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Background
The advent of next-gen sequencing technologies and their application to transcriptomes 
have shown that the vast majority of the human genome is transcribed [1, 2] and the 
non-coding RNAs (ncRNAs) represent the largest class of transcripts in the human 
genome [3, 4]. NcRNAs are categorized into different groups based on length, location, 
or function: long non-coding RNAs (lncRNAs), microRNAs (miRNAs), small interfering 
RNAs (siRNAs), small nucleolar RNAs (snoRNAs), small nuclear RNAs (snRNAs), and 
Piwi-interacting RNAs (piRNAs).

Abstract 

Background: While some non-coding RNAs (ncRNAs) are assigned critical regulatory 
roles, most remain functionally uncharacterized. This presents a challenge whenever 
an interesting set of ncRNAs needs to be analyzed in a functional context. Transcripts 
located close-by on the genome are often regulated together. This genomic proximity 
on the sequence can hint at a functional association.

Results: We present a tool, NoRCE, that performs cis enrichment analysis for a given set 
of ncRNAs. Enrichment is carried out using the functional annotations of the coding 
genes located proximal to the input ncRNAs. Other biologically relevant information 
such as topologically associating domain (TAD) boundaries, co-expression patterns, 
and miRNA target prediction information can be incorporated to conduct a richer 
enrichment analysis. To this end, NoRCE includes several relevant datasets as part of 
its data repository, including cell-line specific TAD boundaries, functional gene sets, 
and expression data for coding & ncRNAs specific to cancer. Additionally, the users can 
utilize custom data files in their investigation. Enrichment results can be retrieved in a 
tabular format or visualized in several different ways. NoRCE is currently available for 
the following species: human, mouse, rat, zebrafish, fruit fly, worm, and yeast.

Conclusions: NoRCE is a platform-independent, user-friendly, comprehensive R pack-
age that can be used to gain insight into the functional importance of a list of ncRNAs 
of any type. The tool offers flexibility to conduct the users’ preferred set of analyses 
by designing their own pipeline of analysis. NoRCE is available in Bioconductor and 
https:// github. com/ gulde nolgun/ NoRCE.
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NcRNAs have been implicated in a wide array of cellular processes [2, 5–7] and 
emerging evidence further reinforces that they have crucial functional importance for 
normal development and disease [8]. For example, lncRNAs, the largest class of ncR-
NAs, are reported to control nuclear architecture and transcription, modulate mRNA 
stability, translation, and post-translational modifications [7, 9]. Nevertheless, only a 
small fraction of ncRNAs have been functionally characterized today, and most ncRNAs’ 
functions remain unknown. The lack of functional annotation of ncRNAs presents a 
challenge when an ncRNA set of interest is available and needs to be functionally inves-
tigated for further analysis.

Most of the available ncRNAs functional enrichment tools are limited to miRNAs. In 
the first step of these tools, they make a list of genes that are targeted by at least one of 
the miRNAs in the input set, which is followed by an enrichment analysis on this tar-
get gene set [10–12]. The target set is derived from experimentally validated interaction 
databases or produced by target prediction algorithms. Among them, Corna [10], miR-
Tar [12], and Diana-miRPath v.3 [11] differ from varied features such as the source of 
the targets or the functional sets on which the analysis is conducted. Since the predicted 
target interactions might include high false positives and are not context-specific, some 
methods also take into account the changes in mRNA levels. MiRComb [13] conducts a 
miRNA-mRNA expression analysis followed by miRNA target prediction on the nega-
tively correlated mRNA targets. miRFA [14] considers both the negatively and positively 
correlated using TCGA data. miTALOS [15, 16] additionally provides a tissue-specific 
filtering of the targets.

There is also a limited number of tools that offer functional annotation and enrich-
ment analysis on lncRNA sets. Similar to miRNA methods, these methods first find a 
set of coding genes that are co-expressed genes with the given lncRNA or the lncRNAs 
in the collection and conduct analysis on these coding genes [17–19]. With regards to 
other ncRNAs, only a few studies provide analysis for ncRNAs other than lncRNA and 
miRNA. StarBase v2 first constructs a regulatory network based on experimentally iden-
tified RNA binding sites and their interactions; next, they perform functional enrich-
ment on the interacting coding genes of the ncRNAs [20]. Starbase v2 offers analysis on 
miRNAs, lncRNAs, and the pseudogenes. CircFunBase [21] is not an enrichment tool 
but provides manually curated functions of circular RNAs that can be used for enrich-
ment analysis.

The available tools are limited to the type of input ncRNA they support and do not 
take into account genomic neighborhood information. In this work, we present NoRCE 
(Non-coding RNA Sets Cis Enrichment Tool), which offers broad applicability and func-
tionality for enrichment analysis of all types of ncRNAs sets using genomic proxim-
ity. NoRCE first finds nearby coding genes on the genome of the ncRNAs in the input 
set and uses the functional annotations of this coding gene set to perform functional 
enrichment on the ncRNA set. The motivation of using coding genes for annotation is 
based on the evidence presented earlier that genes nearby can be linked functionally. 
Thevenin et al. [22] show that functionally related coding genes are co-localized on the 
genome. Engreitz et al. [23] report that both coding and non-coding genes can regulate 
the expression of neighboring genes on the genome. There are several instances of lncR-
NAs that influence the nearby genes’ expressions [24–26]. For example, Ørom et al. [27] 
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report that the depletion of some ncRNAs led to decreased expression of their neigh-
boring protein-coding genes. Others also support the involvement of lncRNAs in the 
cis regulation, where both the regulatory ncRNA and the target gene are transcribed 
from the same or nearby genomic locus [28]. Based on these findings, in this work, we 
take into account the coding genes nearby to functionally assess a given ncRNA set. The 
transfer of functional annotation from nearby coding genes has been used in the general 
genomic interval set enrichment tools [29–32].

To offer broad functionality and applicability, NoRCE allows several additional fea-
tures. The identified neighborhood coding gene set can be filtered or expanded with 
coding genes found to be co-expressed with the input ncRNAs. For this, NoRCE allows 
users to input their expression data or make use of pre-computed correlation results 
for The Cancer Genome Atlas (TCGA) project expression data. Since TAD boundaries 
affect the expression of neighboring genes [33], NoRCE also allows analysis that takes 
into account the topologically associated domain regions (TAD) boundaries on the 
genome. NoRCE provides miRNA specific options as well; the user can filter the neigh-
bor set with predicted targets of the input miRNAs. Moreover, the input ncRNA set can 
be filtered based on ncRNA biotype (such as sense, antisense, lincRNA). NoRCE sup-
ports various commonly used statistical tests for enrichment.

In the following sections, we first detail the NoRCE’s capabilities and the technical 
details. We also exemplify the NoRCE on two different functional analyses. In the first 
use case, we analyze the set of ncRNAs differentially expressed in brain disorder, while 
the second one showcases miRNA specific analysis on cancer patient data.

Implementation
Capabilities of NoRCE and workflow are summarized in Fig. 1. For a given set of ncR-
NAs, NoRCE first recognizes the coding genes close to ncRNA genes on the linear 
genome. Based on user-specified options, these genes are expanded or filtered using co-
expressed genes, target predictions, or using the information on the TAD regions. Once 
the genes of interest are gathered, several gene enrichment analyses are performed. The 
details of these steps are provided in the following sections.

Species supported

NoRCE supports analysis for Homo sapiens, Mus musculus (house mouse), Rattus nor-
vegicus (brown rat), Danio rerio (zebrafish), Drosophila melanogaster (fruit fly), Cae-
norhabditis elegans (worm) and Saccharomyces cerevisiae (yeast). For Homo sapiens, it 
handles human hg19 and hg38 assemblies. For the other species, it uses the most recent 
assembly of the species. Supported assemblies for different species are provided in Addi-
tional file 1: Table S1.

Curating the cis coding gene list

NoRCE accepts a set of any type of ncRNAs, S = {r1, . . . , rn} . For each ncRNA, ri ∈ S , 
in the input list, NoRCE identifies all proximal protein-coding genes in 1D genome. 
The proximal genes are considered as those that are within the base-pair limit of the 
genomic start coordinate of the input gene and/or within the base-pair limit of the 
genomic end coordinate of the input gene. If the coding gene ri is located within the 
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user-specified base-pair limit from the upstream and/or downstream of known tran-
scription start and/or end position of the ncRNA gene, it is designated as a neighboring 
coding gene of ri and added to the coding gene list pool of Ci . The union of the cod-
ing genes, constitute the final coding gene set to be tested for functional enrichment, 
C = ∪n

i=1
Ci . The pool of coding genes can be further filtered or expanded based on the 

additional biological evidence available, detailed in the next sections, with user-selected 
options. Users can also limit the analysis to the introns or exons of the neighboring cod-
ing genes. In that case, NoRCE applies the genomic proximity criterion on the intron or 
the exon of the genes based on the user’s selection.

Input can be provided to NoRCE in the form of gene symbols, Ensembl genes and 
transcripts, Entrez IDs, or miRBase IDs. Since no single source contains information on 
all the transcripts, gene coordinates and their annotations are retrieved from two dif-
ferent databases: ENSEMBL [34] and UCSC [35]. We collect the ENSEMBL data via 
biomaRt package [36]. Genes are retrieved from UCSC using the rtracklayer package 
[37].

Incorporating co‑expression information

Since coding genes that exhibit high co-expression patterns can hint to functional coop-
eration, NoRCE enables the user to incorporate co-expressed coding genes into the anal-
ysis. If the filtering option is set, each Ci is filtered such that only the neighboring coding 
genes that are also co-expressed with ri are placed into C. If the expansion option is set, a 
coding gene is co-expressed with any of the ri ∈ S is added to C.

NoRCE enables the user to conduct the expression analysis with user input expression 
data. In this case, users are expected to load the expression data in TSV or TXT format; 
or they can use the SummarizedExperiment object in R. Before the correlation analysis, 
NoRCE executes a pre-processing step on expression data. The variance of each gene’s 
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Fig. 1 The workflow of the NoRCE package
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expression is calculated, and genes that vary lesser than the user-defined variance cut-
off, 0.0025 by default, are excluded from the analysis. NoRCE supports commonly used 
correlation measures: Pearson Correlation, Kendall Rank Correlation, Spearman’s Rank 
Correlation. The default values for correlation coefficient cutoff is 0.3, for significance 
p-value, 0.05 and confidence level 0.95. The user can set the correlation and significance 
cutoffs based on their need.

To assist analysis for cancer, NoRCE also allows using pre-computed co-expressed 
gene sets for ncRNAs measured in The Cancer Genome Atlas (TCGA) project [38]. 
Since TCGA contains the expression profiles for miRNA, mRNA, and lncRNA, this 
examination is limited to only the miRNA and lncRNA inputs. The co-expressed genes 
are defined using the Pearson correlation coefficient. Users can set the cutoff for the cor-
relation coefficient.

Filtering genes with the TAD boundary information

The gene regulatory interactions are affected by the 3D chromatin structure of the 
genome [39]. On a single chromosome, chromatin compartmentalizes into sub-domains, 
named as topologically associating domain (TADs). TAD boundary regions insulate the 
cis-regulating elements [40]. NoRCE allows filtering based on TADs. If this option is 
selected, when curating the nearby genes of an ncRNA, NoRCE will only include the 
coding genes within the same TAD boundary with that of the ncRNA. We compile TAD 
regions for different cell-lines and species from various sources and made them available 
for use in conducting the analysis. These data sources and the species for which they are 
available are provided in Additional file 1: Table S2. NoRCE allows inputting BED for-
matted TAD boundary files. Thus, the user can conduct this analysis with other available 
TAD information.

Biotype specific analysis

If the user wants to conduct a biotype specific analysis, NoRCE can select the ncRNAs 
that are annotated with the given biotypes and use this biotype-filtered subset in the 
subsequent steps. Also, NoRCE allows extraction of ncRNAs of given biotypes S and 
performs analysis on the subset of genes that do not contain the genes annotated with 
given biotypes. NoRCE accepts GTF formatted GENCODE annotation files for biotype 
analysis.

miRNA target list

For miRNA specific inputs, NoRCE provides additional features. The coding gene 
set, C, can be restricted to the potential miRNA targets; thus, only neighboring cod-
ing genes that are also miRNA potential targets are included. The miRNA target list is 
curated from various sources. Computationally predicted miRNA-target interactions 
are obtained from the TargetScan [41] for the species except Rattus norvegicus as it is 
not available. Target predictions for Rattus norvegicus miRNAs are obtained from the 
miRmap [42]. No miRNA is reported for Saccharomyces cerevisiae [43]. Thus, NoRCE 
does not provide any miRNA analysis for Saccharomyces cerevisiae. Table 1 presents the 
details of the pre-computed target predictions.
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Enrichment analysis

Once the coding gene list, C, is curated, NoRCE conducts functional enrichment 
analysis. NoRCE supports analysis with various functional annotations: gene ontol-
ogy (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Reactome pathway, 
WikiPathways, genes, or GMT formatted integrated pathway dataset. For the annota-
tion, we make use of biannually updated databases in Bioconductor. Gene ontologies 
and their annotated gene list are provided via GO.db [44] package. To increase the 
statistical analysis power, only the GO terms with at least 5 annotated protein-cod-
ing genes are considered as suggested by [17]. KEGG annotation is performed using 
KEGG.db [45], for Reactome enrichment analysis, NoRCE utilizes reactome.db [46]. 
NoRCE employs WikiPathways API to retrieve the pathways and annotated gene list 
[47].

NoRCE supports commonly used enrichment tests: hypergeometric test, Fisher 
Exact Test, Binomial Test, X2 test. We refer readers to [48] for details of the statisti-
cal tests. The background gene set is all the genes in the functional annotation source 
that is selected. NoRCE provides the flexibility of providing a user-defined back-
ground gene set.

Presentations of the results

NoRCE provides different ways to export the results. All information in enrichment 
analysis can be retrieved in a tabular format. Also, users can set the number of top 
enrichment results to exported, and NoRCE outputs these results based on p-value or 
p adjusted values in a tabular format. Networks and dot plots can be used to visual-
ize the enrichment results. The dot plot shows the top enriched terms, their p-values 
(or p adjusted values), and the number of enriched genes in the input neighbor set. 
In the network representation, the enriched terms are represented with nodes, and 
the ncRNA and coding transcripts related to the enriched terms are represented with 
edges. In this graph, the node size is proportional to the node degree. The nodes in 
the networks are clustered, and a color code distinguishes between node clusters. 
Modularity clustering is employed to cluster the nodes [49]. For network visualization 
features, NoRCE makes use of the igraph package [50].

NoRCE also offers specialized visualization options for pathway and GO analysis. 
GO enrichment results can be illustrated in a directed acyclic graph (GO-DAG). We 
derive the DAG information through the AmiGO API [51]. In this diagram, nodes 

Table 1 List of miRNA target prediction algorithms used for each species

The version information is provided, which is the currently available version for the corresponding species

Species Database Ver/date References

Homo sapiens TargetScan v7.2 [41]

Mus musculus TargetScan v7.1 [89]

Rattus norvegicus miRmap 2013 [42]

D. melanogaster TargetScan v6.2 [90]

Danio rerio TargetScan v6.2 [89]

C. elegans TargetScan v6.2 [91]
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are GO-terms, and edges indicate relation types between GO terms. Enriched GO-
terms are colored according to their p-values or p-adjusted values. Users can export 
enriched GO-DAG diagrams in a PNG or SVG format. For pathway enrichment 
results, KEGG and Reactome enrichment results can be visualized within KEGG 
and Reactome maps. The enriched terms are marked with color using the KEGG 
and Reactome APIs, respectively. These visuals are displayed through the browser. In 
the results sections and the supplementary materials, we provide examples of these 
visualizations.

Results
To demonstrate how NoRCE could be used to analyze a list of ncRNAs functionally, 
we apply NoRCE on several problems and multiple independent datasets. We use the 
default parameter settings in the following analyses unless otherwise stated.

Case study 1: enrichment analysis of the ncRNAs for the psychiatric disorders

In this use case, we demonstrate the functional enrichment analysis of a set of ncRNAs 
related to brain disorders based on gene expression data measured by Gandal et al. [52]. 
These ncRNAs exhibit gene- or isoform-level differential expression in at least one of the 
following disorders: autism spectrum disorder (ASD), schizophrenia (SCZ), and bipo-
lar disorder (BD). In total, the ncRNA gene set contains 1,363 differentially expressed 
human ncRNAs. We perform GO enrichment for biological processes and pathway 
enrichment analysis based on pathways provided by Bader Lab [53]. The number of 
pathways and the different pathway sources included in the Bader Lab set is provided 
in Additional file 1: Table S3. In these enrichment analyses, the background gene sets 
are described as the groups of all annotated genes in the corresponding GO or pathway 
dataset. The protein-coding genes that fall into this neighborhood region of the ncRNAs 
are input to the enrichment analysis. We also showcase NoRCE’s ability to constrain the 
input set with protein-coding genes within the TAD boundaries.

Fig. 2 a Top 35 GO biological processes enriched in the set of differentially expressed brain ncRNAs from 
[52]. The x-axis represents the p-values; the y-axis represents the GO terms. The dot area is proportional 
to the size of the overlapping gene set, and the color signifies the p-value of the enrichment test for the 
corresponding GO-term. b The functional enrichment analysis is repeated with TAD filtering and the 
GO-term:ncRNA network is provided. The size of the nodes is proportional to the degree of the node. 
Different colors are used to differentiate the clusters of nodes
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Functional enrichment results

The dot plot in Fig. 2 shows the top 35 enriched BP GO-terms, sorted based on the sig-
nificance of enrichment. The number of annotated genes with the corresponding GO-
terms are provided in the graph. We detect RNA related GO terms such as the positive 
regulation of pri-miRNA transcription by RNA polymerase II, miRNA mediated inhibi-
tion of translation, and RNA processing. Additionally, various GO terms are pertinent 
to various neurological functions such as response to ischemia, sensory perception of 
pain, and neurogenesis. It has been reported that cerebral ischemia-induced genes are 
upregulated in schizophrenia [54], and it is common to have chronic pain in bipolar 
patients [55]. Interestingly, we observe that the enriched terms include cardiac and vas-
cular-related functions. Several studies exhibit interactions between neural diseases and 
changes in blood vessel pathology and blood flow [56–58]. Others reveal that patients 
with bipolar disorder have low heart rate variability, which is a physiological measure of 
variation in the time interval between each heartbeat [59, 60].

Alternative visualizations of these functional enrichment results are provided in the 
Additional file 1 section. Additional file 1: Figure S1 shows the top 7 GO terms in a net-
work visualization format. Additional file 1: Table S4 lists the top enriched GO BP terms 
to showcase the tabular format output capabilities.

Functional enrichment results with TAD filtering

We repeat the previous functional analysis when the TAD filtering is on. When this filter 
is applied, only the protein-coding genes near the ncRNAs in the input list, and at the 
same time reside within the same TAD regions are included in the enrichment analy-
sis. In this analysis, we use custom defined TAD regions for the adult dorsolateral pre-
frontal cortex that are provided by the [52] study, and we keep all the other parameters 
in their default values.

Figure 2 illustrates the GO-term network for the top 7 enriched GO terms. Alternative 
representations of these results are provided in the Supplementary Materials (Additional 
file 1: Table S5, Figs. S2 (A), and S2 (B) ). Interestingly, in this analysis, we identify cell 
cycle regulation related GO-terms. Cell cycle regulating genes have been associated with 
autism in GWAS studies [61]. In DNA derived from the pre-frontal cortex, cell cycle 
regulating genes show autism-specific CNVs [61]. In schizophrenia and bipolar disorder, 
many genes participate in cell cycle regulation and they have been shown to have differ-
ential expression levels [62]. We also identify cell adhesion in this enrichment analysis. 
Cell adhesion has been reported to be disrupted in autism [63] and schizophrenia [64]. 
Moreover, in schizophrenia and bipolar disorders, cell adhesion pathways have been 
reported to contribute to disease susceptibility [65].

Comparison of enrichment analysis with and without TAD‑based filtering

We compare the enrichment analyses with and without TAD-based filtering to under-
stand the effect of TAD filtering. When the enrichment analysis is based on only neigh-
borhood genes, we detect 48 enriched biological processes. When we repeat our analysis 
with TAD filtering, we observe 29 enriched biological processes. The top 10 enriched 
terms are mostly the same for both analysis; these include cell cycle and cell adhesion-
related terms, as well as several cardiac and vascular-related functional terms (positive 
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regulation of cardiac muscle cell proliferation, positive regulation of blood vessel endothe-
lial cell migration and angiogenesis).

Running the enrichment analysis with TAD filtering allows us to uncover brain disor-
der-related GO-terms that are not identified by the enrichment analysis solely based on 
neighborhood genes. Using TAD filtering, we distinguish 6 enriched biological processes 
that have been reported to relate to a brain disorder in the literature, Table 3. Krishnan 
et  al. [66] report that Regulation of Rho protein signal transduction (GO:0035023), 
somatic stem cell population maintenance (GO:0035019), calcium ion transport 
(GO:0006816), ubiquitin-dependent protein catabolic process (GO:0006511) are poten-
tial ASD related GO-terms. Rho GTPases are important regulators of the neural sys-
tem, and mutations in Rho GTPases’ regulators and effectors can cause neural diseases, 
including ALS [67]. Moreover, we also observe positive regulation of phosphatidylino-
sitol 3-kinase signaling (GO:0014068) after TAD-filtering. Phosphoinositide 3-kinase is 
a well-known pathway that regulates several processes, including proliferation, growth, 
apoptosis, and cytoskeletal rearrangement [68]. It is linked with several diseases and it 
is considered as a hallmark of cancer [69]. Kurek et al. [70] show that cancer-associated 
PIK3CA mutations cause epilepsy, and there is a strong correlation between epilepsy 
and autism [71]. Moreover, Krishnan et al. [66] report that this GO-term is related to 
ASD. Detecting neural disease linked GO-terms by employing TAD filtering shows that 
TAD filtering might help arrive at more precise enrichment results. In conclusion, using 
different approaches can lead to more nuanced enrichment analysis results.

Pathway enrichment using predefined pathway gene sets

NoRCE enables pathway enrichment analysis for various sources, including KEGG, 
Reactome pathway, and WikiPathways. Also, NoRCE supports pathway enrichment 
using custom pathway databases such as MSigDb [53], or other user-curated data pro-
vided in GMT format. To showcase the NoRCE capability, we utilize the Bader Lab data-
set as the user-defined pathway gene set analysis. In this analysis, we only consider the 
genes in the neighborhood of the differentially expressed ncRNAs in brain disorders.

Interestingly, we find many enriched pathways that are related to neural diseases. Some 
of these pathways directly related to ASD, schizophrenia, and bipolar disorder, includ-
ing Synaptic signaling pathway associated with an autism spectrum disorder, WP4539; 
Amyotrophic lateral sclerosis, WP2447; Alzheimer’s disease, WP2059. Additionally, we 
found that many of the signaling pathways, such as G-Protein Signaling, mTOR signal-
ling, MAPK Signaling pathway and those pathways are associated with at least one of the 
brain disorder: autism spectrum disorder, schizophrenia, and bipolar disorder [72–74]. 
Due to the space limit, we list a subset of enriched disease-related pathways in Addi-
tional file 1: Table S6 and S7.

Comparison between ASD associated GO‑terms and NoRCE enrichment results

Krishnan et al. [66] predict novel ASD risk genes based on the brain-specific functional 
network. In their work, they also identified functions potentially dysregulated by ASD-
associated mutations. We compare our findings with this set of ASD associated GO 
function terms [66]. We observe that most of the enriched GO terms reported in NoRCE 
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are listed as potential ASD-related GO terms in Krishnan et al. [66] study. The ncRNA 
enrichment analysis of NoRCE without TAD filtering identifies 48 enriched GO terms, 
and 32 of these terms are also in the list of ASD related GO terms [66], correspond-
ing to 67% overlap. When TAD filtering is applied, there are 29 enriched terms, and 21 
are in the ASD GO term list, corresponding to 73% overlap (Additional file 1: Table S9). 
We test the significance of these overlap ratios. We randomly select ncRNA set with the 
same size of the input from the all gene population. We find the enriched term with this 
random gene set and checked if the overlap ratio is equal or higher in the randomized 
case. A p-value is calculated by repeating this procedure 1000 times.

Case study 2: functional enrichment analysis of variably expressed miRNAs in brain cancer 

using miRNA targets

NoRCE offers a filtering option for the input miRNA’s targets. Users can choose to 
filter ncRNA neighbors, such that only those that are the targets of the miRNA are 
included. To demonstrate this option, we use a set of miRNAs that are differentially 
expressed ncRNAs in brain cancer obtained from dbDEMC 2.0 [75] for the functional 
analysis. This set contains 407 miRNAs and is provided in NoRCE with the name 
brain_miRNA. We choose the Reactome pathway as the functional gene set.

We identify lysosome vesicle biogenesis (p-value = 7.1e−05), trans-golgi network ves-
icle budding (p-value = 0.0006), ion channel transport (p-value = 0.0091), and axon 
guidance (p-value = 0.0382) pathways as enriched. Previous studies report that the 
axon guidance and ion channel transport pathways are related to the Glioblastoma 
Multiforme [76, 77]. Other evidence also suggests that miRNAs could be acting as key 
fine-tuning regulatory elements in axon guidance [78].

Case study 3: functional enrichment analysis with co‑expression analysis

NoRCE also supports filtering based on a co-expression analysis. When defining cod-
ing gene neighborhoods for an ncRNA, the user can choose to include a coding gene 
only if it is co-expressed. Alternatively, the users can choose to augment the coding 
genes list with the co-expressed coding gene set. To demonstrate this option, we use 
NoRCE on the brain cancer patient data obtained from TCGA.

The TCGA data include expression levels for mRNA and miRNA for matched pri-
mary tumor solid samples from 527 tumor patients. miRNA-seq data are measured 
as per million mapped reads (RPM) values, and RNA-seq data are measured as Frag-
ments per Kilobase of transcript per Million mapped reads upper quartile normaliza-
tion (FPKM–UQ). We apply the same pre-processing step as in our previous method 
[79]. Genes and miRNAs that have very low expression levels (RPKM < 0.05 ) in many 
patients (more than 20% of the samples) are filtered out. The gene expression values 
are log2 transformed, and those with high variability are retained for co-expression 
analysis. For this aim, only the genes with median absolute deviation (MAD) above 
0.5 are used. The final expression dataset contains 444 miRNA and 12,643 mRNA 
genes on 527 tumor patients on which we perform Pearson correlation analysis. The 
mRNAs which have more than 0.1 correlation with a miRNA are retained.
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When we examine the enriched pathways, Signaling by Receptor Tyrosine Kinases 
emerges as an important pathway. Receptor Tyrosine Kinases is a cell surface receptor 
family, and its members are responsible for growth factors, hormones, cytokines, neu-
rotrophic factors [80]. Following their activation, they can signal through downstream 
pathways responsible for survival, differentiation, and angiogenesis [80]. Inhibition on 
Receptor Tyrosine Kinases and their signal pathways are utilized as target therapy on 
brain cancer [81]. Also, miRNAs are reported to take a role as mediators or suppres-
sors in these pathways and promote tumor cell death [81]. The Reactome diagram 
for this pathway is illustrated in Additional file 1: Figure S4. In both target-based and 
co-expression-based analyses on the differentially expressed miRNAs, Axon guidance 
pathway is enriched. MiRNAs’ role in axon guidance have been reported elsewhere 
[78, 82–84]. For example, Baudet et  al. [84] report that miR-124 controls Sema3A, 
which is essential for normal axon guidance. Accumulating evidence also points out 
that axonogenesis is stimulated by malignant cells and contributes to cancer growth 

Table 2 Pathway enrichment results for nearby co-expressed genes with miRNAs

The GeneRatio is computed by dividing the overlapping with the coding genes with the functional gene set to the number 
of all protein‑coding genes within the input set neighbourhood. The BGRatio column represents the ratio of the number of 
genes found in the enriched GO term set to the size of the background gene set. The EGNo refers to the size of the overlap 
between the corresponding GO term gene set and the neighboring coding gene set. ncGeneList column contains ncRNA 
genes that are enriched with the corresponding GO‑term

Pathway ID Pathway term p‑value GeneRatio BGRatio EGNo ncGeneList

R-HSA-9006934 Signaling by 
receptor tyros-
ine kinases

0.0006 8/44 473/10654 8 hsa-mir-199b, hsa-
mir-214, hsa-mir-3934, 
hsa-mir-455, hsa-
mir-483, hsa-mir-141, 
hsa-mir-338, hsa-mir-
3689a

R-HSA-422475 Axon guidance 0.0017 8/44 553/10654 8 hsa-mir-199b, hsa-
mir-214, hsa-mir-4684, 
hsa-mir-585, hsa-mir-95, 
hsa-mir-150, hsa-mir-
3689a

R-HSA-1266738 Developmental 
biology

0.0327 9/44 1097/10654 9 hsa-mir-199b, hsa-
mir-214, hsa-mir-4684, 
hsa-mir-585, hsa-
mir-935, hsa-mir-95, hsa-
mir-150, hsa-mir-3689a

Table 3 Brain disorder related biological process GO term enrichment results that show the TAD 
analysis enhancement

The listed enriched GO terms are detected by enrichment analysis based on neighboring genes and TAD filtering but 
are undetected by enrichment analysis solely based on neighboring genes. The TAD information is obtained from adult 
dorsolateral prefrontal cortex data [52] study. For a given enriched term, we provide the p‑value and a list of literature 
evidence that shows the link between brain disorders and the enriched term

ID Term p‑value References

GO:0035023 Regulation of Rho protein signal transduction 0.0187 [66, 67]

GO:0035019 Somatic stem cell population maintenance 0.0205 [66]

GO:0006816 Calcium ion transport 0.0360 [66]

GO:0014068 Positive regulation of phosphatidylinositol 3-kinase 
signaling

0.0219 [66, 69, 92]

GO:0006511 Ubiquitin-dependent protein catabolic process 0.0277 [66, 93]

GO:0007417 Central nervous system development 0.0255 [94, 95]
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and metastasis [85]. These findings also support the NoRCE capability for finding 
interesting functional inferences. The details of the enrichment results are provided 
in Table 2.

Case study 4: functional enrichment analysis of pan‑cancer driver lncRNAs

As a fourth case study, we conduct an analysis where the input list comprises lncRNAs. 
High-throughput sequencing technologies have revealed that there are thousands of 
lncRNAs whose aberrant expressions are associated with different cancer types [86]. As 
part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consor-
tium, the Cancer LncRNA Census provides a dataset of 122 high-confidence lncRNAs 
with causal roles in cancer phenotypes [87]. We utilize these known tumor suppressor or 
oncogene lncRNAs and conduct enrichment analysis with NoRCE. For this enrichment 
analysis, we use the neighborhood genes filtered based on TAD boundaries obtained 
from 3D Genome Browser [88]. All other choices and parameters are set to their default 
values.

Enrichment analysis of this set of 122 cancer associated lncRNAs yields 11 enriched 
biological processes (Additional file 1: Table S11). Interestingly, 2 of the 11 enrichment 
biological processes are related to miRNA processes. This could indicate that some of 
the cancer related lncRNAs are located in the same TAD regions as the miRNA host 
genes. Moreover, we detect developmental processes such as anatomical structure 
development, multicellular organism development, anterior/posterior pattern specifica-
tion. This may indicate that these cancer related lncRNAs have a role in developmental 
processes. Also, analysis on the network for the enriched GO-term and their annotated 
genes, Additional file 1: Figure S5, demonstrate that the RNA process and their anno-
tated genes form a separate graph from other enriched terms and genes.

We repeat the same analysis without considering the neighborhood gene informa-
tion. In this case, we only consider the coding genes that partially overlap with the input 
lncRNA set and fall into the same TAD boundary with the lncRNA genes. This way we 
are able to measure the effects of including genes nearby on the genomic sequence for 
enrichment analysis. We detect 8 enriched biological processes. When we compare our 
findings with results obtained for enrichment analysis based on neighborhood genes fil-
tered with TAD boundaries, we are unable to detect two developmental process (ante-
rior/posterior pattern specification and anatomical structure morphogenesis and one 
miRNA related GO-term (miRNA mediated inhibition of translation. This finding is 
a subset of results that are obtained by cis-based gene enrichment filtering with TAD 
boundaries. Thus, we recommend carrying out enrichment analysis by combining multi-
ple information sources such as cis genes, TAD boundaries, co-expression analyses.

Discussion
In showcasing NoRCE, we analyzed sets of ncRNAs implicated in diseases, including 
brain disorder related ncRNAs and cancer-related lncRNAs and miRNAs. Functional 
enrichment of these ncRNAs yielded interesting biological findings highlighting how 
NoRCE could be useful in answering a wide range of questions. The datasets and exam-
ples showcased here are also provided in the R \Bioconductor package.
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NoRCE uses functional sets such as those derived from GO and pathway databases 
and miRNA prediction tools. Improvements in these databases and tools allow NoRCE 
conduct more accurate analysis. NoRCE is designed for non-coding RNAs, but can use 
both coding and non-coding RNAs as input. Currently, the user can use NoRCE to con-
duct analysis in human and mouse, rat, zebrafish, fruit fly, worm, and yeast. As a future 
direction, NoRCE can be extended to support analysis for other species. Moreover, 
the current version of the package contains only miRNA target predictions. However, 
NoRCE can be enhanced by including target prediction for other ncRNAs, including 
sRNAs and snoRNAs.

Conclusions
NoRCE is a comprehensive, flexible, and user-friendly tool for enrichment analy-
sis of all types of ncRNAs. It works for multi-species and is available as an R pack-
age. NoRCE, unlike existing tools, conducts enrichment by taking into account the 
genomic neighborhood of the ncRNAs in the input set and transfers functional anno-
tations of these coding genes. We should note that although cis-regulation has been 
reported for many ncRNA types, it may not hold for all types of ncRNAs. Therefore, 
in addition to the genomic neighborhood-based analysis, NoRCE allows the standard 
approaches of using coding genes co-expressed with the input ncRNAs in detecting 
the enriched functions. Another unique feature of NoRCE that it allows an option for 
making use of TAD regions. NoRCE provides flexibility to the user; the user can per-
form analysis with different options and use the library’s readily available datasets to 
conduct the analysis or input custom datasets. It is also possible to include or exclude 
any analysis that NoRCE contains.

Availability and requirements

Project name: NoRCE
Project home page: http:// bioco nduct or. org/ packa ges/ relea se/ bioc/ html/ NoRCE. 
html
Operating system(s): Platform independent
Programming language: R
Other requirements: Listed in http:// bioco nduct or. org/ packa ges/ relea se/ bioc/ 
html/ NoRCE. html
License: MIT license
Any restrictions to use by non-academics: None

http://bioconductor.org/packages/release/bioc/html/NoRCE.html
http://bioconductor.org/packages/release/bioc/html/NoRCE.html
http://bioconductor.org/packages/release/bioc/html/NoRCE.html
http://bioconductor.org/packages/release/bioc/html/NoRCE.html
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