnostic platform will be able to diagnose the disease even if
the virus genome is mutated. Variations in viral load at
different stages of the disease is another challenge; that is,
when the viral load is low, conventional diagnostic tests may
not be able to detect the viral infection and may need to
increase the viral load, which results in false negative results.
However, CRISPR-based diagnostic systems rely on the
detection of the viral genome, so they are able to diagnose
the infection at every stage of the disease and do not require
additional confirmatory tests.24,109,118 In addition, the multi-
plexing ability of the CRISPR system allows it to distinguish
between multiple viral pathogens or even different viral
serotypes in the same sample.65 Off-target occurrence, where
nonspecific binding of gRNA to the virus genome leads to
misinterpretation of results, is one of the main challenges of
the CRISPR system. Therefore, in order to reduce the off-
target effects, it is necessary to use specialized tools for gRNA
design to select the best one(s).24

■ OVERVIEW ON CAS PROTEINS USED IN
SARS-COV-2 DETECTION

Special attention has recently been drawn to the CRISPR
revolution for the early detection of SARS-CoV-2, which is still
rapidly spreading and has affected millions of people
worldwide. In general, diagnostic systems based on CRISPR
consist of two main elements: (1) Cas protein-guide RNA
sequence and (2) modified nucleic acids used as reporters.
Reporters generate a visual signal when they cut, which is used
in detection. Once the specified nucleic acid sequences are
detected and cut, reporter molecules are subsequently cut and
generate a visual signal. Cas proteins used by different groups
to recognize the nucleic acid of SARS-CoV-2 include Cas3,
FnCas9, Cas12a and Cas12b, and Cas13a. Particularly, most
CRISPR-based SARS-CoV-2 diagnostic studies have enjoyed
Cas12 protein. The Cas12 protein belongs to the class II
CRISPR systems which recognize and cleave DNA (dsDNA or
ssDNA) sequences. This nuclease has high specificity for
dsDNA sequences so that it can distinguish very similar
dsDNA sequences from each other, while it does not have this
ability for ssDNA sequences. Cas12a and Cas12b are the two
subtypes of the Cas12 protein commonly used in CRISPR-

based diagnosis.68,119 Cas13 protein is related to class 2
CRISPR systems and is capable of recognizing and cutting
RNA sequences. DNA sequences can be converted to RNA
using the T7 promoter to detect DNA sequences using Cas13
nuclease.66 This nuclease does not require a PAM sequence,
which makes Cas13 more flexible. However, some of Cas13
orthologs require a protospacer flanking site (PFS). There are
four types of Cas13 protein, including Cas13a−d; Cas13a and
Cas13b are commonly used in engineering and diagnostics.
Like Cas12, the Cas13 protein has collateral activity which is
used for diagnostic applications such as reporter molecule
cutting.66,120,121 Cas9 endonuclease is also member of class II
CRISPR systems and is commonly used in genome editing.
This enzyme specifically identifies and cleaves DNA sequences
through the guide sequence. Recently, the Francisella novicida-
derived Cas9 protein called FnCas9 has been used to detect
SARS-CoV-2. Since the FnCas9 protein requires a PAM
sequence, PAM can be engineered into the primers to target
and identify non-PAM regions. The FnCas9 enzyme is capable
of cutting DNA sequences within the 10−50 °C temperature
range. Considering the sensitivity of FnCas9 to mismatch, it
can be used to detect single nucleotide variations.114,122 Cas3
endonuclease belongs to class I CRISPR systems which are
capable of identifying and cutting DNA sequences. This
protein has a length of approximately 1100 amino acids and
requires a PAM sequence to cut the target site.80

■ CONCLUSIONS AND PERSPECTIVES
The increasing number of deaths caused by the COVID-19
outbreak has caused major concern worldwide. One of the
confounding facets of COVID-19 is that it presents a wide
range of symptoms from patient to patient. Therefore, highly
sensitive, specific, and precise approaches need to be
established for early detection and thus better management
of COVID-19. The discovery of the gene-editing toolkit known
as CRISPR has reshaped biotechnology and biotechnology-
based medical diagnostic tests. One of the appealing features of
CRISPR is that it can be programmed to target almost any
region of interest within the desired genome. Known for its
genome manipulation applications, the CRISPR technique
possesses a broad range of other applications and has been
effectively used to diagnose SARS-CoV-2 in recent studies.
Speed, accuracy, power, low cost, sensitivity, and versatility are
the main features of this promising tool in the quest to banish
disease from humans. Recently, CRISPR-based diagnostic
systems have been developed that include the use of Cas12a
and Cas13 enzymes. Like Cas9, the Cas12a nuclease binds to
the desired genomic area via a gRNA and makes the break. In
practice, however, the difference between Cas12 and Cas9 is
that when Cas12 begins to cleave the target DNA, it also starts
to cleave nonspecifically neighboring single-stranded DNA, so
that a cleaved fluorescent reporter around the target genome
could be detected. Cas13 nuclease has a similar function to
Cas12a, but unlike Cas12a it acts on RNA sequences. A
CRISPR/Cas13-based system can be programmed to target
SARS-CoV-2 RNA sequences where the Cas13 nuclease can
attack via an RNA guide and cleave the target region to destroy
viruses. Following the outbreak of COVID-19 disease, different
groups have developed various diagnostic systems to diagnose
SARS-CoV-2 nucleic acid using the nonselective cutting
activity of Cas12a and Cas13 nucleases. Quickly obtaining
results is one of the great advantages of CRISPR-based
diagnostic systems. Another exciting fact of employing
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CRISPR-based diagnostic systems is that they do not need
sophisticated laboratory equipment, so they can be easily used
even in areas with poor economic conditions. Due to the
programmability of the CRISPR system, it can be harnessed in
many fields. For example, the CRISPR system can be used to
identify key factors involved in the pathogenicity of SARS-
CoV-2 in the host cells, which could be a touchstone in
understanding the mechanism of COVID-19 pathogenesis and
in finding the drug. However, there are challenges and
problems in using the CRISPR/Cas system for nucleic acid
detection. For example, one of the common problems in
CRISPR/Cas mediated detection is the limited number of
detectable sequences. Cas proteins recognize target sequences
on the desired nucleic acid through the guide RNA that must
complement the target region. On the other hand, depending
on the type of Cas protein used, the presence of a sequence
called PAM is critical to create a functional correct form
between the guide RNA/Cas complex and the target region.
Another important issue is mismatch tolerance, in which the
tolerance of mismatches between the spacer sequence and the
target sequence depends on the Cas protein family. The
number of mismatches as well as their location relative to the
PAM sequence are determinants of the overall mismatch
tolerance, so mismatches farther from the PAM sequence are
more tolerated. The Cas13 protein family requires PFS and is
capable of PAM-free detection. Standardization is also a very
important factor in effective detection with the CRISPR
system. Protocols need to be standardized to ensure that all
operators achieve the same result. Since the level of nucleic
acid concentration in patient samples is associated with disease
progression, in addition to qualitative diagnosis, quantitative
diagnosis is also very important. CRISPR-based diagnostic
platforms such as SHERLOCK, DETECTR, and HOLMES
are only capable of qualitative detection and cannot quantify
the desired nucleic acid content. Many CRISPR-based
diagnostic systems still require amplification of the target
nucleic acid prior to detection. Conventional methods for
nucleic acid amplification, such as PCR, are not suitable for use
in POC systems due to the need for thermocycling as well as
the need for several temperature steps leading to prolonged
reactions. In these cases, isothermal amplification methods can
be used in the absence of equipment and skilled operators.
LAMP and RPA techniques are the most common isothermal
amplification systems used in POC diagnostic systems. The
low temperature requirement is one of the advantages of the
RPA technique over LAMP. Problems such as dimer primer
formation as well as nonspecific replication products are
caused by low temperatures. However, if the CRISPR system
with high specificity for its target area is used, these nonspecific
and undesirable products will not interfere with the reaction
and ultimately the reaction result.
The defensive feature of CRISPR can be applied for the

design and establishment of effective antiviruses against SARS-
CoV-2. This approach can be used to create antivirals against
other possible new viruses that we may encounter in the future,
allowing us to respond quickly to pandemics hereafter.
Moreover, using the easy reprogramming capability of the
CRISPR system, multiple guide RNAs can be used to ensure
that the target sequence is identified even if the virus mutates.
In addition to being a hope for coronavirus treatment, CRISPR
is ambitiously in the race for diagnostics and testing and will
likely leave an effective and lasting impact on the current
pandemic.

■ AUTHOR INFORMATION

Corresponding Authors

Hossein Danafar − Zanjan Pharmaceutical Biotechnology
Research Center, Zanjan University of Medical Sciences,
Zanjan, Iran; Joint Ukraine−Azerbaijan International
Research and Education Center of Nanobiotechnology and
Functional Nanosystems, Baku, Azerbaijan; orcid.org/
0000-0001-8956-7895; Email: danafar@zums.ac.ir

Saeed Kaboli − Department of Medical Biotechnology, School
of Medicine, Zanjan University of Medical Sciences, Zanjan,
Iran; Email: kaboli2009@gmail.com

Hamed Nosrati − Zanjan Pharmaceutical Biotechnology
Research Center, Zanjan University of Medical Sciences,
Zanjan, Iran; Joint Ukraine−Azerbaijan International
Research and Education Center of Nanobiotechnology and
Functional Nanosystems, Baku, Azerbaijan; orcid.org/
0000-0002-7487-8188; Email: nosrati.hamed2020@
gmail.com

Murali M. Yallapu − Department of Immunology and
Microbiology, School of Medicine and South Texas Center of
Excellence in Cancer Research, School of Medicine, University
of Texas Rio Grande Valley, McAllen, Texas 78504, United
States; orcid.org/0000-0002-0073-8828;
Email: murali.yallapu@utrgv.edu

João Conde − NOVA Medical School, Faculdade de Ciências
Médicas and Centre for Toxicogenomics and Human Health
(ToxOmics), Genetics, Oncology and Human Toxicology,
NOVA Medical School, Faculdade de Ciências Médicas,
Universidade Nova de Lisboa, Lisboa, Portugal;
orcid.org/0000-0001-8422-6792; Email: joao.conde@

nms.unl.pt

Authors

Hossein Rahimi − Department of Medical Biotechnology,
School of Medicine and Zanjan Pharmaceutical
Biotechnology Research Center, Zanjan University of Medical
Sciences, Zanjan, Iran

Marziyeh Salehiabar − Drug Applied Research Center, Tabriz
University of Medical Sciences, Tabriz, Iran; Joint
Ukraine−Azerbaijan International Research and Education
Center of Nanobiotechnology and Functional Nanosystems,
Baku, Azerbaijan

Murat Barsbay − Hacettepe University, Department of
Chemistry, Ankara 06800, Turkey; orcid.org/0000-0003-
0788-4446

Mohammadreza Ghaffarlou − Hacettepe University,
Department of Chemistry, Ankara 06800, Turkey

Taras Kavetskyy − Joint Ukraine−Azerbaijan International
Research and Education Center of Nanobiotechnology and
Functional Nanosystems, Baku, Azerbaijan; Department of
Surface Engineering, The John Paul II Catholic University of
Lublin, 20-950 Lublin, Poland; Drohobych Ivan Franko
State Pedagogical University, 82100 Drohobych, Ukraine;
orcid.org/0000-0002-4782-1602

Ali Sharafi − Zanjan Pharmaceutical Biotechnology Research
Center, Zanjan University of Medical Sciences, Zanjan, Iran;
Joint Ukraine−Azerbaijan International Research and
Education Center of Nanobiotechnology and Functional
Nanosystems, Baku, Azerbaijan

Soodabeh Davaran − Drug Applied Research Center, Tabriz
University of Medical Sciences, Tabriz, Iran; Joint
Ukraine−Azerbaijan International Research and Education

ACS Sensors pubs.acs.org/acssensors Review

https://dx.doi.org/10.1021/acssensors.0c02312
ACS Sens. XXXX, XXX, XXX−XXX

L

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Hossein+Danafar"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0001-8956-7895
http://orcid.org/0000-0001-8956-7895
mailto:danafar@zums.ac.ir
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Saeed+Kaboli"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
mailto:kaboli2009@gmail.com
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Hamed+Nosrati"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0002-7487-8188
http://orcid.org/0000-0002-7487-8188
mailto:nosrati.hamed2020@gmail.com
mailto:nosrati.hamed2020@gmail.com
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Murali+M.+Yallapu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0002-0073-8828
mailto:murali.yallapu@utrgv.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Joa%CC%83o+Conde"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0001-8422-6792
http://orcid.org/0000-0001-8422-6792
mailto:joao.conde@nms.unl.pt
mailto:joao.conde@nms.unl.pt
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Hossein+Rahimi"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Marziyeh+Salehiabar"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Murat+Barsbay"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0003-0788-4446
http://orcid.org/0000-0003-0788-4446
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Mohammadreza+Ghaffarlou"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Taras+Kavetskyy"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0002-4782-1602
http://orcid.org/0000-0002-4782-1602
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ali+Sharafi"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Soodabeh+Davaran"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
pubs.acs.org/acssensors?ref=pdf
https://dx.doi.org/10.1021/acssensors.0c02312?ref=pdf


Center of Nanobiotechnology and Functional Nanosystems,
Baku, Azerbaijan

Subhash C. Chauhan − Department of Immunology and
Microbiology, School of Medicine and South Texas Center of
Excellence in Cancer Research, School of Medicine, University
of Texas Rio Grande Valley, McAllen, Texas 78504, United
States

Complete contact information is available at:
https://pubs.acs.org/10.1021/acssensors.0c02312

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

This work was supported by the NOVA University Lisbon,
University of Texas Rio Grande Valley, and Zanjan University
of Medical Sciences. J.C. acknowledges the European Research
Council Starting Grant (ERC-StG-2019-848325).

■ REFERENCES
(1) Estola, T. Coronaviruses, a new group of animal RNA viruses.
Avian Dis. 1970, 14, 330−336.
(2) Kahn, J. S.; McIntosh, K. History and recent advances in
coronavirus discovery. Pediatric infectious disease journal 2005, 24
(11), S223−S227.
(3) Mahase, E. Covid-19: First coronavirus was described in The BMJ
in 1965. British Medical Journal Publishing Group, 2020.
(4) Fehr, A. R.; Perlman, S. Coronaviruses: an overview of their
replication and pathogenesis. In Coronaviruses; Springer, 2015; pp 1−
23.
(5) Chan, J. F.; Lau, S. K.; To, K. K.; Cheng, V. C.; Woo, P. C.;
Yuen, K.-Y. Middle East respiratory syndrome coronavirus: another
zoonotic betacoronavirus causing SARS-like disease. Clin. Microbiol.
Rev. 2015, 28 (2), 465−522.
(6) Wang, L.-F.; Shi, Z.; Zhang, S.; Field, H.; Daszak, P.; Eaton, B. T.
Review of bats and SARS. Emerging Infect. Dis. 2006, 12 (12), 1834.
(7) Ge, X.-Y.; Li, J.-L.; Yang, X.-L.; Chmura, A. A.; Zhu, G.; Epstein,
J. H.; Mazet, J. K.; Hu, B.; Zhang, W.; Peng, C.; Zhang, Y.-J.; Luo, C.-
M.; Tan, B.; Wang, N.; Zhu, Y.; Crameri, G.; Zhang, S.-Y.; Wang, L.-
F.; Daszak, P.; Shi, Z.-L. Isolation and characterization of a bat SARS-
like coronavirus that uses the ACE2 receptor. Nature 2013, 503
(7477), 535−538.
(8) Chen, Y.; Guo, D. Molecular mechanisms of coronavirus RNA
capping and methylation. Virol. Sin. 2016, 31 (1), 3−11.
(9) Cui, J.; Li, F.; Shi, Z.-L. Origin and evolution of pathogenic
coronaviruses. Nat. Rev. Microbiol. 2019, 17 (3), 181−192.
(10) Cauchemez, S.; Van Kerkhove, M.; Riley, S.; Donnelly, C.;
Fraser, C.; Ferguson, N. Transmission scenarios for Middle East
Respiratory Syndrome Coronavirus (MERS-CoV) and how to tell
them apart. Euro Surveill. 2013, 18 (24), 20503.
(11) Song, Z.; Xu, Y.; Bao, L.; Zhang, L.; Yu, P.; Qu, Y.; Zhu, H.;
Zhao, W.; Han, Y.; Qin, C. From SARS to MERS, thrusting
coronaviruses into the spotlight. Viruses 2019, 11 (1), 59.
(12) Kim, D.; Lee, J.-Y.; Yang, J.-S.; Kim, J. W.; Kim, V. N.; Chang,
H. The architecture of SARS-CoV-2 transcriptome. Cell 2020, 181,
914.
(13) Neuman, B. W.; Kiss, G.; Kunding, A. H.; Bhella, D.; Baksh, M.
F.; Connelly, S.; Droese, B.; Klaus, J. P.; Makino, S.; Sawicki, S. G.;
Siddell, S. G.; Stamou, D. G.; Wilson, I. A.; Kuhn, P.; Buchmeier, M. J.
A structural analysis of M protein in coronavirus assembly and
morphology. J. Struct. Biol. 2011, 174 (1), 11−22.
(14) Schoeman, D.; Fielding, B. C. Coronavirus envelope protein:
current knowledge. Virol. J. 2019, 16 (1), 69.
(15) de Haan, C. A.; Rottier, P. J. Molecular interactions in the
assembly of coronaviruses. Adv. Virus Res. 2005, 64, 165−230.

(16) Broughton, J. P.; Deng, X.; Yu, G.; Fasching, C. L.; Servellita,
V.; Singh, J.; Miao, X.; Streithorst, J. A.; Granados, A.; Sotomayor-
Gonzalez, A.; Zorn, K.; Gopez, A.; Hsu, E.; Gu, W.; Miller, S.; Pan,
C.-Y.; Guevara, H.; Wadford, D. A.; Chen, J. S.; Chiu, C. Y. CRISPR−
Cas12-based detection of SARS-CoV-2. Nat. Biotechnol. 2020, 38,
870.
(17) Radmard, S.; Reid, S.; Ciryam, P.; Boubour, A.; Ho, N.; Zucker,
J.; Sayre, D.; Greendyke, W. G.; Miko, B. A.; Pereira, M. R.; Whittier,
S.; Green, D. A.; Thakur, K. T. Clinical utilization of the FilmArray
meningitis/encephalitis (ME) multiplex polymerase chain reaction
(PCR) assay. Frontiers in neurology 2019, 10, 281.
(18) Cao, L.; Cui, X.; Hu, J.; Li, Z.; Choi, J. R.; Yang, Q.; Lin, M.;
Ying Hui, L.; Xu, F. Advances in digital polymerase chain reaction
(dPCR) and its emerging biomedical applications. Biosens. Bioelectron.
2017, 90, 459−474.
(19) Wang, A. M.; Doyle, M. V.; Mark, D. F. Quantitation of mRNA
by the polymerase chain reaction. Proc. Natl. Acad. Sci. U. S. A. 1989,
86 (24), 9717−9721.
(20) Piepenburg, O.; Williams, C. H.; Stemple, D. L.; Armes, N. A.
DNA detection using recombination proteins. PLoS Biol. 2006, 4 (7),
e204.
(21) Notomi, T.; Okayama, H.; Masubuchi, H.; Yonekawa, T.;
Watanabe, K.; Amino, N.; Hase, T. Loop-mediated isothermal
amplification of DNA. Nucleic acids research 2000, 28 (12), 63e−63.
(22) Jayamohan, H.; Lambert, C. J.; Sant, H. J.; Jafek, A.; Patel, D.;
Feng, H.; Beeman, M.; Mahmood, T.; Nze, U.; Gale, B. K. SARS-
CoV-2 pandemic: a review of molecular diagnostic tools including
sample collection and commercial response with associated
advantages and limitations. Anal. Bioanal. Chem. 2021, 413, 49−71.
(23) Christin, J. R.; Beckert, M. V. Origins and Applications of
CRISPR-Mediated Genome Editing. Einstein journal of biology and
medicine: EJBM 2017, 31 (1−2), 2.
(24) Jolany vangah, S.; Katalani, C.; Boone, H. A.; Hajizade, A.;
Sijercic, A.; Ahmadian, G. CRISPR-Based Diagnosis of Infectious and
Noninfectious Diseases. Biol. Proced. Online 2020, 22 (1), 1−14.
(25) Moon, J.; Kwon, H.-J.; Yong, D.; Lee, I.-C.; Kim, H.; Kang, H.;
Lim, E.-K.; Lee, K.-S.; Jung, J.; Park, H. G.; Kang, T. Colorimetric
Detection of SARS-CoV-2 and Drug-Resistant pH1N1 Using
CRISPR/dCas9. ACS sensors 2020, 5, 4017.
(26) Bruch, R.; Urban, G. A.; Dincer, C. Unamplified gene sensing
via Cas9 on graphene. Nature biomedical engineering 2019, 3 (6),
419−420.
(27) Aman, R.; Mahas, A.; Mahfouz, M. Nucleic Acid Detection
Using CRISPR/Cas Biosensing Technologies. ACS Synth. Biol. 2020,
9, 1226.
(28) Fozouni, P.; Son, S.; Diaz de Leon Derby, M.; Knott, G. J.;
Gray, C. N.; D’Ambrosio, M. V.; Zhao, C.; Switz, N. A.; Kumar, G. R.;
Stephens, S. I.; Boehm, D.; Tsou, C.-L.; Shu, J.; Bhuiya, A.;
Armstrong, M.; Harris, A. R.; Chen, P.-Y.; Osterloh, J. M.; Meyer-
Franke, A.; Joehnk, B.; Walcott, K.; Sil, A.; Langelier, C.; Pollard, K.
S.; Crawford, E. D.; Puschnik, A. S.; Phelps, M.; Kistler, A.; DeRisi, J.
L.; Doudna, J. A.; Fletcher, D. A.; Ott, M. Amplification-free detection
of SARS-CoV-2 with CRISPR-Cas13a and mobile phone microscopy.
Cell 2021, 184, 323.
(29) Adhikari, S. P.; Meng, S.; Wu, Y.-J.; Mao, Y.-P.; Ye, R.-X.;
Wang, Q.-Z.; Sun, C.; Sylvia, S.; Rozelle, S.; Raat, H.; Zhou, H.
Epidemiology, causes, clinical manifestation and diagnosis, prevention
and control of coronavirus disease (COVID-19) during the early
outbreak period: a scoping review. Infectious diseases of poverty 2020, 9
(1), 1−12.
(30) Abd Ellah, N. H.; Gad, S. F.; Muhammad, K.; E Batiha, G.;
Hetta, H. F. Nanomedicine as a promising approach for diagnosis,
treatment and prophylaxis against COVID-19. Nanomedicine 2020, 15
(21), 2085−2102.
(31) Weiss, C.; Carriere, M.; Fusco, L.; Capua, I.; Regla-Nava, J. A.;
Pasquali, M.; Scott, J. A.; Vitale, F.; Unal, M. A.; Mattevi, C.;
Bedognetti, D.; Merkoci, A.; Tasciotti, E.; Yilmazer, A.; Gogotsi, Y.;
Stellacci, F.; Delogu, L. G. Toward Nanotechnology-Enabled

ACS Sensors pubs.acs.org/acssensors Review

https://dx.doi.org/10.1021/acssensors.0c02312
ACS Sens. XXXX, XXX, XXX−XXX

M

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Subhash+C.+Chauhan"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acssensors.0c02312?ref=pdf
https://dx.doi.org/10.2307/1588476
https://dx.doi.org/10.1097/01.inf.0000188166.17324.60
https://dx.doi.org/10.1097/01.inf.0000188166.17324.60
https://dx.doi.org/10.1128/CMR.00102-14
https://dx.doi.org/10.1128/CMR.00102-14
https://dx.doi.org/10.3201/eid1212.060401
https://dx.doi.org/10.1038/nature12711
https://dx.doi.org/10.1038/nature12711
https://dx.doi.org/10.1007/s12250-016-3726-4
https://dx.doi.org/10.1007/s12250-016-3726-4
https://dx.doi.org/10.1038/s41579-018-0118-9
https://dx.doi.org/10.1038/s41579-018-0118-9
https://dx.doi.org/10.3390/v11010059
https://dx.doi.org/10.3390/v11010059
https://dx.doi.org/10.1016/j.cell.2020.04.011
https://dx.doi.org/10.1016/j.jsb.2010.11.021
https://dx.doi.org/10.1016/j.jsb.2010.11.021
https://dx.doi.org/10.1186/s12985-019-1182-0
https://dx.doi.org/10.1186/s12985-019-1182-0
https://dx.doi.org/10.1016/S0065-3527(05)64006-7
https://dx.doi.org/10.1016/S0065-3527(05)64006-7
https://dx.doi.org/10.1038/s41587-020-0513-4
https://dx.doi.org/10.1038/s41587-020-0513-4
https://dx.doi.org/10.3389/fneur.2019.00281
https://dx.doi.org/10.3389/fneur.2019.00281
https://dx.doi.org/10.3389/fneur.2019.00281
https://dx.doi.org/10.1016/j.bios.2016.09.082
https://dx.doi.org/10.1016/j.bios.2016.09.082
https://dx.doi.org/10.1073/pnas.86.24.9717
https://dx.doi.org/10.1073/pnas.86.24.9717
https://dx.doi.org/10.1371/journal.pbio.0040204
https://dx.doi.org/10.1093/nar/28.12.e63
https://dx.doi.org/10.1093/nar/28.12.e63
https://dx.doi.org/10.1007/s00216-020-02958-1
https://dx.doi.org/10.1007/s00216-020-02958-1
https://dx.doi.org/10.1007/s00216-020-02958-1
https://dx.doi.org/10.1007/s00216-020-02958-1
https://dx.doi.org/10.23861/EJBM201631754
https://dx.doi.org/10.23861/EJBM201631754
https://dx.doi.org/10.1186/s12575-020-00135-3
https://dx.doi.org/10.1186/s12575-020-00135-3
https://dx.doi.org/10.1021/acssensors.0c01929
https://dx.doi.org/10.1021/acssensors.0c01929
https://dx.doi.org/10.1021/acssensors.0c01929
https://dx.doi.org/10.1038/s41551-019-0413-4
https://dx.doi.org/10.1038/s41551-019-0413-4
https://dx.doi.org/10.1021/acssynbio.9b00507
https://dx.doi.org/10.1021/acssynbio.9b00507
https://dx.doi.org/10.1016/j.cell.2020.12.001
https://dx.doi.org/10.1016/j.cell.2020.12.001
https://dx.doi.org/10.1186/s40249-020-00646-x
https://dx.doi.org/10.1186/s40249-020-00646-x
https://dx.doi.org/10.1186/s40249-020-00646-x
https://dx.doi.org/10.2217/nnm-2020-0247
https://dx.doi.org/10.2217/nnm-2020-0247
https://dx.doi.org/10.1021/acsnano.0c03697
pubs.acs.org/acssensors?ref=pdf
https://dx.doi.org/10.1021/acssensors.0c02312?ref=pdf


Approaches against the COVID-19 Pandemic. ACS Nano 2020, 14,
6383.
(32) Gupta, R.; Sagar, P.; Priyadarshi, N.; Kaul, S.; Sandhir, R.;
Rishi, V.; Singhal, N. K. Nanotechnology-based approaches for the
detection of SARS-CoV-2. Frontiers in Nanotechnology 2020, 2, 6.
(33) Lisboa Bastos, M.; Tavaziva, G.; Abidi, S. K.; Campbell, J. R;
Haraoui, L.-P.; Johnston, J. C; Lan, Z.; Law, S.; MacLean, E.;
Trajman, A.; Menzies, D.; Benedetti, A.; Ahmad Khan, F. Diagnostic
accuracy of serological tests for covid-19: systematic review and meta-
analysis. BMJ 2020, 370, m2516.
(34) Kilic, T.; Weissleder, R.; Lee, H. Molecular and immunological
diagnostic tests of COVID-19−current status and challenges. Iscience
2020, 23, 101406.
(35) Seo, G.; Lee, G.; Kim, M. J.; Baek, S.-H.; Choi, M.; Ku, K. B.;
Lee, C.-S.; Jun, S.; Park, D.; Kim, H. G.; Kim, S.-J.; Lee, J.-O; Kim, B.
T.; Park, E. C.; Kim, S. I. Rapid detection of COVID-19 causative
virus (SARS-CoV-2) in human nasopharyngeal swab specimens using
field-effect transistor-based biosensor. ACS Nano 2020, 14 (4),
5135−5142.
(36) Carter, L. J.; Garner, L. V.; Smoot, J. W.; Li, Y.; Zhou, Q.;
Saveson, C. J.; Sasso, J. M.; Gregg, A. C.; Soares, D. J.; Beskid, T. R.
Assay Techniques and Test Development for COVID-19 Diagnosis; ACS
Publications, 2020.
(37) Udugama, B.; Kadhiresan, P.; Kozlowski, H. N.; Malekjahani,
A.; Osborne, M.; Li, V. Y.; Chen, H.; Mubareka, S.; Gubbay, J. B.;
Chan, W. C. Diagnosing COVID-19: the disease and tools for
detection. ACS Nano 2020, 14 (4), 3822−3835.
(38) Tahamtan, A.; Ardebili, A. Real-Time RT-PCR in COVID-19
Detection: Issues Affecting the Results; Taylor & Francis, 2020.
(39) Kim, J. Y.; Ko, J.-H.; Kim, Y.; Kim, Y.-J.; Kim, J.-M.; Chung, Y.-
S.; Kim, H. M.; Han, M.-G.; Kim, S. Y.; Chin, B. S. Viral load kinetics
of SARS-CoV-2 infection in first two patients in Korea. J. Korean Med.
Sci. 2020, 35 (7), e86.
(40) Lauer, S. A.; Grantz, K. H.; Bi, Q.; Jones, F. K.; Zheng, Q.;
Meredith, H. R.; Azman, A. S.; Reich, N. G.; Lessler, J. The
incubation period of coronavirus disease 2019 (COVID-19) from
publicly reported confirmed cases: estimation and application. Ann.
Intern. Med. 2020, 172 (9), 577−582.
(41) Pang, J.; Wang, M. X.; Ang, I. Y. H.; Tan, S. H. X.; Lewis, R. F.;
Chen, J. I-P.; Gutierrez, R. A; Gwee, S. X. W.; Chua, P. E. Y.; Yang,
Q.; Ng, X. Y.; Yap, R. K.S.; Tan, H. Y.; Teo, Y. Y.; Tan, C. C.; Cook,
A. R.; Yap, J. C.-H.; Hsu, L. Y. Potential rapid diagnostics, vaccine and
therapeutics for 2019 novel coronavirus (2019-nCoV): a systematic
review. J. Clin. Med. 2020, 9 (3), 623.
(42) Organization, W. H. Laboratory testing for coronavirus disease
(COVID-19) in suspected human cases: interim guidance, March 19,
2020; World Health Organization, 2020.
(43) Zou, L.; Ruan, F.; Huang, M.; Liang, L.; Huang, H.; Hong, Z.;
Yu, J.; Kang, M.; Song, Y.; Xia, J.; Guo, Q.; Song, T.; He, J.; Yen, H.-
L.; Peiris, M.; Wu, J. SARS-CoV-2 viral load in upper respiratory
specimens of infected patients. N. Engl. J. Med. 2020, 382 (12), 1177−
1179.
(44) Arya, M.; Shergill, I. S.; Williamson, M.; Gommersall, L.; Arya,
N.; Patel, H. R. Basic principles of real-time quantitative PCR. Expert
Rev. Mol. Diagn. 2005, 5 (2), 209−219.
(45) Bustin, S. A.; Mueller, R. Real-time reverse transcription PCR
(qRT-PCR) and its potential use in clinical diagnosis. Clin. Sci. 2005,
109 (4), 365−379.
(46) Wang, M.; Zhang, R.; Li, J. CRISPR/cas systems redefine
nucleic acid detection: Principles and methods. Biosens. Bioelectron.
2020, 165, 112430.
(47) Carossino, M.; Ip, H. S.; Richt, J. A.; Shultz, K.; Harper, K.;
Loynachan, A. T.; Del Piero, F.; Balasuriya, U. B. Detection of SARS-
CoV-2 by RNAscope® in situ hybridization and immunohistochem-
istry techniques. Arch. Virol. 2020, 165 (10), 2373−2377.
(48) Chen, A. Y.; Chen, A. Fluorescence in situ hybridization. J.
Invest. Dermatol. 2013, 133 (5), e8.
(49) Levsky, J. M.; Singer, R. H. Fluorescence in situ hybridization:
past, present and future. J. Cell Sci. 2003, 116 (14), 2833−2838.

(50) Chiu, C. Y. Viral pathogen discovery. Curr. Opin. Microbiol.
2013, 16 (4), 468−478.
(51) Ballester, L. Y.; Luthra, R.; Kanagal-Shamanna, R.; Singh, R. R.
Advances in clinical next-generation sequencing: target enrichment
and sequencing technologies. Expert Rev. Mol. Diagn. 2016, 16 (3),
357−372.
(52) Mamanova, L.; Coffey, A. J.; Scott, C. E.; Kozarewa, I.; Turner,
E. H.; Kumar, A.; Howard, E.; Shendure, J.; Turner, D. J. Target-
enrichment strategies for next-generation sequencing. Nat. Methods
2010, 7 (2), 111−118.
(53) Thorburn, F.; Bennett, S.; Modha, S.; Murdoch, D.; Gunson,
R.; Murcia, P. R. The use of next generation sequencing in the
diagnosis and typing of respiratory infections. J. Clin. Virol. 2015, 69,
96−100.
(54) Mohammadinejad, R.; Biagioni, A.; Arunkumar, G.; Shapiro,
R.; Chang, K.-C.; Sedeeq, M.; Taiyab, A.; Hashemabadi, M.;
Pardakhty, A.; Mandegary, A.; Thiery, J.-P.; Aref, A. R.; Azimi, I.
EMT signaling: potential contribution of CRISPR/Cas gene editing.
Cell. Mol. Life Sci. 2020, 77, 2701.
(55) Mohammadinejad, R.; Sassan, H.; Pardakhty, A.; Hashemabadi,
M.; Ashrafizadeh, M.; Dehshahri, A.; Mandegary, A. ZEB1 and ZEB2
gene editing mediated by CRISPR/Cas9 in A549 cell line. Bratislavske
Lekarske Listy 2020, 121 (1), 31−36.
(56) Rahimi, H.; Salehiabar, M.; Charmi, J.; Barsbay, M.; Ghaffarlou,
M.; Roohi Razlighi, M.; Davaran, S.; Khalilov, R.; Sugiyama, M.;
Nosrati, H.; Kaboli, S.; Danafar, H.; Webster, T. J. Harnessing
nanoparticles for the efficient delivery of the CRISPR/Cas9 system.
Nano Today 2020, 34, 100895.
(57) Sasano, Y.; Nagasawa, K.; Kaboli, S.; Sugiyama, M.; Harashima,
S. CRISPR-PCS: a powerful new approach to inducing multiple
chromosome splitting in Saccharomyces cerevisiae. Sci. Rep. 2016, 6
(1), 1−11.
(58) Makarova, K. S.; Wolf, Y. I.; Alkhnbashi, O. S.; Costa, F.; Shah,
S. A.; Saunders, S. J.; Barrangou, R.; Brouns, S. J. J.; Charpentier, E.;
Haft, D. H.; Horvath, P.; Moineau, S.; Mojica, F. J. M.; Terns, R. M.;
Terns, M. P.; White, M. F.; Yakunin, A. F.; Garrett, R. A.; van der
Oost, J.; Backofen, R.; Koonin, E. V. An updated evolutionary
classification of CRISPR−Cas systems. Nat. Rev. Microbiol. 2015, 13
(11), 722−736.
(59) Shmakov, S.; Smargon, A.; Scott, D.; Cox, D.; Pyzocha, N.;
Yan, W.; Abudayyeh, O. O.; Gootenberg, J. S.; Makarova, K. S.; Wolf,
Y. I.; Severinov, K.; Zhang, F.; Koonin, E. V. Diversity and evolution
of class 2 CRISPR−Cas systems. Nat. Rev. Microbiol. 2017, 15 (3),
169−182.
(60) Chen, J. S.; Ma, E.; Harrington, L. B.; Da Costa, M.; Tian, X.;
Palefsky, J. M.; Doudna, J. A. CRISPR-Cas12a target binding
unleashes indiscriminate single-stranded DNase activity. Science
2018, 360 (6387), 436−439.
(61) East-Seletsky, A.; O’Connell, M. R.; Knight, S. C.; Burstein, D.;
Cate, J. H.; Tjian, R.; Doudna, J. A. Two distinct RNase activities of
CRISPR-C2c2 enable guide-RNA processing and RNA detection.
Nature 2016, 538 (7624), 270−273.
(62) Mohammadinejad, R.; Dehshahri, A.; Sassan, H.; Behnam, B.;
Ashrafizadeh, M.; Samareh Gholami, A.; Pardakhty, A.; Mandegary, A.
Preparation of carbon dot as a potential CRISPR/Cas9 plasmid
delivery system for lung cancer cells. Minerva Biotecnologica 2020, 32
(3), 106−13.
(63) Cong, L.; Ran, F. A.; Cox, D.; Lin, S.; Barretto, R.; Habib, N.;
Hsu, P. D.; Wu, X.; Jiang, W.; Marraffini, L. A.; Zhang, F. Multiplex
genome engineering using CRISPR/Cas systems. Science 2013, 339
(6121), 819−823.
(64) Pardee, K.; Green, A. A.; Takahashi, M. K.; Braff, D.; Lambert,
G.; Lee, J. W.; Ferrante, T.; Ma, D.; Donghia, N.; Fan, M.; Daringer,
N. M.; Bosch, I.; Dudley, D. M.; O’Connor, D. H.; Gehrke, L.;
Collins, J. J. Rapid, low-cost detection of Zika virus using
programmable biomolecular components. Cell 2016, 165 (5),
1255−1266.
(65) Myhrvold, C.; Freije, C. A.; Gootenberg, J. S.; Abudayyeh, O.
O.; Metsky, H. C.; Durbin, A. F.; Kellner, M. J.; Tan, A. L.; Paul, L.

ACS Sensors pubs.acs.org/acssensors Review

https://dx.doi.org/10.1021/acssensors.0c02312
ACS Sens. XXXX, XXX, XXX−XXX

N

https://dx.doi.org/10.1021/acsnano.0c03697
https://dx.doi.org/10.3389/fnano.2020.589832
https://dx.doi.org/10.3389/fnano.2020.589832
https://dx.doi.org/10.1136/bmj.m2516
https://dx.doi.org/10.1136/bmj.m2516
https://dx.doi.org/10.1136/bmj.m2516
https://dx.doi.org/10.1016/j.isci.2020.101406
https://dx.doi.org/10.1016/j.isci.2020.101406
https://dx.doi.org/10.1021/acsnano.0c02823
https://dx.doi.org/10.1021/acsnano.0c02823
https://dx.doi.org/10.1021/acsnano.0c02823
https://dx.doi.org/10.1021/acsnano.0c02624
https://dx.doi.org/10.1021/acsnano.0c02624
https://dx.doi.org/10.3346/jkms.2020.35.e86
https://dx.doi.org/10.3346/jkms.2020.35.e86
https://dx.doi.org/10.7326/M20-0504
https://dx.doi.org/10.7326/M20-0504
https://dx.doi.org/10.7326/M20-0504
https://dx.doi.org/10.3390/jcm9030623
https://dx.doi.org/10.3390/jcm9030623
https://dx.doi.org/10.3390/jcm9030623
https://dx.doi.org/10.1056/NEJMc2001737
https://dx.doi.org/10.1056/NEJMc2001737
https://dx.doi.org/10.1586/14737159.5.2.209
https://dx.doi.org/10.1042/CS20050086
https://dx.doi.org/10.1042/CS20050086
https://dx.doi.org/10.1016/j.bios.2020.112430
https://dx.doi.org/10.1016/j.bios.2020.112430
https://dx.doi.org/10.1007/s00705-020-04737-w
https://dx.doi.org/10.1007/s00705-020-04737-w
https://dx.doi.org/10.1007/s00705-020-04737-w
https://dx.doi.org/10.1038/jid.2013.120
https://dx.doi.org/10.1242/jcs.00633
https://dx.doi.org/10.1242/jcs.00633
https://dx.doi.org/10.1016/j.mib.2013.05.001
https://dx.doi.org/10.1586/14737159.2016.1133298
https://dx.doi.org/10.1586/14737159.2016.1133298
https://dx.doi.org/10.1038/nmeth.1419
https://dx.doi.org/10.1038/nmeth.1419
https://dx.doi.org/10.1016/j.jcv.2015.06.082
https://dx.doi.org/10.1016/j.jcv.2015.06.082
https://dx.doi.org/10.1007/s00018-020-03449-3
https://dx.doi.org/10.4149/BLL_2020_005
https://dx.doi.org/10.4149/BLL_2020_005
https://dx.doi.org/10.1016/j.nantod.2020.100895
https://dx.doi.org/10.1016/j.nantod.2020.100895
https://dx.doi.org/10.1038/srep30278
https://dx.doi.org/10.1038/srep30278
https://dx.doi.org/10.1038/nrmicro3569
https://dx.doi.org/10.1038/nrmicro3569
https://dx.doi.org/10.1038/nrmicro.2016.184
https://dx.doi.org/10.1038/nrmicro.2016.184
https://dx.doi.org/10.1126/science.aar6245
https://dx.doi.org/10.1126/science.aar6245
https://dx.doi.org/10.1038/nature19802
https://dx.doi.org/10.1038/nature19802
https://dx.doi.org/10.23736/S1120-4826.20.02618-X
https://dx.doi.org/10.23736/S1120-4826.20.02618-X
https://dx.doi.org/10.1126/science.1231143
https://dx.doi.org/10.1126/science.1231143
https://dx.doi.org/10.1016/j.cell.2016.04.059
https://dx.doi.org/10.1016/j.cell.2016.04.059
pubs.acs.org/acssensors?ref=pdf
https://dx.doi.org/10.1021/acssensors.0c02312?ref=pdf


M.; Parham, L. A.; Garcia, K. F.; Barnes, K. G.; Chak, B.; Mondini, A.;
Nogueira, M. L.; Isern, S.; Michael, S. F.; Lorenzana, I.; Yozwiak, N.
L.; MacInnis, B. L.; Bosch, I.; Gehrke, L.; Zhang, F.; Sabeti, P. C.
Field-deployable viral diagnostics using CRISPR-Cas13. Science 2018,
360 (6387), 444−448.
(66) Gootenberg, J. S.; Abudayyeh, O. O.; Lee, J. W.; Essletzbichler,
P.; Dy, A. J.; Joung, J.; Verdine, V.; Donghia, N.; Daringer, N. M.;
Freije, C. A.; Myhrvold, C.; Bhattacharyya, R. P.; Livny, J.; Regev, A.;
Koonin, E. V.; Hung, D. T.; Sabeti, P. C.; Collins, J. J.; Zhang, F.
Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 2017, 356
(6336), 438−442.
(67) Gootenberg, J. S.; Abudayyeh, O. O.; Kellner, M. J.; Joung, J.;
Collins, J. J.; Zhang, F. Multiplexed and portable nucleic acid
detection platform with Cas13, Cas12a, and Csm6. Science 2018, 360
(6387), 439−444.
(68) Kellner, M. J.; Koob, J. G.; Gootenberg, J. S.; Abudayyeh, O.
O.; Zhang, F. SHERLOCK: nucleic acid detection with CRISPR
nucleases. Nat. Protoc. 2019, 14 (10), 2986−3012.
(69) Eldin, C.; Parola, P.; Raoult, D. Limitations of diagnostic tests
for bacterial infections. Med́ecine et Maladies Infectieuses 2019, 49 (2),
98−101.
(70) Kralik, P.; Ricchi, M. A basic guide to real time PCR in
microbial diagnostics: definitions, parameters, and everything. Front.
Microbiol. 2017, 8, 108.
(71) Wang, Q.; Liu, S.; Liu, Z.; Ke, Z.; Li, C.; Yu, X.; Chen, S.; Guo,
D. Genome scale screening identification of SaCas9/gRNAs for
targeting HIV-1 provirus and suppression of HIV-1 infection. Virus
Res. 2018, 250, 21−30.
(72) Pomeroy, E. J.; Hunzeker, J. T.; Kluesner, M. G.; Lahr, W. S.;
Smeester, B. A.; Crosby, M. R.; Lonetree, C.-l.; Yamamoto, K.;
Bendzick, L.; Miller, J. S.; Geller, M. A.; Walcheck, B.; Felices, M.;
Webber, B. R.; Starr, T. K.; Moriarity, B. S. A Genetically Engineered
Primary Human Natural Killer Cell Platform for Cancer Immuno-
therapy. Mol. Ther. 2020, 28 (1), 52−63.
(73) Otten, A. B.; Sun, B. K. Research Techniques Made Simple:
CRISPR Genetic Screens. J. Invest. Dermatol. 2020, 140 (4), 723−
728. e1.
(74) Mustafa, M.; Makhawi, A. SHERLOCK and DETECTR:
CRISPR-Cas Systems as Potential Rapid Diagnostic Tools for
Emerging Infectious Diseases. J. Clin. Microbiol. 2020 ,
DOI: 10.1128/JCM.00745-20
(75) Ding, X.; Yin, K.; Li, Z.; Liu, C. All-in-One dual CRISPR-
cas12a (AIOD-CRISPR) assay: a case for rapid, ultrasensitive and
visual detection of novel coronavirus SARS-CoV-2 and HIV virus.
bioRxiv 2020.
(76) Lucia, C.; Federico, P.-B.; Alejandra, G. C. An ultrasensitive,
rapid, and portable coronavirus SARS-CoV-2 sequence detection
method based on CRISPR-Cas12. bioRxiv 2020.
(77) Wang, X.; Zhong, M.; Liu, Y.; Ma, P.; Dang, L.; Meng, Q.;
Wan, W.; Ma, X.; Liu, J.; Yang, G.; Yang, Z.; Huang, X.; Liu, M. Rapid
and sensitive detection of COVID-19 using CRISPR/Cas12a-based
detection with naked eye readout, CRISPR/Cas12a-NER. Science
Bulletin 2020, 65, 1436.
(78) Huang, Z.; Tian, D.; Liu, Y.; Lin, Z.; Lyon, C. J.; Lai, W.; Fusco,
D.; Drouin, A.; Yin, X.; Hu, T.; Ning, B. Ultra-sensitive and high-
throughput CRISPR-Powered COVID-19 diagnosis. Biosens. Bioelec-
tron. 2020, 164, 112316.
(79) Arizti-Sanz, J.; Freije, C. A.; Stanton, A. C.; Boehm, C. K.;
Petros, B. A.; Siddiqui, S.; Shaw, B. M.; Adams, G.; Kosoko-
Thoroddsen, T.-S. F.; Kemball, M. E. Integrated sample inactivation,
amplification, and Cas13-based detection of SARS-CoV-2. bioRxiv
2020.
(80) Yoshimi, K.; Takeshita, K.; Yamayoshi, S.; Shibumura, S.;
Yamauchi, Y.; Yamamoto, M.; Yotsuyanagi, H.; Kawaoka, Y.;
Mashimo, T. Rapid and accurate detection of novel coronavirus
SARS-CoV-2 using CRISPR-Cas3. medRxiv 2020.
(81) Ali, Z.; Aman, R.; Mahas, A.; Rao, G. S.; Tehseen, M.; Marsic,
T.; Salunke, R.; Subudhi, A. K.; Hala, S. M.; Hamdan, S. M.; Pain, A.;
Alofi, F. S.; Alsomali, A.; Hashem, A. M.; Khogeer, A.; Almontashiri,

N. A.M.; Abedalthagafi, M.; Hassan, N.; Mahfouz, M. M. iSCAN: An
RT-LAMP-coupled CRISPR-Cas12 module for rapid, sensitive
detection of SARS-CoV-2. Virus Res. 2020, 288, 198129.
(82) Guo, L.; Sun, X.; Wang, X.; Liang, C.; Jiang, H.; Gao, Q.; Dai,
M.; Qu, B.; Fang, S.; Mao, Y.; Chen, Y.; Feng, G.; Gu, Q.; Wang, R.
R.; Zhou, Q.; Li, W. SARS-CoV-2 detection with CRISPR diagnostics.
Cell Discovery 2020, 6 (1), 1−4.
(83) Ooi, K. H.; Tay, J. W. D.; Teo, S. Y.; Liu, M. M.; Kaewsapsak,
P.; Jin, S.; Gao, Y.-G.; Tan, M. H. A CRISPR-based SARS-CoV-2
diagnostic assay that is robust against viral evolution and RNA editing.
bioRxiv 2020.
(84) Rauch, J. N.; Valois, E.; Solley, S. C.; Braig, F.; Lach, R. S.;
Baxter, N. J.; Kosik, K. S.; Arias, C.; Acosta-Alvear, D.; Wilson, M. Z.
A Scalable, easy-to-deploy, protocol for Cas13-based detection of
SARS-CoV-2 genetic material. bioRxiv 2020.
(85) Joung, J.; Ladha, A.; Saito, M.; Segel, M.; Bruneau, R.; Huang,
M.-l. W.; Kim, N.-G.; Yu, X.; Li, J.; Walker, B. D. Point-of-care testing
for COVID-19 using SHERLOCK diagnostics. medRxiv 2020.
(86) Ramachandran, A.; Huyke, D. A.; Sharma, E.; Sahoo, M. K.;
Banaei, N.; Pinsky, B. A.; Santiago, J. G. Electric-field-driven
microfluidics for rapid CRISPR-based diagnostics and its application
to detection of SARS-CoV-2. bioRxiv 2020.
(87) Zhang, F.; Abudayyeh, O. O.; Gootenberg, J. S. A protocol for
detection of COVID-19 using CRISPR diagnostics; Broad Institute,
2020; Vol 8.
(88) Bazak, R.; Houri, M.; El Achy, S.; Hussein, W.; Refaat, T.
Passive targeting of nanoparticles to cancer: A comprehensive review
of the literature. Mol. Clin. Oncol. 2014, 2 (6), 904−908.
(89) Ali, Z.; Aman, R.; Mahas, A.; Rao, G. S.; Tehseen, M.; Marsic,
T.; Salunke, R.; Subudhi, A. K.; Hala, S. M.; Hamdan, S. M.; Pain, A.;
Alofi, F. S.; Alsomali, A.; Hashem, A. M.; Khogeer, A.; Almontashiri,
N. A.M.; Abedalthagafi, M.; Hassan, N.; Mahfouz, M. M. iSCAN: An
RT-LAMP-coupled CRISPR-Cas12 module for rapid, sensitive
detection of SARS-CoV-2. Virus Res. 2020, 288, 198129.
(90) Corman, V. M; Landt, O.; Kaiser, M.; Molenkamp, R.; Meijer,
A.; Chu, D. K.; Bleicker, T.; Brunink, S.; Schneider, J.; Schmidt, M. L.;
Mulders, D. G.; Haagmans, B. L; van der Veer, B.; van den Brink, S.;
Wijsman, L.; Goderski, G.; Romette, J.-L.; Ellis, J.; Zambon, M.;
Peiris, M.; Goossens, H.; Reusken, C.; Koopmans, M. P.; Drosten, C.
Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-
PCR. Eurosurveillance 2020, 25 (3), 2000045.
(91) Feng, H.; Liu, Y.; Lv, M.; Zhong, J. A case report of COVID-19
with false negative RT-PCR test: necessity of chest CT. Jpn. J. Radiol.
2020, 38, 409.
(92) Li, Y.; Yao, L.; Li, J.; Chen, L.; Song, Y.; Cai, Z.; Yang, C.
Stability issues of RT-PCR testing of SARS-CoV-2 for hospitalized
patients clinically diagnosed with COVID-19. J. Med. Virol. 2020, 92,
903.
(93) Pan, Y.; Long, L.; Zhang, D.; Yuan, T.; Cui, S.; Yang, P.; Wang,
Q.; Ren, S. Potential false-negative nucleic acid testing results for
Severe Acute Respiratory Syndrome Coronavirus 2 from thermal
inactivation of samples with low viral loads. Clin. Chem. 2020, 66 (6),
794−801.
(94) Wu, J.; Liu, J.; Li, S.; Peng, Z.; Xiao, Z.; Wang, X.; Yan, R.; Luo,
J. Detection and analysis of nucleic acid in various biological samples
of COVID-19 patients. Travel medicine and infectious disease 2020, 37,
101673.
(95) Xiao, A. T.; Tong, Y. X.; Zhang, S. False-negative of RT-PCR
and prolonged nucleic acid conversion in COVID-19: rather than
recurrence. J. Med. Virol. 2020, 92, 1755.
(96) Huang, W.; Yu, L.; Wen, D.; Wei, D.; Sun, Y.; Zhao, H.; Ye, Y.;
Chen, W.; Zhu, Y.; Wang, L. A CRISPR-Cas12a-based specific
enhancer for more sensitive detection of SARS-CoV-2 infection.
medRxiv 2020.
(97) Li, S.-Y.; Cheng, Q.-X.; Liu, J.-K.; Nie, X.-Q.; Zhao, G.-P.;
Wang, J. CRISPR-Cas12a has both cis-and trans-cleavage activities on
single-stranded DNA. Cell Res. 2018, 28 (4), 491−493.
(98) Harrington, L. B.; Burstein, D.; Chen, J. S.; Paez-Espino, D.;
Ma, E.; Witte, I. P.; Cofsky, J. C.; Kyrpides, N. C.; Banfield, J. F.;

ACS Sensors pubs.acs.org/acssensors Review

https://dx.doi.org/10.1021/acssensors.0c02312
ACS Sens. XXXX, XXX, XXX−XXX

O

https://dx.doi.org/10.1126/science.aas8836
https://dx.doi.org/10.1126/science.aam9321
https://dx.doi.org/10.1126/science.aaq0179
https://dx.doi.org/10.1126/science.aaq0179
https://dx.doi.org/10.1038/s41596-019-0210-2
https://dx.doi.org/10.1038/s41596-019-0210-2
https://dx.doi.org/10.1016/j.medmal.2018.12.004
https://dx.doi.org/10.1016/j.medmal.2018.12.004
https://dx.doi.org/10.3389/fmicb.2017.00108
https://dx.doi.org/10.3389/fmicb.2017.00108
https://dx.doi.org/10.1016/j.virusres.2018.04.002
https://dx.doi.org/10.1016/j.virusres.2018.04.002
https://dx.doi.org/10.1016/j.ymthe.2019.10.009
https://dx.doi.org/10.1016/j.ymthe.2019.10.009
https://dx.doi.org/10.1016/j.ymthe.2019.10.009
https://dx.doi.org/10.1016/j.jid.2020.01.018
https://dx.doi.org/10.1016/j.jid.2020.01.018
https://dx.doi.org/10.1128/JCM.00745-20
https://dx.doi.org/10.1128/JCM.00745-20
https://dx.doi.org/10.1128/JCM.00745-20
https://dx.doi.org/10.1128/JCM.00745-20?ref=pdf
https://dx.doi.org/10.1016/j.scib.2020.04.041
https://dx.doi.org/10.1016/j.scib.2020.04.041
https://dx.doi.org/10.1016/j.scib.2020.04.041
https://dx.doi.org/10.1016/j.bios.2020.112316
https://dx.doi.org/10.1016/j.bios.2020.112316
https://dx.doi.org/10.1016/j.virusres.2020.198129
https://dx.doi.org/10.1016/j.virusres.2020.198129
https://dx.doi.org/10.1016/j.virusres.2020.198129
https://dx.doi.org/10.1038/s41421-020-0174-y
https://dx.doi.org/10.3892/mco.2014.356
https://dx.doi.org/10.3892/mco.2014.356
https://dx.doi.org/10.1016/j.virusres.2020.198129
https://dx.doi.org/10.1016/j.virusres.2020.198129
https://dx.doi.org/10.1016/j.virusres.2020.198129
https://dx.doi.org/10.2807/1560-7917.ES.2020.25.3.2000045
https://dx.doi.org/10.2807/1560-7917.ES.2020.25.3.2000045
https://dx.doi.org/10.1007/s11604-020-00967-9
https://dx.doi.org/10.1007/s11604-020-00967-9
https://dx.doi.org/10.1002/jmv.25786
https://dx.doi.org/10.1002/jmv.25786
https://dx.doi.org/10.1093/clinchem/hvaa091
https://dx.doi.org/10.1093/clinchem/hvaa091
https://dx.doi.org/10.1093/clinchem/hvaa091
https://dx.doi.org/10.1016/j.tmaid.2020.101673
https://dx.doi.org/10.1016/j.tmaid.2020.101673
https://dx.doi.org/10.1002/jmv.25855
https://dx.doi.org/10.1002/jmv.25855
https://dx.doi.org/10.1002/jmv.25855
https://dx.doi.org/10.1038/s41422-018-0022-x
https://dx.doi.org/10.1038/s41422-018-0022-x
pubs.acs.org/acssensors?ref=pdf
https://dx.doi.org/10.1021/acssensors.0c02312?ref=pdf


Doudna, J. A. Programmed DNA destruction by miniature CRISPR-
Cas14 enzymes. Science 2018, 362 (6416), 839−842.
(99) Li, L.; Li, S.; Wu, N.; Wu, J.; Wang, G.; Zhao, G.; Wang, J.
HOLMESv2: a CRISPR-Cas12b-assisted platform for nucleic acid
detection and DNA methylation quantitation. ACS Synth. Biol. 2019,
8 (10), 2228−2237.
(100) Chertow, D. S. Next-generation diagnostics with CRISPR.
Science 2018, 360 (6387), 381−382.
(101) Gasiunas, G.; Barrangou, R.; Horvath, P.; Siksnys, V. Cas9−
crRNA ribonucleoprotein complex mediates specific DNA cleavage
for adaptive immunity in bacteria. Proc. Natl. Acad. Sci. U. S. A. 2012,
109 (39), E2579−E2586.
(102) Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J. A.;
Charpentier, E. A programmable dual-RNA−guided DNA endonu-
clease in adaptive bacterial immunity. Science 2012, 337 (6096), 816−
821.
(103) Li, S.-Y.; Cheng, Q.-X.; Wang, J.-M.; Li, X.-Y.; Zhang, Z.-L.;
Gao, S.; Cao, R.-B.; Zhao, G.-P.; Wang, J. CRISPR-Cas12a-assisted
nucleic acid detection. Cell discovery 2018, 4 (1), 1−4.
(104) Burns, M.; Valdivia, H. Modelling the limit of detection in
real-time quantitative PCR. Eur. Food Res. Technol. 2008, 226 (6),
1513−1524.
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