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Abstract

Interleukin-6 (IL-6) is a pleiotropic cytokine involved in the regulation of the immune

response and inflammation. In this study, we investigated effect of the proinflammatory cyto-

kine interleukin-1β (IL-1β) on IL-6 expression in canine dermal fibroblasts. IL-1β induced IL-

6 mRNA expression and protein release in a time- and dose-dependent manner. When cells

were treated with inhibitors of mitogen-activated protein kinases (MAPKs), the extracellular

signal-regulated kinase (ERK) inhibitor FR180240 inhibited IL-1β-induced IL-6 mRNA

expression, but not SP600125 or SKF86002, which are c-Jun N-terminal kinase (JNK) and

p38 MAPK inhibitors, respectively. In cells treated with U0126, an inhibitor of MAPK/ERK

kinase (MEK), which activates ERK, IL-1β-induced IL-6 mRNA expression was also inhib-

ited. IL-1β stimulated ERK1/2 phosphorylation. In cells transfected with ERK1 and ERK2

isoform siRNAs, IL-1β-induced IL-6 mRNA expression was reduced. These observations

suggest that IL-1β induces IL-6 expression via ERK1/2 signaling pathway in canine dermal

fibroblasts.

Introduction

Interleukin-6 (IL-6) is a pleiotropic cytokine involved in the regulation of the immune

response and inflammation. In human, IL-6 is narrowly detectable in serum under physiologi-

cal conditions, but its concentration dramatically increases during early phases of inflamma-

tion [1, 2].

In dogs with inflammation experimentally induced by an injection of turpentine oil [3] or

canine sepsis models produced by administering infusions of either live Escherichia coli [4] or

lipopolysaccharide (LPS) [5–7], induction of high levels of serum IL-6 are observed. Further-

more, in dogs with naturally occurring systemic inflammatory response syndrome (SIRS) and

sepsis [8], joint inflammation caused by idiopathic immune-mediated polyarthropathy [9], or
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with metaphyseal osteopathy (MO), an inflammatory bone disease [10], high plasma IL-6 con-

centrations were observed. Therefore, IL-6 is likely a crucial cytokine for inflammatory process

in dogs and humans.

In the skin, the increase in IL-6 expression and production is associated with inflammatory

skin diseases, such as psoriasis [11, 12], lichen planus [13], systemic sclerosis [14], and systemic

lupus erythematosus [15]. Overexpression of IL-6 in the skin of rats has been demonstrated to

induce epidermal proliferation and inflammation [16]. IL-6 plays a crucial role in the pathogen-

esis of not only systemic but also local inflammation and is involved in the growth and differen-

tiation of numerous cell types, including cells of dermal and epidermal origin in the skin [17].

MAPKs (mitogen-activated protein kinases) are key enzymes that participate in the signal

transduction cascade from the extracellular environment to the nucleus of essentially every

eukaryotic cell type and are involved in directing cellular response to a diverse array of stimuli

including inflammatory cytokines [18]. MAPKs have three main pathways: the extracellular

signal-regulated kinase (ERK) 1/2, c-jun N-terminal kinase (JNK), and p38 MAPK [18, 19].

Fibroblasts, a major cellular component of connective tissue, produce inflammatory cyto-

kines and chemokines in response to numerous stress stimuli, such as bacterial endotoxins,

cytokines and growth factors, and participate in the regulation of inflammatory reactions

cooperatively with immune cells [20, 21]. Interleukin-1β is a potent pro-inflammatory cyto-

kine that is involved in host immune and inflammatory responses [22]. IL-1β stimulates IL-6

expression and release via MAPK signaling pathways in various human and rat cells [23–31].

In this study, we demonstrate that IL-1β mediates IL-6 expression via ERK1/2 in canine der-

mal fibroblasts.

Material and methods

Materials

TRIzol was obtained from Life Technologies Co. (Carlsbad, CA). CELLBANKER 1 plus

medium, PrimeScript RT Master Mix, SYBR Premix Ex Taq II, Thermal Cycler Dice Real

Time System II and TP900 DiceRealTime v4.02B were obtained from TaKaRa Bio Inc.

(Shiga, Japan). Rabbit monoclonal antibodies against human phospho-ERK1/2 (p-ERK1/2,

D13.14.4E) and rat total-ERK1/2 (t-ERK1/2, 137F5) were purchased from Cell Signaling Tech-

nology Japan, K.K. (Tokyo, Japan). Horseradish peroxidase-conjugated (HRP-conjugated)

anti-rabbit IgG antibody, ECL Western blotting Analysis System and ImageQuant LAS 4000

mini were purchased from GE Healthcare (Piscataway, NJ).

Polyvinylidene difluoride (PVDF) membranes and Mini-PROTEAN TGX gel were

obtained from Bio-Rad (Hercules, CA). Block Ace and Complete mini EDTA-free protease

inhibitor mixture were purchased from Roche (Mannheim, Germany). α-Modified Eagle min-

imum essential medium (α-MEM), phenylmethanesulfonyl fluoride (PMSF), sodium fluoride

and 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) were purchased from Wako

Pure Chemical Industries, Ltd. (Osaka, Japan). Canine IL-6 ELISA kit was purchased from

R&D Systems, Inc. (Minneapolis, MN). StatMate IV was obtained from ATMS (Tokyo,

Japan). Fetal bovine serum (FBS) was obtained from Biowest (France). U0126, FR180204,

SKF86002 and SP600125 were purchased from Sigma-Aldrich Inc. (St Louis, MO). Canine

recombinant IL-1β was purchased from Kingfisher Biotech, Inc. (Saint Paul, MN).

Cell culture

Dermal fibroblasts were prepared from dorsal skin of three healthy beagle dogs (3-year-old

male). This study was approved by Nihon University Animal Care and Use Committee

(AP13B051). Skin samples were collected after local anesthesia with 1% lidocaine and 10 μg/

IL-1β-induced IL-6 expression via ERK1/2

PLOS ONE | https://doi.org/10.1371/journal.pone.0220262 July 25, 2019 2 / 13

had no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0220262


mL adrenaline. To alleviate pain, butorphanol tartrate (0.2 mg/kg) was administered intrave-

nously after the procedure. Canine dermal fibroblasts were isolated by explant culture using a

method previously described [32, 33]. Briefly, canine dermis collected from the dorsal skin was

cut into 3-mm2 sections. Each explant was placed into 90 mm Petri dish, and attached explants

were maintained in a static-culture in an incubator at 5% CO2 and 37˚C using α-MEM supple-

mented with 10% FBS. The medium was changed once a week, and canine dermal fibroblasts

were obtained as outgrowth cells. Canine dermal fibroblasts were harvested using 0.25% tryp-

sin-EDTA once they reached 90–95% confluence. The collected cells were suspended using

CELLBANKER 1 plus medium at a density of 2 × 106 cells/500 μL, and 500 μL of the cell sus-

pension were placed into each sterilized serum tube. The tubes were then placed into a freezing

vessel (BICELL; Nihon Freezer Co., Ltd., Tokyo, Japan) and cryopreserved at -80˚C. Before

experiments, serum tubes were removed from the BICELL vessel and immersed into a water

bath at 37˚C. The thawed-out cell suspension was transferred into a centrifuge tube with α-

MEM containing 10% FBS and centrifuged at 300 g for 3 min. After removal of the superna-

tant, the pellet was suspended in α-MEM containing 10% FBS and transferred into a 75-cm2

culture flask. Static cultures were then maintained under the same conditions as used before

the cryopreservation. Cells were harvested using 0.25% trypsin-EDTA once they reached

approximately 90% confluence. Then, the collected cells were seeded at a density of 1 × 106

cells per 75-cm2 culture flask. Fourth passage dermal fibroblasts were used for the following

experiments. Cells from different animals were used in different experiments.

Real-time RT-PCR

Total RNA was extracted from dermal fibroblasts with TRIzol reagent. First-strand cDNA syn-

thesis was performed with 500 ng of total RNA using PrimeScript RT Master Mix. Real-time

RT-PCR was performed with 2 μL of the first-strand cDNA in 25 μL (total reaction volume)

with SYBR Premix Ex Taq II and primers specific for canine IL-6 and TATA box binding pro-

tein (TBP), a house keeping protein used as a control. Table 1 shows primer sequences used

for real-time RT-PCR. Real-time RT-PCR of no-template controls was performed with 2 μL

RNase- and DNA-free water. In addition, real-time PCR of no-reverse transcription control

was performed with 2 μL of each RNA sample. PCR was conducted using Thermal Cycler Dice

Real Time System II with the following protocol: 1 cycle of denaturing at 95˚C for 30 s, 40

cycles of denaturing at 95˚C for 5 s and annealing/extension at 60˚C for 30 s. The results were

analyzed by the second derivative maximum method and the comparative cycle threshold

(ΔΔCt) method using real-time RT-PCR analysis software. Amplification of TBP from the

same amount of cDNA was used as an endogenous control, while cDNA amplification from

canine dermal fibroblasts at time 0 was used as a calibration standard.

Western blotting

The cells were lysed with a lysis buffer containing 20 mM HEPES, 1 mM PMSF, 10 mM

sodium fluoride, and complete mini EDTA-free protease inhibitor cocktail at pH 7.4. Protein

Table 1. Primers used for real-time RT-PCR.

Gene Name Gene bank ID Primer sequences

IL-6 NM_001003301.1 F: 5'- CAAGATCCTGGTCCAGATGCTAAAG-3'

R: 5'- CACTCATCCTGCGACTGCAA-3'

TBP XM_863452 F: 50-ACTGTTGGTGGGTCAGCACAAG-30

R: 50-ATGGTGTGTACGGGAGCCAAG-30

https://doi.org/10.1371/journal.pone.0220262.t001

IL-1β-induced IL-6 expression via ERK1/2
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concentrations were adjusted using the Bradford method [34]. Extracted proteins were boiled

at 95˚C for 5 min in SDS buffer. Samples were loaded into separate lanes of 12% Mini-PRO-

TEAN TGX gel and electrophoretically separated. Separated proteins were transferred to

PVDF membranes, treated with Block Ace for 50 min at room temperature, and incubated

with primary antibodies [p-ERK1/2 (1:1000), t-ERK1/2 (1:1000)] for 120 min at room temper-

ature. After washing, the membranes were incubated with an HRP-conjugated anti-rabbit or a

mouse IgG antibody (1:10000) for 90 min at room temperature. Immunoreactivity was

detected using ECL Western Blotting Analysis System. Chemiluminescent signals of the mem-

branes were measured using ImageQuant LAS 4000 mini.

siRNA transfection

Canine dermal fibroblasts seeded at a density of 1 × 105 cells/35-mm dish or 5 × 105 cells/90

mm dish, were transfected using Opti-MEM containing 5 μL/mL Lipofectamine 2000 and 400

nM ERK1, ERK2 or scrambled siRNA for 6 h (Nakano et al., 2018). The siRNA sequences are

indicated in Table 2. The efficiency of siRNA was confirmed by western blotting.

IL-6 assay

Canine dermal fibroblasts were seeded at a density of 3 × 105 cells per well in 6-well culture

plates. The cells were treated with IL-1β, and culture supernatants were collected. The concen-

tration of IL-6 in the culture supernatant was measured using an IL-6 ELISA kit according to

the manufacturer’s instructions.

Statistical analysis

The data from these experiments are presented as the mean ± standard error of measurement.

Statistical analysis was performed using StatMate IV. The data from the time course study

were analyzed using two-way analysis of variance, and the data from other experiments were

analyzed using one-way analysis of variance. Tukey’s test was used as post hoc analysis. P-val-

ues less than 0.05 were considered statistically significant.

Results

IL-1β induced IL-6 production in canine dermal fibroblasts

We first examined the effect of IL-1β on IL-6 release in canine dermal fibroblasts. When the

cells were exposed to 200 pM IL-1β for 0–24 h, a significant increase in IL-6 levels released

into culture media was observed from 6 h to 24 h in a time-dependent manner (Fig 1A). In

cells treated with 0–200 pM IL-1β for 24 h, a dose-dependent increase in IL-6 release was

observed with dose levels between 50 and 200 pM (Fig 1B). Then we examined the effect of

IL-1β on IL-6 mRNA expression. After treatment with 100 pM IL-1β, a significant increase in

IL-6 mRNA expression significantly increased at 3 h, reached a peak level at 6 h, and then

returned to the sustained levels that were slightly higher than the control (Fig 1C). In the cells

exposed to 0–200 pM IL-1β for 6 h, a significant increase in IL-6 mRNA expression was

Table 2. Sequences used for siRNA transfection.

Gene Name Gene bank ID siRNA sequences

ERK1 NM_001252035.1 F: 5'-CCAAUGUGCUCCACCGGGA-3'

R: 5'-UCCCGGUGGAGCACAUUGG-3'

ERK2 NM_001110800.1 F: 5'-CCCAAAUGCUGACUCGAAA-3'

R: 5'-UUUCGAGUCAGCAUUUGGG-3'

https://doi.org/10.1371/journal.pone.0220262.t002

IL-1β-induced IL-6 expression via ERK1/2
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observed with dose levels between 50 and 200 pM (Fig 1D). These observations indicate that

IL-1β mediates IL-6 production in canine dermal fibroblasts. Since effect of IL-1β on IL-6

mRNA expression reached a plateau at over 50 pM, 100 pM of IL-1β were used for all the fol-

lowing experiments.

Involvement of the ERK1/2 pathway in IL-1β-induced IL-6 production

To evaluate the involvement of MAPK signaling pathways in IL-1β-induced IL-6 production, we

determined the effect of pharmacological MAPK inhibitors on IL-1β-induced IL-6 mRNA

expression. Cells were pretreated with FR180204 (25 μM), SKF86002 (20 μM) or SP600125

(10 μM) (ERK1/2, p38 MAPK or JNK inhibitors, respectively) for 1 h and then stimulated with

100 pM IL-1β for 6 h. As Fig 2A summarizes, the ERK1/2 inhibitor FR180204 clearly inhibited

IL-1β-induced IL-6 mRNA expression, but the p38 MAPK inhibitor SKF86002 or the JNK inhib-

itor SP600125 did not. ERK1/2 is activated by MAPK/ERK kinase (MEK) [18]. Then we exam-

ined the effect of the MEK inhibitor U0126. In cells pretreated with U0126 (10 μM) for 1 h, the

effect of IL-1β on IL-6 mRNA expression was significantly reduced (Fig 2A). In cells pretreated

with FR180204 or U0126, IL-1β failed to induce IL-6 release, as shown in Fig 2B. These observa-

tions suggest that the ERK1/2 signaling pathway is involved in IL-1β-induced IL-6 production.

IL-1β-induced ERK1/2 phosphorylation

Since ERK1/2 is activated by its phosphorylation [18, 35], we determined IL-1β-induced

ERK1/2 phosphorylation in canine dermal fibroblasts. Fig 3A and 3B summarize time-depen-

dent ERK1/2 phosphorylation in cells exposed to IL-1β (100 pM) for 0–60 min. ERK1/2

Fig 1. Time- and dose-dependent IL-1β-induced IL-6 protein release and mRNA expression in canine dermal

fibroblasts. The cells were incubated with (closed circle) or without (open circle) 200 pM IL-1β for indicated times (a,

c) or with indicated concentrations of IL-1β for 24 h (b) or 6 h (d). At the end of the incubation, protein release and

mRNA expression of IL-6 were detected by ELISA and real-time RT-PCR, respectively. TBP was used as an internal

standard. Values are expressed as the mean ± SE of 3 independent experiments. �P< 0.05, compared with 0 h (a, c), 0

pM (b, d).

https://doi.org/10.1371/journal.pone.0220262.g001
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phosphorylation occurred transiently and peaked at 15 min. However, IL-1β failed to induce

the phosphorylation of JNK and p38 (S1 Fig). IL-1β-induced ERK1/2 phosphorylation was

attenuated in cells pretreated with the ERK1/2 inhibitor FR180204, as shown in Fig 3C, 3D

and 3E. Taken together, ERK1/2 is likely involved in IL-1β-induced IL-6 expression.

Attenuation of IL-1β-induced IL-6 mRNA expression in ERK1 and

ERK2-knockdown cells

To confirm the involvement of ERK1/2 in IL-1β-induced IL-6 mRNA expression, we per-

formed ERK1/2 knockdown experiment using siRNA transfection. ERK1 or ERK2 protein

Fig 2. Inhibitory effect of ERK1/2 and MEK inhibitors on IL-1β-induced IL-6 mRNA expression and release. After

the pretreatment without (control) or with FR180204 (25 μM), SKF86002 (20 μM), SP600125 (10 μM) and U0126

(10 μM) (ERK1/2, p38 MAPK, JNK and MEK inhibitors, respectively) for 1 h, and then fibroblasts were stimulated

with 100 pM IL-1β for 6 h (a) or 24 h (b). ERK1/2 and MEK inhibitors attenuated IL-1β-induced IL-6 mRNA

expression (a) and protein release (b) but not p38 MAPK and JNK inhibitors. TBP was used as an internal standard (a).

Values are expressed as the mean ± SE of 3 independent experiments. �P< 0.05, compared with control.

https://doi.org/10.1371/journal.pone.0220262.g002

IL-1β-induced IL-6 expression via ERK1/2
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expression was significantly reduced in cells transfected with ERK1 or ERK2 siRNAs, respec-

tively, but not with scramble siRNA as a control (Fig 4A–4C). IL-1β-induced IL-6 mRNA

expression was partially reduced in ERK1 and ERK2 siRNA-transfected cells compared with

the scramble siRNA-transfected cells (Fig 4D). In ERK1 and 2 double-knockdown cells, IL-1β-

induced IL-6 mRNA expression was also attenuated, but the reduction level was the same as

that in ERK1 and ERK2 siRNA-transfected cells (Fig 4D). These observations suggest that the

ERK1/2 activation contributes to the upregulation of IL-6 mRNA expression induced by IL-1β
in canine dermal fibroblasts.

Fig 3. IL-1β-induced ERK1/2 phosphorylation and its inhibition by an ERK1/2 inhibitor. In dermal fibroblasts

treated with 100 pM IL-1β for 0–60 min, ERK1/2 phosphorylation (p-ERK1/2) was observed in a time-dependent

manner (a, b). IL-1β had no effect on total ERK1/2 (t-ERK1/2) expression (a). In cells pretreated without (control) or

with the ERK1/2 inhibitor FR180204 (25 μM) for 1 h, IL-1β-induced ERK1/2 phosphorylation was attenuated (c, d).

Representative results (a, c) and the relative density of ERK1/2 phosphorylation compared with the results at 0 time (b)

or the control (d) are illustrated. Values are expressed as the mean ± SE of 3 independent experiments (b, d). �P< 0.05.

https://doi.org/10.1371/journal.pone.0220262.g003

IL-1β-induced IL-6 expression via ERK1/2
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Discussion

Wound healing is a highly coordinated and interactive process involving several overlapping

stages that include inflammation, formation of granulation tissue, re-epithelization, matrix for-

mation and remodeling [36]. The interaction of different cell types including keratinocytes,

fibroblasts, endothelial cells, macrophages, and platelets is involved in the induction of a

Fig 4. Attenuation of IL-1β-induced IL-6 mRNA expression in canine dermal fibroblasts transfected with ERK1

and ERK2 siRNAs. (a-c) In fibroblasts transfected with ERK1, ERK2, and scrambled siRNAs, expression of t-ERK1, t-

ERK2, and β-actin was detected by western blotting. ERK1 or ERK2 siRNA transfection decreased the expression of

ERK1 or ERK2, respectively, while scrambled siRNA transfection did not influence their expression. β-actin was used

as an internal standard. Representative results (a) and relative density of ERK1 or ERK2 protein expression in siRNA-

transfected cells compared with those in scrambled siRNA-transfected cells (b, c) are illustrated. (d) After transfection

with ERK1, ERK2 and scrambled siRNAs, fibroblasts were incubated with or without 100 pM IL-1β for 6 h. At the end

of the incubation, IL-6 mRNA expression was determined. TBP was used as an internal standard. ERK1 and ERK2

siRNA transfection reduced IL-1β-induced IL-6 mRNA expression while scrambled siRNA-transfection did not. IL-

1β-induced IL-6 mRNA expression was also reduced in ERK1 and 2 double knockdown cells. Values are expressed as

the mean ± SE of 3 independent experiments. �P< 0.05.

https://doi.org/10.1371/journal.pone.0220262.g004

IL-1β-induced IL-6 expression via ERK1/2

PLOS ONE | https://doi.org/10.1371/journal.pone.0220262 July 25, 2019 8 / 13

https://doi.org/10.1371/journal.pone.0220262.g004
https://doi.org/10.1371/journal.pone.0220262


sequence of such events. Dermal fibroblasts are important cells in cutaneous wound healing

processes through their proliferation, ordered migration into the provisional matrix, production

of extracellular matrix and differentiation into myofibroblasts [21, 37]. In the present study, we

demonstrated that IL-1β stimulates IL-6 production and release in canine dermal fibroblasts.

IL-6 is readily detected in mouse skin wounds [38]. In human, IL-6 is produced and

released rapidly after full thickness skin wounding and persisted even up to 24 h after injury

[39]. In mice genetically deficient in IL-6, wound healing is significantly delayed with attenu-

ated leukocyte infiltration, re-epithelialization, angiogenesis and collagen accumulation [40].

In a subsequent study, administration of a neutralizing anti-IL-6 monoclonal antibody signifi-

cantly delays wound closure in normal mice [40]. A chimeric fusion protein consisting of IL-6

and soluble IL-6 receptor termed ‘Hyper-IL-6’ accelerates skin wound healing in a mouse skin

damage model [41]. IL-6 induces keratinocytes migration through the production of a soluble

fibroblast-derived factor [42]. These observations clearly indicate that IL-6 is a major regulator

of the skin wound healing.

IL-1β, a proinflammatory cytokine, plays a pivotal role in the initiation and amplification of

inflammation in various tissues. IL-1β is produced primarily by macrophages and monocytes,

as well as by nonimmune cells including activated fibroblasts and keratinocytes, which con-

tributes to wound healing including that noted in the skin [43, 44]. IL-1 derived from keratino-

cytes has been demonstrated to induce the production of cytokines including IL-6 in

fibroblasts [45, 46]. Therefore, it is likely that IL-1β-induced IL-6 production is a pivotal pro-

cess in wound healing in dog skin.

IL-1β provokes IL-6 production and release via MAPK signaling pathways in various cells,

for example, p38 MAPK in human retinal Müller cells [23] and rheumatoid fibroblast-like

synoviocytes [24–26]; p38 and ERK1/2 in human orbital fibroblasts [27], chondrocyte cell line

C-28/I2 [28] and gingival fibroblasts [29]; p38 and JNK in rat glial cells [30]; and ERK1/2 in rat

synovial fibroblasts [31] contribute to IL-1β-induced IL-6 expression and production. These

studies imply that MAPK pathway involvement in IL-1β-induced IL-6 expression is depends

on the cell type and species. In this study, ERK1/2 and MEK inhibitors attenuated the effect of

IL-1β on IL-6 mRNA expression, but p38 and JNK inhibitors did not. In ERK1- and ERK2-

knockdown cells, IL-1β-induced IL-6 expression was reduced. Therefore, it is likely that the

ERK1/2 signaling pathway is dominantly involved in IL-1β-induced IL-6 expression in canine

dermal fibroblasts.

Human ERK1 and ERK2 are 84% identical and are coexpressed in most tissues [35, 47].

Coactivation of these two isoforms generally occurs in cells stimulated with multiple extracel-

lular stimuli [48–50]. On the other hand, functional differences between the two isoforms

were observed [51–55]. We also demonstrated that ERK1 and ERK2 have different functions

in feline and canine synovial fibroblasts [56, 57] and canine dermal fibroblasts [33]. Then, we

performed ERK-knockdown experiments by treatment with ERK isoform-specific siRNA. IL-

1β-induced IL-6 mRNA expression was attenuated both in ERK1- and ERK2-knockdown

cells. To confirm the compensation of ERK1 and ERK2 pathways, we examined the effect of

IL-1β on IL-6 mRNA expression in the cells co-transfected with both ERK1 and ERK2 siRNAs.

In the co-transfected cells, IL-1β-induced IL-6 mRNA expression was reduced compared with

control. However, the reduction by the co-transfection was no different from that by the single

transfection with ERK1 or ERK2 siRNA. These observations suggest that the functions of

ERK1 and ERK2 are identical. Therefore, it is unlikely that there is compensation mechanism

between ERK1 and ERK2, although further studies need to clarify the relations between ERK1

and ERK2 in canine dermal fibroblasts.

IL-1β-induced IL-6 mRNA expression was partially reduced in ERK1/2- knockdown cells,

whereas the effect was completely inhibited in cells treated with an ERK1/2 inhibitor. Eight

IL-1β-induced IL-6 expression via ERK1/2
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isoforms of ERK are present [35, 58]. In the present study, we cannot exclude the possibility of

the contribution of the other ERK isoforms in IL-1β-induced IL-6 mRNA expression.

Although FR180204 has been a widely used specific inhibitor for ERK1/2, the inhibitor appears

to influence the other isoforms. Studies with the other isoforms of ERK on IL-1β-induced IL-6

expression are underway in our laboratory.

Conclusions

In conclusion, we demonstrated that IL-1β induced IL-6 expression via the ERK1/2 signaling

pathway in canine dermal fibroblasts using pharmacological inhibitors and ERK1/2-knock-

down cells. Since MAPK signaling pathways are molecular targets for anti-inflammatory ther-

apy [59], it is likely that the ERK1/2 signaling pathway could represents a target for therapy for

skin inflammation in dogs.

Supporting information

S1 Fig. No effect of IL-1β on the phosphorylation of JNK and p38. The levels of phosphory-

lated JNK (p-JNK), total JNK (t-JNK), phosphorylated p38 (p-p38) and total p38 (t-p38) were

detected by western blotting in dermal fibroblasts treated with 100 pM IL-1β for 0–120 min.

IL-1β failed to activate JNK and p38. Results are representative in three independent experi-

ments. Canine dermal fibroblasts from three beagle dogs were used, and each experiment was

performed with cells derived from a single donor.
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