
 

www.aging-us.com 22947 AGING 

INTRODUCTION 
 

Diffuse large B-cell lymphoma (DLBCL), the most 

frequent pathologic subtype of malignant lymphoma, 

poses challenges for classification and treatment [1]. 

Moreover, evidence from clinical and biological studies 

has indicated that DLBCL is an aggressive severe and 

complicated disease with a broad spectrum of genetic, 

phenotypic and clinical heterogeneities [2]. Despite a vast 

improvement in the survival rate (50% ~ 60%), the 

heterogeneous nature of this disease elicits different 

survival outcomes for DLBCL patients undergoing 

routine treatment (rituximab, cyclophosphamide, 

doxorubicin, vincristine, prednisone (R-CHOP)) [3]. In 

general, finding novel anti-DLBCL pharmaceutical 
targets, either alone or in combination with R-CHOP 

therapy, is crucial for survival enhancement or alternative 

measures for ineligible, relapsed or refractory cases [4]. 
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ABSTRACT 
 

Diffuse large B-cell lymphoma (DLBCL) presents a great clinical challenge and has a poor prognosis, with 
immune-related genes playing a crucial role. We aimed to develop an immune-related prognostic signature for 
improving prognosis prediction in DLBCL. 
Samples from the GSE31312 dataset were randomly allocated to discovery and internal validation cohorts. 
Univariate Cox, random forest, LASSO regression and multivariate Cox analyses were utilized to develop a 
prognostic signature, which was verified in the internal validation cohort, entire validation cohort and external 
validation cohort (GSE10846). The tumor microenvironment was investigated using the CIBERSORT and 
ESTIMATE tools. Gene set enrichment analysis (GSEA) was further applied to analyze the entire GSE31312 
cohort. We identified four immune-related genes (CD48, IL1RL, PSDM3, RXFP3) significantly associated with 
overall survival. Based on discovery and validation cohort analyses, this four-gene signature could classify 
patients into high- and low-risk groups, with significantly different prognoses. Activated memory CD4 T cells 
and activated dendritic cells were significantly decreased in the high-risk group, and these patients had lower 
immune scores. GSEA revealed enrichment of signaling pathways, such as T cell receptor, antigen receptor-
mediated, antigen processing and presentation of peptide antigen via MHC class I, in the low-risk group. In 
conclusion, a robust signature based on four immune-related genes was successfully constructed for predicting 
prognosis in DLBCL patients. 
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The international prognostic index (IPI), which includes 

age, tumor stage, Eastern Cooperative Oncology Group 

(ECOG) performance, number of extranodal sites and 

lactate dehydrogenase (LDH) level, is widely employed 

for the clinical evaluation of DLBCL patient prognosis 

[5]. However, IPI does not consider the molecular 

heterogeneity of DLBCL, and the marked differences 

in patient survival, even among patients with similar or 

the same IPI [6]. Current DLBCL studies focus on 

recognizing novel risk stratification and prognostic 

biomarkers to predict survival outcomes and treatment 

response or to identify patients eligible for more 

aggressive therapies. At the same time, prognostic 

biomarkers may shed light on current and future 

potential therapies. 

 

With advances in human gene sequencing technology, 

increasing attention has been given to gene-based 

biomarkers [7]. Furthermore, there is growing evidence 

that immune-related genes and the tumor immune 

microenvironment (TME) are crucial for malignant 

tumor progression and response to therapy [8, 9]. 

Therefore, an immune-related gene signature that 

enables physicians to estimate DLBCL prognosis and 

characterize the TME in these patients is urgently 

needed. 

Here, we developed a reliable prognostic signature (PS) 

for DLBCL using immune-related genes and validated 

the clinical feasibility of this signature in DLBCL 

patients. Immune cell infiltration and the TME of 

patients with different risk scores are comprehensively 

described. 

 

RESULTS 
 

Prognostic genes recognition and PS construction 

 

Overall, 426 DLBCL patients from the GSE31312 

dataset were arbitrarily placed into a discovery cohort 

(DC, n = 213) or an internal validation cohort (IVC, n = 

213). We then conducted univariate Cox regression 

analysis on the immune-related genes expression 

profiles in the DC and 26 candidate genes were 

significantly correlated with overall survival (OS) (p < 

0.001) (Figure 1A). To retrieve the most significant 

genes with predictive abilities, random forest and 

LASSO regression analyses were performed 

synchronously to reduce the volume and select the most 

relevant genes (Figure 1B, 1C). Eleven and eighteen 

genes were chosen, respectively; ten genes intersected 

and were deemed to have the greatest predictive power 

for OS (Figure 1D). Multivariable Cox regression was 

 

 
 

Figure 1. The process of variable selection. (A) Forest map of 26 candidate immune-related genes selected by univariate Cox regression 
analysis associated with DLBCL overall survival in the discovery cohort. (B, C) The performance of least absolute shrinkage and selection 
operator (LASSO) analysis. (D) LASSO and random forest analysis intersecting genes were selected. (E) Forest map of multivariate Cox 
regression analysis to establish a prognostic signature. 
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then carried out (Figure 1E), which revealed four risk 

genes: CD48 (HR = 0.476, 95% CI: 0.282–0.802, p = 

0.005), IL1RL1 (HR = 4.160, 95% CI: 1.309–13.219, 

p = 0.016), PSMD3 (HR = 3.182, 95% CI: 1.585–6.391, 

p = 0.001), and RXFP3 (HR = 5.915, 95% CI: 2.239–

15.624, p < 0.001). 

 

Furthermore, a risk score (RS) system was established, 

according to the levels of these four genes and the 

corresponding coefficient obtained from multivariable 

Cox regression analysis. The formula was as follows: 

RS = (−0.794 × CD48 levels) + (2.243 × IL1RL1 levels) 

+ (1.440 × PSDM3 levels) + (1.348 × RXFP3 levels). 

We then computed the RS for each patient and set the 

median as the cutoff to divide them into high-risk (HR) 

and low-risk (LR) groups. 

 

As shown in Figure 2A, Kaplan-Meier survival analysis 

of the DC showed that HR patients exhibited 

significantly worse prognosis, compared to LR patients 

(log-rank p < 0.001). The OS rates at 3 and 5 years for 

the HR patients were 69.33% and 54.54%, respectively, 

while the corresponding rates for the LR patients were 

85.44% and 83.31%, respectively. The PS area under 

the curve (AUC) analysis demonstrated its excellent 

accuracy in estimating DLBCL patient OS (1-year AUC 

= 0.763, 3-year AUC = 0.767, 5-year AUC = 0.706) 

(Figure 2B). 

 

We next plotted risk curves and survival status scatter 

plots to illustrate the RS and OS of each DLBCL patient 

in the DC, and a worse prognosis was significantly 

associated with a higher RS (Figure 2C, 2D). Moreover, 

using a heatmap, we demonstrated the HR and LR gene 

expression profiles of both groups (Figure 2E). We 

revealed that CD48 was significantly upregulated in LR 

patients and that IL1RL, PSDM3, and RXFP3 were 

strongly elevated in HR patients. 

 

Moreover, the PS correlated significantly with OS in 

our univariate analysis (HR = 4.113, 95% CI: 2.393–

7.069, p < 0.001) (Figure 3A). After multivariable 

 

 
 

Figure 2. Evaluation of the prognostic signature in the discovery cohort. (A) Kaplan-Meier plots of overall survival between high- 

and low-risk patients. (B) Time-dependent receiver operating characteristic (ROC) curve analysis. (C) The risk score distribution. (D) The 
survival status distribution. (E) Expression heatmap of the four immune-related risk genes. 
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adjustment by other clinical factors, including stage, 

ECOG, LDH, number of sites of extranodal disease and 

subtype, the PS remained a significant and independent 

prognostic indicator in the DC (HR = 3.458, 95% CI: 

1.992–6.005, p < 0.001) (Figure 3B). 

 

Verification of the PS performance 

 

To further assess the robustness of the PS, we 

performed similar analyses in the IVC, entire 

GSE31312 cohort (EGC) and external validation cohort 

(EVC) from the GSE10846 dataset, and all cohorts 

yielded similar results. Kaplan-Meier survival analysis 

revealed markedly worse OS in HR patients (Figure 

4A–4C). In univariable Cox regression analysis, an 

elevated RS was an OS risk factor in all validation 

cohorts (IVC: HR = 2.480, 95% CI: 1.532–4.014, p < 

0.001 (Figure 4D); EGC: HR = 2.998, 95% CI: 2.104–

4.272, p < 0.001 (Figure 4E); EVC: HR = 1.931, 95% 

CI: 1.310–2.846, p = 0.001 (Figure 4F)). A similar 

result was obtained in multivariate Cox regression 

analysis, in which the PS was analyzed in combination 

 

 
 

Figure 3. Evaluation of the independent prognostic value of the prognostic signature in the discovery cohort. (A) Univariate 

and (B) multivariate Cox regression analyses of the signature and clinical factors. 
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with other clinical factors (Figure 4G–4I). Furthermore, 

stratification analyses in the EGC indicated worse OS for 

HR patients in each stratum, including age, sex, stage, 

ECOG, LDH, number of sites of extranodal disease and 

subtype, than LR patients, except in the subgroup of 

those with the unclassified subtype (Supplementary 

Figure 1). Based on these data, our established PS is a 

robust and independent predictor of OS in different 

populations. In addition, HR patients tend to have shorter 

progression-free survival (PFS) (Supplementary Figure 

2). HR patients achieved a remarkably low overall 

response rate (ORR) and complete remission (CR) rate 

(ORR, 86.38% vs. 94.84%, p = 0.003; CR, 66.20% vs. 

84.04%, p < 0.001) (Table 1). 

 

Evaluation of the relationship between the PS and 

clinical factors 

 

The relationship between the PS and different clinical 

factors was assessed using the EGC. Compared with 

patients aged ≤ 60, the RS was increased in patients 

aged > 60 (p = 0.002, Figure 5A). A similar 

phenomenon was observed for stage (p = 0.014, Figure 

5B), number of sites of extranodal disease (p = 0.001, 

Figure 5C) and LDH (p = 0.004, Figure 5D). However, 

we did not observe differences in RS regarding 

ECOG classification (p = 0.12, Figure 5E) or subtype 

classification (p = 0.229, Figure 5F). 

 

Association between the PS and TME 

 

The proportions of follicular helper T cells (p = 0.044), 

activated NK cells (p = 0.001), monocytes (p = 0.002), M2 

macrophages (p = 0.030) and activated mast cells (p = 

0.001) were markedly enhanced in HR patients. 

Conversely, the numbers of activated memory CD4 T cells 

(p < 0.001), gamma delta T cells (p < 0.001), stimulated 

dendritic cells (p = 0.007) and resting mast cells (p = 

0.031) were significantly decreased in this group (Figure 

6A). It was demonstrated that an elevated RS was strongly 

correlated with tumor purity (p < 0.0001) through the 

ESTIMATE algorithm. However, an elevated RS 

displayed an inverse correlation with the stromal (p < 

0.05), immune (p < 0.0001) and ESTIMATE scores (p < 

0.0001) (Figure 6B–6E). Hence, the PS may be reflective 

of the TME status in DLBCL patients. 

 

Gene set enrichment analysis (GSEA) for functional 

annotation of the PS 

 

According to our results, immune-related biological 

networks were enriched in LR patients, compared to HR  

 

 
 

Figure 4. Validation of the prognostic signature. Kaplan-Meier plots of overall survival between high- and low-risk patients in the 

(A) internal validation cohort, (B) entire GSE31312 cohort, and (C) external validation cohort. Univariate Cox regression analyses in the (D) 
internal validation cohort, (E) entire GSE31312 cohort, and (F) external validation cohort. Multivariate Cox regression analysis in the 
(G) internal validation cohort, (H) entire GSE31312 cohort, and (I) external validation cohort. 
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Table 1. Treatment responses of patients in the entire GSE31312 cohort. 

 

Patients in the entire GSE31312 cohort (n = 426)  
nodal-DLBCL 

p 
High-risk group 

n (%) 
Low-risk group 

n (%) 

Total number 213 (50) 213 (50)  

ORR 184 (86.38) 202 (94.84) 0.003* 

CR 141 (66.20) 179 (84.04) <0.001** 

PR 43 (20.18) 23 (10.80) 0.007* 

PD/SD 15/14 (13.62) 6/5 (5.16) 0. 003* 

Abbreviations: ORR: overall response rate; CR: complete response; PR: partial response; SD: stable disease; PD: progressive 
disease. *p < 0.05; **p < 0.001. 

 

patients. We identified three immune-related GO terms 

in the GSEA results (Figure 7), including T cell 

receptor, antigen receptor mediated, antigen processing 

and presentation of peptide antigen via the MHC class I 

signaling pathway. 

 

DISCUSSION 
 

Most traditional biomarkers used thus far have weak 

prognostic power and cannot reflect the status of tumor 

immune infiltration in DLBCL. Immune-related genes 

and cells participate throughout the process of 

malignant tumor initiation, proliferation, and 

progression [10]. Previous reports indicated that 

immune-associated long noncoding RNA [11], immune 

cell constitution [12] and B7-CD28 gene family 

expression [13] can estimate DLBCL patient prognosis. 

Here, we developed a novel PS, based on immune-

related genes to estimate DLBCL patient prognosis. 

 

Our signature contains four immune-related genes with 

prognostic power. Among them, CD48 is a protective 

factor with HR < 1; the three other genes (IL1RL1, 

PSMD3, RXFP3) are risk factors with HR > 1.CD48 is 

a member of the signaling lymphocyte activation 

molecule family that contributes to the activation and 

proliferation of T cells, antigen presenting cells and 

granulocytes by binding to CD2 [14]. Wang et al. 

reported that high CD48 expression activates NK cell 

function and reverses acute myeloid leukemia immune 

escape [15]. IL1RL1, an IL-1-type receptor, is detected 

in a subcategory of T cells and mature myeloid cells 

[16]. The cytokine IL-33 is the only reported ligand for 

IL1RL1. The IL-33/IL1RL1 network was shown to 

 

 
 

Figure 5. Relationship between the prognostic signature and clinical factors. (A) Age. (B) Stage. (C) Number of extranodal sites. 

(D) LDH. (E) Subtype. (F) ECOG (*p < 0.05, ****p < 0.0001). 
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contribute to multiple types of blood malignancies [17]. 

The IL1RL1/IL-33 axis can remodel the tumor stroma 

or microenvironment to promote malignancy by 

recruiting a cohort of immune cells [18]. PSMD3 is a 

member of the 19 S regulatory complex in the 26 S 

proteasome, participating in cell cycle progression, 

apoptosis, and DNA damage repair [19]. In acute 

myeloid leukemia, patients with high level of PSMD3 

mRNA have a poor prognosis [20]. PSMD3 promoted 

NF-κB protein expression and was upregulated in TKI-

resistant chronic myeloid leukemia (CML) cells. The 

level of PSMD3 mRNA was higher in patients with 

blast phase than in patients with the chronic phase of the 

disease [21]. RXFP3 belongs to the insulin superfamily 

 

 
 

Figure 6. Relationship between the prognostic signature and the tumor immune microenvironment. (A) Relationship between 
the prognostic signature and immune cell infiltration. (B) Stromal score. (C) Immune score. (D) ESTIMATE score. (E) Tumor purity. 
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[22]. When combined with the ligand, RXFP3 activates 

downstream kinase pathways via multiple networks, 

such as, protein kinase C. The RXFP3 methylation 

status has a strong correlation with microsatellite 

instability in endometrial cancer [23]. Overall, the role 

of these four genes in DLBCL development and 

immune regulation deserves further investigation. 

 

The signature developed in this study demonstrated 

excellent predictive performance and effectively 

classified DLBCL patients into HR and LR categories. In 

the DC, the HR patients exhibited markedly worse OS, 

than the LR patients. Furthermore, the immune-related 

signature is an independent stand-alone prognostic factor, 

based on multivariate analysis. The results from the 

validation cohorts agreed with the above results. In 

addition, the signature showed a strong correlation with 

clinicopathologic factors. Therefore, this PS may serve as 

a reliable tool in guiding clinical work. 

 

Immune cells identify tumor cells and destroy them via 

immune surveillance [24, 25], and immune cell 

infiltration is a major determinant of DLBCL prognosis 

[26, 27]. In this study, the proportions of activated 

memory CD4 T and dendritic cells were lower, but 

those of M2 macrophages, monocytes and NK cells 

were significantly higher in HR patients. In general, 

CD4+ T, dendritic, and NK cells are crucial factors in 

antitumor immunity and have critical significance for 

cancer immunotherapy [28–30]. Previous studies have 

reported that high levels of CD4+ T cells are associated 

with improved survival outcomes in many malignancies 

[31], and mouse models of B–cell lymphoma suggest 

that CD4+ T cells are key to the establishment of an 

antitumor microenvironment [32]. Dendritic cells have 

a strong ability to present antigens, and improved 

antigen presentation has been shown to be a key 

determinant of survival in patients with DLBCL [33, 

34]. Indeed, Ciavarella et al. concluded that DLBCL 

patients with elevated amounts of dendritic and CD4+ 

T cells experienced prolonged OS. However, patients 

with a high number of activated NK cells experienced 

a worse prognosis [35], which is consistent with the 

results of this study. M2 macrophages are 

immunosuppressive cells and are thought to be involved 

in tumor immune evasion [36]. M2 macrophages are a 

crucial factor for poor survival outcomes and a stand-

alone indicator of short OS and PFS [37]. Larger 

amounts of immune and stromal cells equated to lower 

quantities of tumor cells [38]. Here, we found that an 

elevated RS correlated positively with tumor purity but 

negatively with immune, stromal and ESTIMATE 

scores. Hence, patients with elevated RSs have more 

tumor cells and fewer stromal cells. Finally, GSEA 

showed enrichment of immune-related biological 

processes in LR patients. Based on this evidence, the 

TME of patients with low RSs tends to display active 

immune status and enhanced immune defense. In 

contrast, that of patients with high-RSs tends to be 

suppressed. This may explain why the prognosis of HR 

patients was quite poor. 

 

The advantage of this study is that both internal and 

external validation were used to evaluate the PS. 

However, there were several limitations. First, as the 

data analyzed were downloaded from an online 

database, our study was retrospective. Second, there are 

no experimental data to confirm our findings. Thus, 

more functional studies on these four genes, alone and 

in combination, are needed to verify the predictive 

power of the PS and to explore possible immune-related 

pathways in depth. Our work was the first to report an 

immune-related gene PS that predicts OS in DLBCL 

patients. 

 

 
 

Figure 7. Gene set enrichment analysis (GSEA) for functional annotation of the prognostic signature.  (A) The T cell receptor 

signaling pathway. (B) The antigen receptor-mediated signaling pathway. (C) Antigen processing and presentation of peptide antigen via 
MHC class I. 
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In conclusion, the signature developed in this study can 

both predict DLBCL patient survival outcomes and 

reveal the immunologic status of DLBCL. The PS may 

be clinically employed to improve patient OS and 

individualized therapy methods based on RSs. However, 

both experimental and clinical research efforts are 

warranted to confirm the findings of this research. 

 

MATERIALS AND METHODS 
 

Data source and preprocessing 

 

Transcriptome data (.CEL files) for DLBCL patients 

were extracted from the GSE31312 and GSE10846 

datasets in the Gene Expression Omnibus (GEO) 

database (https://www.ncbi.nlm.nih.gov/geo/). The raw 

data were uniformly normalized with the robust 

multichip average (RMA) technique [39] using the 

“affy” and “affyPLM” packages, and gene expression 

profiles were performed on the GPL570 (Affymetrix 

Human Genome U133 Plus 2.0 Array) platform. For 

genes with several probes, gene expression values were 

generated with the median of multiple probes. 

 

After excluding patients without complete clinical 

information, 426 DLBCL patients (GSE31312 cohort) 

and 305 DLBCL patients (GSE10846 cohort) were 

examined in this study; the detailed clinical data are 

shown in Table 2. Immune-related genes were retrieved 

from the Immunology Database and Analysis Portal 

(ImmPort) database (https://www.immport.org) [40]. 

 

Generation of an immune‑related gene PS 

 

In total, 426 samples from the GSE31312 dataset were 

randomly allocated at a 1:1 ratio to discovery and IVCs 

using R software. A description and comparison of the 

baseline features of patients from the DC and IVC was 

conducted (Supplementary Table 1). Variables were 

analyzed via the chi-square test, and p < 0.05 was the 

significance threshold. 

 

Univariate analysis was performed to identify immune-

related genes strongly related to OS in DC (p < 0.001). 

Next, random forest analysis and least absolute 

shrinkage and selection operator (LASSO) analysis 

were conducted simultaneously. The overlapping genes 

were subjected to multivariate Cox analysis to fulfill 

variable selection, with p < 0.05 as the criterion. We 

then calculated the scorers, according to a linear 

combination of the gene levels and regression 

coefficient of the multivariate Cox analysis: RS = 

expmRNA1 × βmRNA1 + expmRNA2 × βmRNA2 … + expmRNAi 

× βmRNAi, where expmRNAi is the expression value of 

each gene, and βmRNAi is the regression coefficient of the 

multivariate analysis for the candidate gene. The 

patients were then separated into HR and LR groups, 

based on the median RS. The Kaplan-Meier log-rank 

test and time-dependent receiver operating characteristic 

(ROC) curve analysis were applied to validate PS 

performance. An area under the ROC curve (AUC) > 

0.60 was considered an acceptable prediction value; 

AUC > 0.75 was regarded as excellent for prediction. 

RS distribution plots, survival status scatter plots, and 

expression heatmaps of the four immune-related risk 

genes between the HR and LR groups were generated to 

assess PS, and stand-alone prognostic analysis was 

carried out to evaluate whether this signature was 

indeed an independent stand-alone predictor of OS. 

 

Application and verification of the immune‑related 

gene PS 

 

RSs for each patient in the IVC, the EGC and the EVC 

from the GSE10846 dataset were computed and 

assigned to two groups, according to the median. 

Kaplan-Meier log-rank tests and univariate and 

multivariate analyses were conducted to compare OS 

between the HR and LR groups. Kaplan-Meier log-rank 

tests were performed to compare PFS between the HR 

and LR groups in the DC, IVC and EGC. The treatment 

response in the EGC was analyzed by Pearson’s chi-

square test. 

 

Evaluation of the relationship between the PS and 

clinical factors 

 

To assess the predictive value of PS in DLBCL, we 

examined the correlation between PS and clinical 

factors in the EGC. Intergroup differences were 

analyzed by independent Student’s t-tests. Two-tailed 

p < 0.05 was set as the significance threshold. 

 

Association between the PS and TME 

 

The proportion of 22 immune cell subtypes based on 

expression profile data in the EGC was assessed using 

the CIBERSORT package [41], with permutations set 

at 1000. Cases with p < 0.05 according to the 

CIBERSORT results were included in further analyses. 

The Wilcoxon test was employed to compare 

differences in immune cell subtypes between the HR 

and LR groups. To further evaluate the association 

between this signature and the TME, the stromal, 

immune, and tumor purity scores were computed using 

the ESTIMATE algorithm [42]. Significance was 

considered at p < 0.05. 

 

GSEA 

 

GSEA [43] was performed to examine different 

biological processes between the HR and LR patients. 

https://www.ncbi.nlm.nih.gov/geo/
https://www.immport.org/
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Table 2. Clinical and pathological characteristics of patients with DLBCL in this study. 

Variables 
GSE31312  

N (%) 
GSE10846  

N (%) 

Age, years   

≤60 179 (42.02) 146 (47.87) 

>60 247 (57.98) 159 (52.13) 

Sex   

Female 183 (42.96) 134 (43.93) 

Male 243 (57.04) 171 (56.07) 

Stage   

I–II 200 (46.95) 144 (47.21) 

III–IV 226 (53.05) 161 (52.79) 

No. of extranodal sites   

<2 331 (77.70) 282 (92.46) 

≥2 95 (22.30) 23 (7.54) 

ECOG   

<2 350 (82.16) 230 (75.41) 

≥2 76 (17.84) 75 (24.59) 

LDH   

Normal 148 (34.74) 153 (50.16) 

Elevated 278 (65.26) 152 (49.87) 

Subtype   

GCB 203 (47.65) 133 (43.61) 

ABC 183 (42.96) 125 (40.98) 

Unclassified 40 (9.39) 47 (15.41) 

Abbreviations: ECOG: Eastern Cooperative Oncology Group; LDH: lactate dehydrogenase; GCB: germinal center B-cell-like 
lymphoma; ABC: activated B-cell-like lymphoma. 
 

The gene expression profiles of the EGC were evaluated 

with regard to Gene Ontology (GO) gene sets. The 

number of random sample permutations was set at 

1000, and enriched gene sets with a nominal p < 0.05 

and FDR < 0.25 were regarded as significant. 

 

Statistical analysis 

 

In this study, all statistical analyses were carried out 

with R version 3.6.3 (https://www.r-project.org/) and 

the corresponding packages. 

 

Abbreviations 
 

DLBCL: diffuse large B-cell lymphoma; ECOG: 

Eastern Cooperative Oncology Group; LDH: lactate 

dehydrogenase; GCB: germinal center B-cell-like 

lymphoma; ABC: activated B-cell-like; UC: 

unclassified type; OS: overall survival; CI: confidence 

interval; HR: hazard ratio; NES: normalized enrichment 

score; FDR: false discovery rate; DC: discovery cohort; 

IVC: internal validation cohort; EGC: entire GSE31312 

cohort; PS: prognostic signature; RS: risk score. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Stratification analyses of overall survival between high- and low-risk patients in different 
subgroups. (A) Age ≤ 60. (B) Age > 60. (C) Male. (D) Female. (E) Stage I–II. (F) Stage III–IV. (G) ECOG < 2. (H) ECOG ≥ 2. (I) LDH Normal. (J) LDH 

Elevated. (K) Number of extranodal sites < 2. (L) Number of extranodal sites ≥ 2. (M) Subtype GCB. (N) Subtype ABC. (O) Subtype Unclassified. 
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Supplementary Figure 2. Kaplan-Meier plots of progression-free survival between high- and low-risk patients. (A) Discovery 

cohort, (B) internal validation cohort, (C) entire GSE31312 cohort. 
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Supplementary Table 
 

Supplementary Table 1. Clinical and pathological characteristics of patients with DLBCL in discovery and internal 
validation cohort. 

Variables 
GSE31312  

N (%) 
GSE10846  

N (%) 

Age, years   

≤60 179 (42.02) 146 (47.87) 

>60 247 (57.98) 159 (52.13) 

Sex   

Female 183 (42.96) 134 (43.93) 

Male 243 (57.04) 171 (56.07) 

Stage   

I–II 200 (46.95) 144 (47.21) 

III–IV 226 (53.05) 161 (52.79) 

No. of extranodal sites   

<2 331 (77.70) 282 (92.46) 

≥2 95 (22.30) 23 (7.54) 

ECOG   

<2 350 (82.16) 230 (75.41) 

≥2 76 (17.84) 75 (24.59) 

LDH   

Normal 148 (34.74) 153 (50.16) 

Elevated 278 (65.26) 152 (49.87) 

Subtype   

GCB 203 (47.65) 133 (43.61) 

ABC 183 (42.96) 125 (40.98) 

Unclassified 40 (9.39) 47 (15.41) 

Abbreviations: ECOG: Eastern Cooperative Oncology Group; LDH: lactate dehydrogenase; GCB: germinal center B-cell-like 
lymphoma; ABC: activated B-cell-like lymphoma. Variables were checked via χ2-test. 

 


