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Conventional injury prevention and rehabilitation protocols 
have often focused on targeting muscle strength to  
reduce injury risk.41,42,49 Though this approach is well 

intentioned, emerging evidence indicates that strength alone  
is not an independent predictor of primary and secondary 
injuries.42,44,45,72,84,117 Hence, focusing on strength as a lone 
therapeutic target does not appear to adequately reduce the risk of 
injury. Further complicating this situation, common lower extremity 
injuries such as anterior cruciate ligament (ACL) rupture and ankle 
sprains can have life-long consequences, as these injuries are 
known to be a precursor to long-term disability associated with 

early-onset osteoarthritis.52,110,116 The extensive health care cost and 
life-long disability69,99 of common musculoskeletal injuries 
highlights the importance of reducing primary and secondary 
musculoskeletal injury risk.

Emerging evidence indicates that movement patterns that 
increase the risk of injury occur because of neuromuscular 
control deficits, which lead to compensatory motor 
strategies.38,46,80,84 This lack of motor control or deficit in 
neuromuscular function has been operationally defined as the 
neurological mechanisms underlying the unconscious activation 
of dynamic restraints occurring in preparation for and in 
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Context: Neuromuscular alterations are a major causal factor of primary and secondary injuries. Though injury prevention 
programs have experienced some success, rates of injuries have not declined, and after injury, individuals often return to 
activity with functionality below clinical recommendations. Considering alternative therapies to the conventional concentric 
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effective injury prevention and rehabilitation protocols.
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response to joint motion.93,94 Clinically, these deficits in 
neuromuscular control manifest as poor landing mechanics, 
deficits in postural control, and altered peripheral muscle 
activation arising from changes in the central nervous system 
adversely affecting control of the skeletal muscle system.93,94 
Though researchers and clinicians have implemented injury 
prevention protocols to reduce the incidence of injury by 
targeting 1 or more of the abovementioned factors of 
neuromuscular control with some success,60,113 the role of 
eccentric exercise as a training modality to mitigate these risk 
factors and reduce injury rates is often overlooked. The lack of 
eccentric exercise during injury prevention is likely due, in part, 
to the outdated notion that eccentric exercise causes muscle 
injury and soreness.71,90,91 This negative association between 
eccentric exercise and injury is likely because of research that 
uses very high–intensity and volume-lengthening exercises to 
experimentally induce injury, resulting in a large body of 
literature that supports the notion that eccentric exercise can be 
dangerous.13,27,70,71 Importantly, the muscle strains and 
subsequent injuries produced in these benchtop experiments 
have not been reproduced in the clinic, strongly suggesting that 
eccentric exercise is safe.14 However, in response to the outdated 
notion that eccentric exercise produces muscle soreness and 
injury and is associated with reduced performance,77,90,91 
concentric exercise is often utilized as the clinical default to 
enhance neuromuscular control. Unfortunately, the concentric 
exercise approach does not restore neuromuscular function after 
injury,63,73,82 and both primary and secondary injury rates remain 
high.5,18,74,84 Though the ability of eccentric exercise to remodel 
muscle morphology is well known,1,11,12,26,29 and the adoption of 
eccentric exercise to prevent hamstring strains is gaining traction 
thanks to programs like FIFA 11+,85,106 there is also mounting 
evidence to support its use to enhance neuromuscular control 
and potentially reduce the incidence of injury. Accordingly, the 
objectives of this work were to (1) provide clinicians with an 
updated account of how alterations in neuromuscular control are 
a leading risk factor for injury and (2) propose a paradigm shift 
where eccentric exercise is used not only to optimize muscle 
morphology but also to prevent injury by targeting specific 
neural adaptations that are associated with poor neuromuscular 
control (Figure 1).

Altered NeuromusculAr  
coNtrol leAds to PrimAry  
ANd secoNdAry iNjuries

Proper neuromuscular control is maintained by an inherently 
complicated physiological system, and the degree to which 
alterations in this complex system (alpha-gamma motorneuron 
coactivation, mechanoreceptors, cortical and spinal 
mechanisms) contribute to injury is becoming clearer.79,89 In 
particular, prospective data sets45,117 allow researchers to make 
critical causal links between targetable injury risk factors and 
primary injury occurrence. Perhaps one of the most striking 
findings emerging from these studies is that strength alone is 
not predictive of primary injury.45,117 Alternatively, improper 

neuromuscular control appears to be the significant causal risk 
factor of primary lower extremity injury, as investigators have 
found that alterations in neuromuscular control can lead to 
excessive lateral trunk displacement117 and abnormal knee 
mechanics (valgus moments) during loading, which are the 
most predictive risk factors of those who go on to experience 
ACL injury.45 Field assessment tools such as the Landing Error 
Scoring System (LESS) have also shown promise in 
prospectively predicting primary ACL injury risk in youth soccer 
players with abnormal landing characteristics80; however, 
evidence thus far has been contradictory, with others 
demonstrating no relationship between the risk of suffering ACL 
injury and LESS scores in high school and college athletes.103 
Altered hip and knee mechanics and postural control during 
loading are the strongest predictive risk factors for individuals 
who develop patellofemoral pain syndrome.8 Similarly, in 
individuals who experience ankle sprains, high postural sway is 
evident prior to the initial injury,72 and reduced performance on 
clinical measures of balance (Star Excursion Balance Test in the 
anterior direction) has recently been shown to be predictive of 
future ankle sprains.32 Though muscle strength is an inherent 
factor associated with neuromuscular control, a consistent 
finding among all of the above8,32,45,72,80,117 is that deficits in 
balance and landing mechanics are the strongest predictors of 

Figure 1. Injury is influenced by neuromuscular control 
(muscle morphology and neural activity). Eccentric exercise 
is known to beneficially modify several underlying factors 
of muscle morphology and neural activity (solid lines), and 
emerging evidence indicates that eccentric exercise is also 
beneficial to cortical neural control (dashed lines). Thus, 
eccentric exercise can be used to optimize neuromuscular 
control, thereby reducing the risk of injury.
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primary injury. Hence, finding therapies capable of optimizing 
neuromuscular control is vital for those preventing or treating 
musculoskeletal injury.49

The need to identify interventions capable of enhancing 
neuromuscular control to prevent injury is perhaps most 
urgently needed after the initial injury during rehabilitation, as 
patients often return to activity with significant neuromuscular 
deficits that precipitate secondary injuries.15,20,84 In the case of 
patients with ACL reconstruction, altered muscle activation 
profiles15,19,21,39,56,57,111 and spinal reflexive excitability87 persist 
for months to years after surgery. Knee and ankle joint injuries 
also adversely affect supraspinal activity, with altered cortical 
drive to the surrounding musculature43,57,88,109 and reduced 
neural efficiency.6,7 Recent advances in technology have allowed 
investigators to utilize functional magnetic resonance imaging 
(fMRI) to better understand the redistribution of activation 
patterns in the brain that are contributing to prolonged 
neuromuscular deficits. Notably, investigators recently used fMRI 
to prospectively assess brain activation in an individual 26 days 
prior to a second contralateral ACL injury, where alterations in 
motor planning, sensory processing, and visual motor control 
potentially predisposed the individual to injury when compared 
with a healthy matched control.35

These chronic neural deficits not only contribute to secondary 
injury risk15,47 but prevent effective strengthening,50 further 
compounding the risk for early-onset osteoarthritis.52,110 
Unfortunately, the changes in afferent and efferent neural activity 
after joint injury appear to be resistant to the current standard of 
care, which is primarily composed of concentrically focused 
exercises.50 Data from a recent longitudinal investigation help 
illustrate this point directly; substantial changes in cortical, spinal, 
and volitional neural excitability were present after the initial ACL 
injury, were not rectified with ACL reconstruction, and were still 
present at return to activity despite 6 months of intensive 
rehabilitation.62 Though rising awareness in the rehabilitation 
community has emphasized the importance of exercises in 
rehabilitation to target deficits in neuromuscular control,4,20,78 the 
rates of traumatic knee joint injuries and ankle injuries have not 
declined.5,18,84 Given the mounting data that indicate a direct link 
between poor neuromuscular control and primary and secondary 
injuries, alternative interventions capable of targeting the neural 
mechanisms associated with poor neuromuscular control should be 
strongly considered when developing an injury prevention protocol.

NeuromusculAr BeNefits  
of ecceNtric exercise
Morphological Considerations

A primary advantage of skeletal muscle is that it is a plastic 
biological material, constantly adapting and remodeling to the 
demands imposed on it.67 This constant remodeling provides a 
therapeutic target that clinicians can exploit, as modifications to 
the physical stress imposed on muscle provide a means to 
directly enhance its functionality. Scientists are still unraveling 
the unique enhancement to muscle functionality from eccentric 

contractions and how these contractions maintain system 
stability at the cross-bridge level.14 In contrast to concentric 
muscle contractions, where the proposed mechanisms of muscle 
contractions were scientifically and mathematically derived in 
1957 by A. F. Huxley,51 eccentric muscle contractions have long 
been considered to be “odd” or “deviating from the norm” 
(hence the name eccentric). However, without fully 
understanding the mechanism of muscle contractions, 
researchers and clinicians have long known that the “repeated 
bout effect,” or the chronic use of eccentric exercise, is capable 
of beneficially modifying muscle morphology. This has been 
repeatedly shown in animal and human experiments where the 
targeted muscle of interest becomes more compliant to strain 
because of the addition of sarcomeres in series.14 Arguably the 
best clinical example of this morphological benefit is the shift of 
the hamstring torque-angle curve to a longer working length 
after an eccentric intervention because of the addition of 
sarcomeres in series, which has implications for reduced injury 
risk.11,12 Other notable well-established benefits of eccentric 
exercise are the ability to promote substantial gains in muscle 
cross-sectional area,29 promote optimal fiber length,12,26 increase 
pennation angle,1 and target type II fibers.40 Again, though the 
mechanisms involved in the acute morphological benefits of 
eccentric exercise are still under investigation, new evidence 
examining eccentric contractions at the cross-bridge level has 
found that eccentric exercise is capable of directly triggering a 
signaling complex that regulates tissue growth and 
adaptation.92,105 Notably, this signaling complex is only activated 
when the sarcomere is lengthened by a mechanical force, 
indicating that only eccentric exercise is capable of engaging this 
unique mechanism to promote tissue growth.92 From a clinical 
perspective, these benchtop experiments provide rationale as to 
why clinicians see greater acute muscle growth with eccentric 
exercise as compared with concentric exercise.59,64,98 Taken 
together, these data support that both acute and chronic 
exposure to eccentric exercise appear to be uniquely well suited 
to remodeling muscle morphology.

Emerging Neural Evidence

New data are emerging that provide a compelling argument for 
the ability of eccentric exercise to directly influence peripheral 
and central neural adaptations associated with poor 
neuromuscular control.28,66 Investigators have found that 
eccentric exercise is capable of significantly improving 
quadriceps electromyographic activity, physiologically indicating 
that an improvement in central motor drive is causing greater 
activity at the peripheral-sarcolemma level.28 Improvement in 
the recruitment and/or firing rate of alpha motorneurons has 
also been found in patients with previous ACL reconstruction 
after just 12 treatments of eccentric exercise to the quadriceps 
muscle.66 In patients with spinal cord injuries, volitional muscle 
activation (central activation ratio) and spinal pathways (Ia 
alpha motorneuron) are preferentially affected during passive 
eccentric exercises,54 suggesting the wide benefit of lengthening 
contractions to target inhibited central and peripheral nervous 
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system pathways and promote greater neural activity even in 
the most extreme of conditions.

New techNologies Allow for  
Novel iNsight ANd frAmework

Recently, researchers have started to use neurophysiological 
testing methods to better understand neuromuscular control 
associated with musculoskeletal injury. Transcranial magnetic 
stimulation (TMS), in which a noninvasive magnetic stimulus is 
applied to the motor cortex, can assess the ability of cortical 
neurons to activate and transmit impulses to the muscles.3,31,37,108 
Although there is limited research, investigations using TMS 
have also helped demonstrate that eccentric muscle contractions 
utilize unique neural mechanisms compared with other modes 
of muscle contraction.3,22,37,101,102 In particular, researchers have 
demonstrated that eccentric contractions utilize greater 
excitability at the motor cortex compared with both concentric 
and isometric muscle contractions,3,37 whereas concentric 
contractions appear to rely more on spinal-reflexive 
mechanisms.3 Greater levels of cortical excitability are used 
during eccentric contractions as a compensatory strategy to 
account for inhibition at the spinal level.22,37 Simply stated, the 
muscle spindle, which would normally cause a reflexive 
contraction of the muscle during lengthening, must be inhibited 
to allow for the eccentric contraction to occur, thereby 
increasing cortical drive to the muscle.22 Interestingly, acute 
inhibition in spinal-reflexive excitability55,62,81 is present after 
joint injury and thought to initiate long-term deficits in 
neuromuscular control.47 This may explain why traditional, 
concentrically driven rehabilitation programs are unsuccessful at 
restoring neuromuscular control in these patients, as concentric 
exercise attempts to rely on inhibited spinal-reflexive pathways 
and therefore fails to adequately activate muscles during 
contraction. Alternatively, eccentric exercise interventions can 
create immediate gains in muscle strength and activation via 
selectively targeting central nervous system mechanisms in 
conjunction with the beneficial morphological adaptations.3,22,37 
Additionally, data suggest that eccentric exercise may have the 
ability to create neural adaptations at the spinal level, whereas 
the increase in cortical excitability causes a decrease in 
presynaptic inhibition over time, leading to improved muscle 
recruitment and potentially counteracting other inhibitory 
signals from an injured joint, such as pain and swelling.24 
Therefore, eccentric exercise interventions may be ideally suited 
for patients with musculoskeletal injury and create an optimal 
environment for muscle strengthening.2,37 Furthermore, 
excitability of the motor cortex is impaired after a variety of 
musculoskeletal injuries, such as patellar tendinopathy,95 ACL 
injury43,62,115 and reconstruction,61,62,87 and after ankle sprains 
and subsequent ankle instability,9,75,86 which may negatively 
influence muscle function and movement patterns.89,114 The 
ability of eccentric exercise to selectively increase motor cortex 
excitability as well as create adaptations in spinal level 
inhibition makes this mode of exercise an attractive addition to 
current rehabilitation techniques.

This unique neural recruitment pattern and neuroplasticity 
associated with eccentric contractions may have the ability to 
address injury-induced neural changes and improve motor 
control.33-35,58 In fact, new data suggest that the delivery of 
eccentric exercise, relative to concentric, may attenuate deficits 
in neuromuscular control induced by injury by not only 
improving cortical excitability but also by targeting specific 
motor control pathways in the brain.25,58 To support this notion, 
in preliminary work using fMRI, real-time functional motor 
network reorganization is seen during eccentric quadriceps 
contractions after ACL reconstruction that addresses the primary 
maladaptive plasticity seen after injury (Figures 236 and 3, 
preliminary data). Specifically, when patients with ACL 
reconstruction who have undergone the traditional concentric 

Figure 2. Left: Three-dimensional representation of the 
whole-brain activation pattern for knee extension-flexion 
in a cohort of participants who underwent anterior cruciate 
ligament (ACL) reconstruction (n = 15).36 Right: Two-
dimensional images pinpointing areas of increased activation 
in red-orange and decreased activation in blue during knee 
extension-flexion in those with ACL reconstruction relative to 
matched controls. Note the increase in motor cortex activation 
(lower right) and decrease in cerebellum activation (upper 
right).
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bias rehabilitation scheme engage in knee movement exercises, 
they increased activation of the primary motor cortex (units are 
in BOLD [blood oxygen level–dependent signal, a correlate of 
neural activity] mean region increase, 2.18% ± 0.7%) and 
decreased activation of the cerebellum (BOLD mean region 
decrease, 0.39% ± 0.13%) relative to healthy matched controls 
(Figure 2). This altered cortical-cerebellar state after ACL 
reconstruction36 may provide a partial mechanism for the 
increased cocontraction,112 reflex inhibition,62,104 and adaptive 
reactive stabilizing activation of the quadriceps and hamstring 
musculature after injury, as the cerebellum plays a key role in 
sensory-motor integration and precision force control.68 
Furthermore, this neural activation pattern associated with 
concentric rehabilitation appears to be suboptimal, as ACL-
reconstructed individuals have poorer quadriceps muscle 
control and functional performance as well as decreased activity 
levels despite combined surgical and rehabilitative interventions.63 
Although not fully understood, it is possible that this altered 
cortical-cerebellar state after ACL reconstruction may be due to 
the extensive unilateral concentric muscle strengthening utilized 
during rehabilitation and the use of conscious cortical 
mechanisms to maintain knee stability (ie, the patient uses an 
internal focus of control, focusing on the knee joint and 
quadriceps musculature to engage in movement).76 Interestingly, 

by engaging in eccentric muscle contractions as compared with 
concentric, increased cerebellar activation is seen (BOLD mean 
region increase, 2.4% ± 1.15%) and decreased cortical activation 
(primary motor cortex activation; BOLD mean region decrease, 
2.0% ± 1.21%) (Figure 3, preliminary data). Thus, eccentric 
contractions may be able to reverse this altered cortical-
subcortical state, promoting a neural activation pattern that is 
more like that of healthy controls, providing a compelling 
mechanism for therapeutic intervention. Importantly, the 
cerebellum plays a key role as a processing unit for optimal 
motor coordination96; thus, exercises that can facilitate its 
activation may be able to improve neuromuscular control more 
globally. Concentric contractions depend on spinal mechanisms 
for regulation of muscle force via the muscle spindle regulation 
of contractile properties, whereas in eccentric contractions, 
spinal mechanisms are inhibited to allow muscle lengthening 
without reflexive contractions.3,23 This depressed muscle spindle 
feedback to the brain during eccentric contractions may further 
increase the need for heighted feed-forward control and 
accurate sensory predictions of the cerebellum to regulate 
motor output.68,107 Hence, by engaging in eccentric contractions, 
clinicians may be able to reduce primary and secondary injury 
risk by selectively targeting brain centers (eg, cerebellum) that 
reduce motor coordination error.

Figure 3. Left: Three-dimensional representation of the contrast between eccentric-concentric quadriceps contractions in 
those with anterior cruciate ligament (ACL) reconstruction relative to matched controls (n = 2). Right: Two-dimensional images 
pinpointing areas of increased activation in red-orange and decreased activation in blue during eccentric quadriceps contraction 
relative to concentric contraction. The activation pattern for eccentric contractions in the 2 ACL-reconstructed participants may 
uniquely reverse the activation pattern for knee movement that is present after injury. These data are from ongoing work and are 
unpublished.
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Novel ecceNtric iNterveNtioNs for 
imProviNg NeuromusculAr coNtrol

In scenarios where eccentric exercise of the involved limb is 
contraindicated (eg, acute postoperative stages), clinicians can 
also consider using eccentric cross-exercise. Cross-exercise is 
the ability for exercise of 1 limb to cause an increase in strength 
of the contralateral, nonexercised limb.100 This mode of exercise 
is capable of enhancing neuromuscular control by selectively 
targeting neural pathways that are associated with altered 
movement patterns.28 Compared with concentric cross-exercise, 
eccentric cross-exercise provides greater immediate and 
sustained gains in strength and electromyographic activity in the 
untrained limbs of healthy individuals.48 The cross-exercise 
strength gains that are produced in the nonexercised limb occur 
as a result of enhanced cortical (TMS) and spinal neural 
activity.16,118 At the cortical level, the benefits of cross-exercise 
result from increased interhemispheric brain activity.17,28,118 
Spinal reflexive pathways involving reduced reciprocal 
inhibition (Hoffmann reflex) contribute to improved strength in 
the nonexercised limb.97,118 Similar to exercising the involved 
limb, in healthy adults, an eccentric cross-exercise training 
protocol is capable of improving alpha motorneuron 
recruitment and/or firing rate in the nonexercised leg (central 
activation ratio).65 After eccentric cross-exercise, relative to 
concentric cross-exercise, a reduced intracortical inhibition 
silent period and improved corticospinal excitability (measured 
via TMS) were noted, further supporting eccentric cross-exercise 
uniquely moderating neural pathways associated with 
neuromuscular control.53

theoreticAl model for  
how ecceNtric exercise  
cAN PreveNt iNjury

Alterations in neuromuscular control that lead to injury may not 
be overcome by conventional injury prevention/rehabilitation 
programs. Alterations in muscle morphology and neural activity 
are the 2 primary factors that regulate neuromuscular control. 
Hence, to optimize neuromuscular control, clinicians should 
focus on finding therapies capable of targeting these underlying 
factors of muscle function. A number of recent published works 
have looked to develop novel eccentric exercise protocols that 
are able to optimize neuromuscular function in injury 
prevention and rehabilitation protocols. To beneficially modify 
quadriceps neuromuscular control, we point readers to eccentric 
exercise and cross-exercise protocols.10,30,66,83 Modifying 
neuromuscular properties of the hamstring muscles may benefit 
from the use of Nordic hamstring curls.11 Although it is well 
known that eccentric exercise is capable of promoting beneficial 
changes in muscle morphology, emerging evidence suggests 
that eccentric exercise is also capable of beneficially modifying 
peripheral and central neural activity. Based on the available 
evidence, we have proposed a paradigm shift where eccentric 
exercise is not considered harmful and should be incorporated 
into injury prevention protocols to target specific neural and 

morphological factors that are associated with poor 
neuromuscular control, which can be utilized to prevent injury 
(see Figure 1). This theory is developed from current data 
suggesting that eccentric exercise is beneficial to both muscle 
morphology and neural activity, which are underlying factors of 
muscle performance that have been linked to injury risk. 
However, based on this review, the reader should be aware that 
there is a general lack of evidence in the implementation of 
eccentric exercise programs for the purpose of preventing 
musculoskeletal injury. Although the evidence summarized in 
this theoretical model demonstrates that eccentric exercise is 
beneficial to neuromuscular control, there remains a gap in the 
literature on whether this improvement in muscle function 
translates to beneficial injury prevention strategies. Future 
research should look to include eccentric-based exercise 
programs when assessing the efficacy of injury prevention 
programs to directly elucidate the beneficial aspect of eccentric 
exercise on injury prevention.
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