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SUMMARY

Background
Observational studies show a strong association between delayed intestinal
transit and the production of methane. Experimental data suggest a direct
inhibitory activity of methane on the colonic and ileal smooth muscle and
a possible role for methane as a gasotransmitter. Archaea are the only con-
firmed biological sources of methane in nature and Methanobrevibacter
smithii is the predominant methanogen in the human intestine.

Aim
To review the biosynthesis and composition of archaeal cell membranes,
archaeal methanogenesis and the mechanism of action of statins in this context.

Methods
Narrative review of the literature.

Results
Statins can inhibit archaeal cell membrane biosynthesis without affecting
bacterial numbers as demonstrated in livestock and humans. This opens
the possibility of a therapeutic intervention that targets a specific aetiologi-
cal factor of constipation while protecting the intestinal microbiome. While
it is generally believed that statins inhibit methane production via their
effect on cell membrane biosynthesis, mediated by inhibition of the HMG-
CoA reductase, there is accumulating evidence for an alternative or addi-
tional mechanism of action where statins inhibit methanogenesis directly. It
appears that this other mechanism may predominate when the lactone
form of statins, particularly lovastatin lactone, is administered.

Conclusions
Clinical development appears promising. A phase 2 clinical trial is currently
in progress that evaluates the effect of lovastatin lactone on methanogenesis
and symptoms in patients with irritable bowel syndrome with constipation.
The review concludes with an outlook for the future and subsequent work
that needs to be done.
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INTRODUCTION
Methane, which is now of great interest to climate
researchers, plays an important if somewhat underappre-
ciated role in gastrointestinal disorders. The link between
this odourless gas and the intestine was first made in the
early days of colonoscopy, when sparks from electrosur-
gical devices sometimes led to intracolonic explosions.1

Microbial metabolism of mannitol, a sugar alcohol that
had been commonly used for colon lavage, led to
increased concentrations of the flammable gases hydro-
gen and methane. Modern bowel preps do not carry that
risk.

Methane can have inorganic (e.g. geothermal-volcanic
methane emissions) and organic sources. The only
organisms known to produce methane are methanogenic
archaea. Archaea are fascinating prokaryotes that were
previously considered to be bacteria. However, these
prokaryotes, while resembling bacteria on a superficial
level, were found to have so many unique characteristics
that they were given their own name, archaea, and were
elevated to occupy a position as one of the three
domains of life: archaea, bacteria, and eucarya.2, 3

Less spectacular than its explosive capacity but more
important is recent evidence that links intestinal
methane production to slowed intestinal transit.4 In this
review, we will describe how large quantities of methane
are produced in the colon and how statins may have
therapeutic importance by inhibiting methane produc-
tion through the selective suppression of the growth of
methanogens.

METHANE AND CONSTIPATION-ASSOCIATED
DISORDERS

Methane and intestinal transit
Although 50–80% of methane in humans is passed as
flatus, the presence of methane production can be accu-
rately assessed by breath tests. A comprehensive review
recently concluded that data from breath testing gener-
ally support the association between delayed intestinal
transit and the production of methane.5 Methodological
differences in study design precluded a formal meta-ana-
lysis approach for studies that correlated diagnosis of
constipation-predominant IBS (IBS-C) or chronic idio-
pathic constipation with methane production, neverthe-
less, the same report5 lists 14 studies supporting the
association between methane production and constipa-
tion related disorders in adults. There are a few reports
that primarily evaluated other hypotheses that did not
show a link between methane on breath testing and

constipation6–8 and one study that concludes that colonic
methane production is not associated with clinical pre-
sentation in IBS patients.9

Two microbiome studies correlating methanogens and
stool frequency have recently become available. One
study evaluated the correlation between gut microbiota
variation and stool consistency using the Bristol Stool
Scale (BSS) classification. Enterotypes were distinctly dis-
tributed over the BSS scores: Within the RB enterotype,
found in harder stool samples, the abundance of
Methanobrevibacter and Akkermansia was positively cor-
related with colon transit time.10 The results of another
microbiome study analysing 273 faecal samples showed
that only patients with a constipation phenotype pre-
sented higher abundance of methanogenic archaea, con-
firming a link between low transit time and methane
production capacity.11

Association does not prove causation, and it has long
been known that intestinal dysmotility, as seen in sclero-
derma, leads to secondary small intestinal bacterial (and,
presumably, archaeal) overgrowth. It could be argued
that increased methane production is therefore not the
cause but an effect of delayed intestinal transit. Fourteen
healthy volunteers underwent four interventions: placebo,
sulphate supplements, or sulphate supplements with
either senna or loperamide. With faster intestinal transit
a reduction in faecal methanogens and methane produc-
tion was seen. The reverse effects were true with lop-
eramide.12 However, there is experimental evidence that
methane directly affects intestinal transit and contractil-
ity (methane-first hypothesis).

Experimental evidence
While methane is predominantly produced in the colon,
methanogens can also be demonstrated in the small
intestine, especially when small bowel bacterial over-
growth exists.13 Pimentel and colleagues conducted a
three-part study consisting of two experiments – one
in vivo (dogs) and one ex vivo (guinea pig ileum) – as
well as a retrospective review of data in irritable bowel
syndrome (IBS) patients who had previously undergone
breath testing and antroduodenal motility studies.4 In
dogs, small intestinal fistulae were created and transit
of a radiotracer was measured during infusion of ambi-
ent air, followed by methane at a rate that was physio-
logical (i.e. resulting in 50 ppm in exhaled air), a
concentration that is typical for patients with irritable
bowel syndrome with constipation (IBS-C). The
methane infusion resulted in decreased radiotracer
recovery in each of five individual dogs compared to
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baseline. The average reduction was 59%, which was
highly significant (P < 0.001).

In the second experiment, 3-cm-long terminal ileum
preparations from sacrificed guinea pigs were oriented in
an oral-aboral fashion in a physiological buffer solution
and stimulated before and after methane was bubbled
through the tissue bath. Methane exposure at a concen-
tration of 1000 ppm led to a significant augmentation of
the contractile force in response to the applied brush
stroke, consistent with hyperactivity.

Finally, after retrospective review, 11 methane-produ-
cing and 12 sex-matched hydrogen-producing subjects
were identified who met Rome I criteria for IBS and, in
addition, had antroduodenal manometry data available.
The fasting motility index, as a gross measure of forces
(resistive and propulsive) in the small intestine, in
methane-producing subjects was noted to be significantly
higher (1851 � 861) compared with hydrogen-producing
subjects (1199 � 301; P < 0.05).

The authors concluded that methane slows small
bowel transit and augments contractile activity in the
small bowel, and in addition, small intestinal contractile
activity is increased in IBS patients who produce
methane. They speculated that methane predisposes to
constipation because it promotes segmental (nonpropa-
gating contractions) and suggested that further work,
especially involving the colon, was warranted.4

In similar experiments, a Korean group reproduced
and expanded upon the results of the above studies by
including colonic motility studies and comparing the
effects of hydrogen gas with those of methane. Briefly, in
an ex vivo experiment using guinea pig ileal, right and
left colon segments in a peristaltic tissue bath, ileal con-
tractile activity significantly decreased and the amplitude
of peristaltic contractions increased in response to
methane insufflation, while the opposite phenomenon
was detected after hydrogen infusion. Colonic transit was
shortened by hydrogen infusion, but this effect was
blunted when methane was co-administered, especially
in the right colon.14

The preceding experimental and observational studies
support a causative role for methane in constipation-
related disorders, especially IBS-C. Ultimately the argu-
ment that slow transit could cause overgrowth of metha-
nogenic bacteria is not necessarily a detractor from the
methane-first hypothesis. Perhaps a feedback loop exists
where the terms cause and effect have less meaning and
opportunities for therapeutic intervention exist in this
circle: Slow transit promotes archaeal growth – archaea
produce methane – methane produces better growth and

survival conditions for archaea – more methane is pro-
duced further slowing down intestinal transit leading to
symptomatic constipation – archaea thrive and multiply
until a steady state is achieved.

THE ORIGIN AND PROPERTIES OF METHANE
PRODUCTION
The five major gases in the colon are: nitrogen (23–
80%), hydrogen (0.06–47%), carbon dioxide (5.1–29%),
oxygen (0.1–2.3%) and methane (0–26%).1

In addition, nitric oxide and hydrogen sulphide are
found as well. These gases have great importance
through their function as gasotransmitters and compo-
nents of a complex microbial ecosystem.12, 15 All the
methane in the intestine is produced by methanogenic
bacteria of which Methanobrevibacter smithii, described
in more detail below, is the most important contributor.
Methane is overwhelmingly produced by strictly anaero-
bic archaea that produce methane from substrates such
as hydrogen, carbon dioxide and certain other substrates.
Emissions from agriculture represent around 40% of the
methane emissions produced by human-related activities,
the single largest source is enteric fermentation in live-
stock.16

Archaea are a large and diverse class of prokaryotes
that, together with bacteria and eukaryotes, make up the
three domains of life.17 More recently evidence for direct
methane production and emission by eukaryotes such as
plants, animals and fungi has been presented. While this
seems to have been confirmed for plants, mammalian
endogenous (nonmicrobial) methane production remains
controversial.18 These findings, if corroborated, could,
however, support a gasotransmitter role for methane.19

Various archaeal species have been shown to inhabit
distinct human body sites such as the intestine, the oral
cavity, the vagina and, most recently, the skin.20 The
majority of the so far detected archaea in humans, par-
ticularly from the gut and mouth, represent members of
the family Methanobacteriaceae.21

Methane phenotype
Breath tests conducted in humans register either
methane (30–50%) or hydrogen (50–70%) but only
rarely both.22 This makes sense if one considers the stoi-
chiometry of hydrogen removal by methanogens: The
production of one mole of methane removes 4 moles of
hydrogen (4H2 + CO2 ? CH4 + 2H2O). The designa-
tion of subjects as ‘methane producers’ or ‘methane non-
producers’ based on breath testing only accounts for one
way of escape but not the large amount that is passed

Aliment Pharmacol Ther 2016; 43: 197–212 199

ª 2015 The Authors. Alimentary Pharmacology & Therapeutics published by John Wiley & Sons Ltd.

Review: methane, archaea, statins and the gut



directly as flatus (between 50% and 80% of the total).
Indeed, one older report suggests that methane is not
detected in breath until the methanogens reach a density
of 108 methanogenic bacteria per gram of stool.23 How-
ever, as always, the situation could be more complex. A
recent study from New Zealand using highly sensitive
open-circuit respiration chambers (that account for total
animal methane emissions) identified a low- and high-
methane phenotype in sheep that was attributed to the
composition of microbial communities with methanogen
densities that were not significantly different between the
high and low groups.24 Open-circuit respiration cham-
bers are not practical in humans and dividing subjects
into methane producers and nonproducers by conven-
tional breath test results is both convenient and clinically
meaningful.

Methane as a gasotransmitter
Methane may be one of a series of gasotransmitters –
endogenously generated, gaseous signalling molecules
that do not require membrane receptors for their activ-
ity. Gasotransmitters are evolutionally conserved from
bacteria and archaea to plant and mammalian cells.
Nitric oxide (NO) was the first identified gasotransmit-
ter; carbon monoxide and hydrogen sulphide have been
added more recently, and ammonia, hydrogen and
methane have achieved candidate status.25 The discovery
of mammalian NO metabolism (‘endothelium-derived
relaxing factor’) has led to a whole class of drugs, the
phosphodiesterase inhibitors.26 Drugs that release hydro-
gen sulphide are currently being developed for their pos-
sible anti-neoplastic, chemoprotective and
chemopreventive potential.27, 28

Some intriguing findings support the candidacy of
methane as a gasotransmitter. Boros, et al. 29 demon-
strated that the inhalation of 2.5% CH4 significantly
ameliorated the extent of ischaemia-reperfusion damage
in dogs. A parallel series of experiments published in the
same report showed that exogenous CH4 inhibited leuco-
cyte infiltration in vitro, suggesting a connection between
CH4 function and the immune system. Pimentel et al.
showed that intestinal methane gas infusion slowed
intestinal transit in dogs, and these experiments were
reviewed in detail above.4 Boros et al.19 carefully exam-
ined to which extent methane fulfils the criteria pro-
posed by Wang25 that characterise a gasotransmitters.
The authors concluded that the data do not fully support
the gasotransmitter concept, but suggested that methane
liberation (from endogenous sources, not through the
resident flora) may be linked to redox regulation con-

nected to hypoxic events leading to, or associated with,
mitochondrial dysfunction.

In order for methane to move from its status as can-
didate-gasotransmitter to accepted gasotransmitter, direct
endogenous production in mammalian organisms will
need to be confirmed and the biochemistry and physiol-
ogy clarified. As will be reviewed in the following,
regardless of the eventual outcome of these investiga-
tions, sufficient evidence is accumulating to justify explo-
ration of the methanogenesis pathway of intestinal
archaea as a drug target in patients with certain consti-
pation related disorders.

METHANOGENESIS IN THE HUMAN GUT
Understanding the properties of methanogens in the gut
and their physiology helps us to consider how their
methane production might be curtailed by statins and
other compounds.

Archaea and methanobacteria
Like bacteria, archaea are prokaryotes but many of their
characteristic features are distinct from those of bacteria
and eukaryota. Many archaea are best known for their
ability to thrive in extreme environments. Others, such as
the class called Methanobacteria (a name which was
assigned before it was recognised that they are not ‘bacte-
ria’), may live in less forbidding environments but are ‘ex-
treme’ in their metabolic capabilities. They carry out what
at first appears to be a contradiction in terms: anaerobic
respiration. Aerobic respiration has oxygen as final elec-
tron acceptor. In contrast, anaerobic respiration relies on
a final electron acceptor other than oxygen, in the case of
M. smithii and other methanogenic species, carbon diox-
ide. Furthermore, M. smithii cannot use the conventional
carbohydrate, lipid and protein electron donors for energy
generation, instead it uses hydrogen gas. Biological
methanogenesis is indeed an ancient ‘archaic’ process dat-
ing back 2.7 billion years when oxygen was still a trace
element in the atmosphere and hydrogen was abundant.30

In summary, methanogens in the gut generate energy by
‘breathing’ the exhaust of other bacteria in the gut (hydro-
gen and carbon dioxide) and producing methane as waste:
4 H2 + CO2 ? 2H2O + CH4.

31

It should be noted that methanogenic archaea are
not the only consumers of hydrogen (hydrogenotrophs)
in the gut. Sulphate-reducing bacteria can obtain
energy by oxidising organic compounds or molecular
hydrogen while reducing sulphate to hydrogen sulphide,
previously mentioned as a gasotransmitter. Hydrogen
sulphide is a colourless gas with the characteristic foul
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odour of rotten eggs. Hydrogen sulphide is toxic to
colonocytes and can impair their metabolic function
and has been implicated in the aetiology of ulcerative
colitis.32 It is therefore conceivable that a decrease in
methanogenic activity could favour sulphate-reducing
bacteria with a concomitant increase in sulphide pro-
duction. Indeed, competition between hydrogenotrophs
has long been of interest to microbial ecologists. How-
ever, according to a comprehensive review of this issue,
it appears impossible to fully explain the outcome of
the competition among hydrogenotrophs in the human

colon by idealised theory or in vitro chemostat sys-
tems,33 and clinical studies will have to address this
question.

M. smithii
The dominant methanogen in the human intestine is
M. smithii. Methanosphaera stadtmanae, which transfers
electrons from hydrogen to methanol instead of carbon
dioxide, is found less frequently (Figure 1). M. smithii is
well adapted to the human intestine. It produces surface
glycans resembling those found in the gut mucosa, regu-

Kingdom Archaea

Euryarchaeota

Methanobacteria

Methanobacteriales

Methanobacteriaceae

Methanobrevibacter (Balch and Wolfe, 1981)

Methanobrevibacter smithii – human feces

Methanobrevibacter arboriphilicus – eastern cotton wood tree, wetwood 

Methanobrevibacter curvatus – hindgut of termite Reticulitermes flavipes

Methanobrevibacter cuticularis – hindgut of termite Reticulitermes flavipes

Methanobrevibacter filiformis – hindgut of termite, Reticulitermes flavipes

Methanobrevibacter gottschalkii – horse feces

Methanobrevibacter millerae – bovine rumen fluid

Methanobrevibacter olleyae – ovine (sheep) rumen fluid

Methanobrevibacter oralis – human oral cavity

Methanobrevibacter ruminantium – bovine rumen

Methanobrevibacter thaueri – bovine feces

Methanobrevibacter woesei – goose feces

Methanobrevibacter wolinii – sheep feces

Methanobrevibacter acididurans – acidogenic digester running on alcohol distillery waste

Phylum

Class

Order

Family

Genus

Species

Taxonomy of M. smithii

Figure 1 | Taxonomy of Methanobrevibacter smithii. Only two methanogenic species have so far been isolated from the
human colon: M. smithii is the predominant methanogen in the human gut. Methanosphaera stadtmanae, family
Methanobacteriaceae, is less abundant. Note the Methanobrevibacter species in bovine and sheep rumen and
mammalian faeces. The official taxonomy does not necessarily correlate with current molecular phylogenetics. Data
from the Integrated Taxonomic Information System (ITIS)52–64 with isolate information from the Global Catalogue of
Microorganisms.65
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lates the expression of adhesin-like proteins, consumes
fermentation products produced by saccharolytic bacte-
ria, effectively competes for nitrogen compounds, and –
crucial for being well adapted to the gut – can grow in
the presence of bile salts.34

The cytoplasm of M. smithii is enclosed by a cell
membrane and a cell wall35 that is decorated with the
glycans (mentioned above), an arrangement that is
familiar to us from the Gram-positive bacteria. Indeed,
M. smithii stains positive with the Gram stain.34 How-
ever, compared to bacteria, there are significant differ-
ences, both in cell wall and in cell membrane
composition. Cell wall peculiarities have relevance to
susceptibility to common antibiotics. The cell membrane
of most bacteria is synthesised by the MEP (methylery-
thritol 4-phosphate) pathway.36 In contrast, the iso-
prenoid biosynthesis for the main cell membrane
components in archaea (archaeol) relies on the same
enzyme that catalyses the biosynthesis of the isoprenoid
cholesterol in humans, the HMG-CoA reductase
(mevalonate pathway).37 This obviously raises the possi-
bility that statins – which are HMG-CoA reductase
inhibitors – could be used to interfere with the biosyn-
thesis of the archaeal cell membrane and thus to inhibit
archaeal growth, as described by Miller and Wolin in
2001.38

Archaeal cell wall
The cell wall of archaea is composed of pseudomurein
(pseudopeptidoglycan). There are significant differences
between pseudomurein and murein such as the occur-
rence of talosaminuronic acid instead of muramic acid,
the presence of b (1?3) linkage instead of b (1?4)
linkage of the glycan components, the partial replace-
ment of glucosamine by galactosamine, the lack of D-
amino acids, and the accumulation of e- and c-peptide
bonds.35 Together these differences are responsible for
resistance to cell wall antibiotics such as b-lactams and
to lysozyme and common proteases.35 In addition,
archaea are resistant to a number of other cell wall-
altering antibiotics with the notable exception of squa-
lene. They are susceptible to a variable degree to anti-
microbials that interfere with DNA, including the broad-
spectrum imidazoles (e.g. metronidazole).39

Archaeal cell membrane
Perhaps, more important for our discussion is the fact
that the cell membrane of archaea contains unique polar
lipids. Recall that the limiting membrane of cells and
various organelles (in eukaryotes) is composed of a fluid

phospholipid bilayer with intercalating proteins (and
cholesterol in animals). In organisms other than archaea,
this phospholipid bilayer is composed of glycerol-3-phos-
phate linked as an ester to fatty acids. In contrast,
archaeal lipids are not composed of fatty acid esters;
instead, they are saturated, branched, repeating iso-
prenoid subunits that attach to glycerol via an ether link-
age (Figure 2). Isoprenoids are a ubiquitous and ancient
class of biomolecules found in all living organisms that
exhibit a remarkable diversity of structures and func-
tions. Isoprenoids are derived from a basic five-carbon
precursor unit, isopentenyl diphosphate (IPP), and its
isomer dimethylallyl diphosphate (DMAPP); these iso-
meric phosphates are the activated forms of isoprene.40

M. smithii has a cell membrane whose phospholipid
fraction contains isoprenoids typical for archaea,
archaeol and caldarcheol, the latter is arranged in a
monolayer rather than a bilayer in the cell
membrane.41, 42

Archaea and humans use the MVA and bacteria the
MEP pathway for isoprenoid biosynthesis
For many years, it was believed that IPP was synthesised
by all organisms from acetyl-CoA through the well-
known mevalonate (MVA) or HMG-CoA reductase
pathway. However, it is now well established that an
alternative, MVA-independent pathway is used in the
majority bacteria, algae and plants, for the biosynthesis
of IPP and DMAPP, the MEP pathway mentioned ear-
lier.40 This is relevant for two reasons: (i) Statins can
interfere with the cell membrane synthesis of archaea
and will leave the overwhelming majority of the gut
microbiome untouched. (ii) Interference with cell wall
function interferes with the function of the cell mem-
brane-bound enzymes that are responsible for methano-
genesis (Figure 3).

THE PHYSIOLOGY OF METHANE PRODUCTION BY
ARCHAEA

The importance of HMG-CoA reductase
HMG-CoA reductase (HMGR, 3-Hydroxy-3-methylglu-
taryl coenzyme A reductase) can be found in two differ-
ent forms: eukaryotes and archaea use HMGR class I
(membrane-bound) and a few bacteria use HMGR class
II (cytosolic).36 As was mentioned, the majority of bacte-
ria do not employ HMGR but the enzymes of the MEP
pathway for isoprenoid biosynthesis. HMGR catalyses
the first step in the biosynthesis of cholesterol in humans
and also the first step in the biosynthesis of the archaeal
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isoprene polymers (polyprenols) archaeol and caldar-
chaeol, which are the main constituents of the M. smithii
cell membrane.

Anaerobic respiration by methanogenesis
Anaerobic respiration by methane biosynthesis is more
complex than many other common respiratory processes
because it requires the biosynthesis of six unusual

coenzymes, a multistep pathway to methane, and a num-
ber of unique membrane-bound enzyme complexes for
coupling to the protein motive-force17 (Figure 4). The
inhibitory effects of HMGR-inhibitors are generally
thought to be related to the disruption of the cell mem-
brane by interfering with isoprenoid biosynthesis,
thereby disturbing the membrane-bound respiratory
chain of methanogenesis; however, alternative

100 nm

Methanobrevibacter smithii

Unbranched fatty acids Ester links

Ether linksBranched isoprene chains

Bacteria lipid

Archaea lipid

Cell
membrane

Archaeol (bilayer)

Caldarchaeol (monolayer)

Figure 2 | Methanobrevibacter smithii cell wall and cell membrane determine susceptibility to antibiotics and statins.
The cell wall (violet) is composed of pseudomurein (and not murein as in bacteria) which makes archaea resistant to
lysozyme and many antibiotics that interfere with cell wall synthesis. The cell membrane (ochre) consists of a lipid
bilayer or monolayer the backbone of which composed of isoprene units that are linked to glycerol by ether bonds. In
contrast, the lipid bilayer of bacteria consists of a fatty acid backbone that is linked to glycerol by an ester bond. The
presence of statin-sensitive isoprene units in the cell membrane of archaea allows statins to selectively interfere with
the growth of archaea while leaving the cell membrane of bacteria unaffected. While bacteria do not use isoprene
units in their cell membrane they are still required elsewhere. These bacterial isoprene units are, however, synthesised
by a pathway (MEP) that is not inhibited by statins. See also Figure 3.
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possibilities exist, and these could be relevant in explain-
ing some of the experimental results observed with dif-
ferent types of statins.43 A brief review of the key steps
in methanogenesis is therefore necessary.

The final common pathway of methanogenesis
Early pathways in methanogenesis funnel into the same
final step catalysed by the key enzyme methyl-coenzyme
M reductase (mcr): methyl-coenzyme M (CH3-S-CoM)
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catalysed by different types of enzymes (shown within parentheses) are highlighted. Enzyme acronyms are given
in the paper by Perez-Gil and Rodriguez-Concepcion36 from which this illustration has been adapted.
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reacts with a second thiol coenzyme called coenzyme B
(CoB-SH) to form methane and the heterodisuphide of
coenzyme M and coenzyme B (CoM-S-S-CoB) (Fig-
ure 4). In its active site, mcr contains a unique active
group, a nickel porphinoid, as prosthetic group called
coenzyme F430

17 (Figure 5). The characteristic auto-
fluorescence of methanogens, is, however, largely caused
by coenzyme F (for Fluorescence) F420 [with an absorp-
tion maximum at 420 nm emitting at 480 nm (blue)],
which participates in earlier steps of methanogenesis44

(Figure 5).

Coenzyme F420 and NADP-dependent oxidoreductase
Coenzyme F420, a hydride carrier, is found in archaea
and some bacteria and has, in addition to methanogene-
sis, crucial roles in antibiotic biosynthesis, DNA repair,
and activation of anti-tubercular compounds 45 (Fig-
ure 5). While methanogenesis in M. smithii can proceed
with carbon dioxide and hydrogen alone, there is evi-
dence that M. smithii can utilise the bacterial fermenta-
tion products alcohol and methanol for methanogenesis
using an inducible NADP-dependent oxidoreductase
with a coenzyme F420 prosthetic group (F420-dependent
NADP oxidoreductase, fno).46 Fno is mentioned here in
anticipation of a review of molecular docking experi-
ments with fno that suggest an additional or alternative
mechanism of action for statins.

HOW STATINS INHIBIT METHANOGENESIS
Statins are fungal secondary metabolites which inhibit
hydroxy-methylglutaryl coenzyme A (HMG-CoA)
reductase as the first committed enzyme of cholesterol
biosynthesis in humans (Figure 3, MVA pathway). Sta-
tins lower blood cholesterol by inhibiting cholesterol
biosynthesis in the liver; the reduced hepatic choles-
terol concentration leads to a compensatory increase in
expression of LDL receptors in liver cell membranes,
which enhances the clearance of the circulating LDL
cholesterol particles in the blood.47 Here we are, how-
ever, interested in the methane lowering activity of sta-
tins, and to better understand the mechanism of
action, some statin pharmacology will need to be
reviewed.

Lipid and water solubility of statins
In general, statins have hydrophilic and hydrophobic
regions, and are classed as amphiphilic drugs. Amphiphi-
lic drugs do not require specific transport mechanisms to
cross membranes. As they are soluble in aqueous biologi-
cal fluids and lipid membranes, they can simply diffuse

through the body,48 at least in theory. Based on water-
octanol partition coefficients, a differentiation into fat
soluble or hydrophobic (atorvastatin, simvastatin, fluvas-
tatin, lovastatin, cerivastatin) and water soluble or hydro-
philic statins (rosuvastatin, pravastatin) is made.
Lipophilic statins undergo hepatic and enteric metabo-
lism via cytochrome P450 (the CYP450 family of
enzymes), whereas the water soluble statins are excreted
largely unchanged.48 Fat soluble statins are known to
cross the blood brain barrier, whereas water soluble sta-
tins are often thought not to cross the barrier. However,
the situation is more complicated, and this may have rel-
evance for the crossing other lipid membranes.

Lactone and hydroxyacid forms of statins
Another important aspect of statin chemistry is the exis-
tence of closed-ring lactone and hydroxyacid forms (Fig-
ure 6). All statins can be converted from one to the
other, but simvastatin and lovastatin are the commer-
cially available statins that come in the lactone form;
they are prodrugs and to be active (i.e. inhibit HMGR)
they require opening of the lactone ring into the hydrox-
yacid form.47, 49 The lactones of cerivastatin, simvastatin,
atorvastatin, lovastatin, fluvastatin, and pravastatin,
ordered according to decreasing hydrophobicity, are
three to four times more lipophilic as compared to their
acid forms.50 In other words, the lactones of lipophilic
statins are best equipped to cross lipid membranes. At
one stage or another, the lactone ring would need to be
broken up to inhibit HMGR; this will be discussed
shortly.

Hydrophilic statins
Pravastatin, whether lactone or acid, has the lowest oil-
water distribution coefficients when compared with the
other statins and would not normally be expected to
cross the blood–brain barrier, however, it does, at least
in mice, perhaps aided by the same organic anion
transporter polypeptide (OATP) that allows it to enter
liver cells.49 Atorvastatin acid, lovastatin acid, and sim-
vastatin acid, all more hydrophilic than their respective
lactone forms, were also found to be transported into
cells by OATP2. Other transporters such as the mono-
carboxylic acid transporters (MCT) may play a role as
well.49

Considerations for the uptake of statins by M. smithii
Let us now return to M. smithii. The ideal statin to get
absorbed by M. smithii would be a lactone prodrug such
as simvastatin and lovastatin. For example, the degree of
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hydrophobicity of imidazole derivatives correlates with
improved activity against human methanogenic
archaea,51 and the situation should be analogous for sta-
tins. However, if a lactone statin is given orally and
expected to inhibit the archaeal HMGR, the lactone ring
needs to be broken up once inside the cell – for example,
by a carboxylesterase or paroxonase, as is the case in

human plasma and the liver.52 Indeed, M. smithii has a
predicted acetylesterase (NCBI Ref Seq
WP_019264088.1) which could catalyse this reaction.
Pravastatin, the most hydrophilic of all statins, would be
expected to be the least likely to cross the archaeal cell
wall. In view of this, it is surprising that pravastatin
remarkably inhibited the growth of M. thermautotrophi-
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cus and methanogenesis.53 Whether this can be ascribed
to active transport or not, is not known.

In summary, the activity of statins in relation to metha-
nogens can apparently not be predicted based on simple
pharmacological principles alone and requires empiric
evaluation. What is, then, the experimental evidence?

Experimental evidence for use of statins to inhibit
methanogenesis
Interest in statins as potential inhibitors of methanogene-
sis originated with work in ruminants and recognition
that the rate-limiting step in the synthesis of the iso-
prene lipid membranes of archaea is catalysed by
HMGR.46, 54 In the earliest reported studies, mevastatin
and lovastatin were found to inhibit the growth of
Methanobrevibacter species isolated from bovine rumen.
A mevastatin concentration of 5.6 lmol/L inhibited

Methanobrevibacter growth in vitro by 80–100% but did
not inhibit the growth of rumen bacteria responsible for
the fermentation of polysaccharides and starch in these
animals (i.e. the bacteria providing methanogenic sub-
strates), as would be expected. In subsequent studies, a
lovastatin concentration of 4 lmol/L caused a 50% inhi-
bition of Methanobrevibacter growth in vitro and 100%
inhibition of growth and CH4 production was observed
at a lovastatin concentration of 10 lmol/L.38

The effects of lovastatin were reiterated in studies
using a rumen simulation technique (Rusitec). Lovastatin
(150 mg/L; 371 lmol/L) supplementation to the Rusitec
fermentation medium reduced overall CH4 production
by approximately 42% without altering bacterial counts
or nutrient fermentation (including concentrations of
short-chain fatty acids) in the medium. Garlic oil
(300 mg/L) was more effective than lovastatin as an
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inhibitor of CH4 production in this study (91% reduc-
tion); however, garlic oil also inhibited bacterial growth,
which likely reduced the availability of methanogenesis
substrates.55 Diallyl disulphide, the main ingredient of
garlic oil, is known to inhibit HMGR.56 However, garlic
at the doses employed has unwanted effects on the gut
microbiome, and this may be one of the reasons that this
approach is apparently not being actively pursued. A
study comparing diallyl disulphide and lovastatin as feed
additives in sheep found that neither additive caused an
absolute change in CH4 emissions; however, each treat-
ment modestly reduced CH4 produced per g of dietary
fibre consumed by these animals.57

The potential expense of utilising purified statins led
to a number of studies evaluating natural sources of sta-
tins as agents to mitigate ruminant CH4 production.

Lovastatin is a secondary metabolite produced during
fungal growth and can be produced by cultures of
Penicillium species, Aspergillus terreus, Monascus species
(e.g. red yeast rice Monascus purpureus), Hypomyces,
Doratomyces, Phoma, Eupenicillium, Gymnoascus and
Trichoderma and is found at concentrations up to
2.8% of the dry weight of oyster mushrooms (Pleuro-
tus ostreatus).58

Fermentation of rice straw (an agricultural waste pro-
duct) with A. terreus produced lovastatin with a yield of
260.8 mg/kg dry matter. The lovastatin produced was
found predominantly in the b-hydroxyacid form (rather
than the lactone), the hydroxyacid form being the active
HMGR-inhibiting species.59 A methanolic extract of the
fermented rice straw (FRSE) containing lovastatin
(97 mg/g dry mass) significantly reduced total gas and
CH4 production by a mixed culture of ruminant organ-
isms in vitro but did not alter H2 production. In addi-
tion, the FRSE reduced the total population of
methanogens in the ruminant microbial culture, specifi-
cally lowering Methanobacteriales and aerobic fungi.
FRSE also increased the expression of the HMGR gene
(hmg), but had no effect on expression of methyl-coen-
zyme M reductase subunit A (mcrA), the key enzyme for
the common final pathway in methanogenesis.59 These
findings suggest that the mechanism of action is related
to an impaired biosynthesis of the cell membrane iso-
prenoids as we have discussed before.

A subsequent study explored the effects of lovastatin-
containing FRSE on methanogenesis in more detail by
comparing the direct effects of FRSE and commercial
lovastatin on M. smithii. Commercial lovastatin (admin-
istered as the lactone) and FRSE (in which approxi-
mately 75% of lovastatin was the b-hydroxyacid) both
significantly inhibited CH4 production and M. smithii
growth in vitro in a dose-dependent manner. At equiva-
lent concentrations of lovastatin, the effect of FRSE on
CH4 production was greater than observed for commer-
cial lovastatin, suggesting the b-hydroxyacid form of
lovastatin is more active. M. smithii morphology was sig-
nificantly altered by both commercial lovastatin and
FRSE, resulting in abnormal membrane formation during
mitosis and asymmetric (off-centred) cell divisions.60 It
is well established that the b-hydroxyacid form of lovas-
tatin is the active HMGR-binding form of the molecule
and, as described above, HMGR catalyses the rate-limit-
ing step in the synthesis of membrane lipids in archaea.
Increased anti-methanogenic activity of the FRSE (con-
taining the b-hydroxyacid) relative to commercial lovas-
tatin (lactone) and alteration to M. smithii membranes

Lactone Hydroxyacid

Lovastatin

Figure 6 | Lovastatin lactone may have a different
target in archaea than the hydroxyacid. Simvastatin and
lovastatin are the commercially available statins that
come in the lactone form. Their cholesterol-lowering
effect and the impairment of archaeal membrane
synthesis through inhibition of HMGR requires
activation, i.e. the lactone ring needs to be opened to
result in the hydroxyacid form. As can be seen, the
stereochemistry of lovastatin lactone and hydroxyacid
is significantly different. Recent evidence suggests that
methanogenesis is preferentially inhibited by the
lactone form of lovastatin. This and other evidence
would suggest that lovastatin may have a different or
an additional target other than HMGR. A possible
target for the lactone form are enzymes in the
methanogenesis pathway that have F420 as coenzyme.
See Figure 5. The 3-D was model generated with
CORINA (http://www.molecular-networks.com/).
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are both consistent with an inhibition of cell membrane
synthesis via inhibition of HMGR.

However, a comparison of the effects of FRSE and
commercial lovastatin on gene expression suggests that
lovastatin may directly modulate methanogenic pro-
cesses. Consistent with the known action of statins, both
FRSE and commercial lovastatin were found to increase
HMGR gene expression. FRSE also modulated expression
of several genes associated with methanogenesis, increas-
ing expression of mtr, mta and mcr while decreasing
expression of hmd and fno. Commercial lovastatin
increased mtr and mta expression and decreased fno
expression but has no effect on hmd.60

Other potential mechanisms of action for statins in
the inhibition of methanogenesis
If gene expression of methanogenesis enzymes is affected
differently by FRSE (contains lovastatin hydroxyacid)
and lovastatin lactone, as suggested above, the question
becomes: Is this due to the lactone and hydroxyacid spe-
cies or perhaps an unknown ingredient in FRSE?

Let us assume for now that the differences are indeed
entirely attributable to the lactone vs. hydroxyacid forms.
In this case one would think that the lactone is not sim-
ply converted into the hydroxyacid form to exert its
effect but instead has a different target or more than one
target besides the HMG-CoA reductase. Indeed, an
intriguing addition to the mechanistic discussion of sta-
tin anti-methanogenic activity was provided in a hypoth-
esis paper comparing the structures of lovastatin and
mevastatin to that of coenzyme F420. Computational
modelling (in silico molecular docking) of the methano-
genic enzyme F420-dependent NADP oxidoreductase
determined that both lovastatin and mevastatin had
higher affinities for the F420 binding site on fno than did
F420 itself. As such, lovastatin and mevastatin may act as
inhibitors of fno 43 and could inhibit other enzymes that
require F420 for their activity such as those that are cru-
cial to the main methanogenesis pathway (Figure 4).

Recent experimental results seem to support a direct
anti-methanogenic effect of lovastatin lactone in humans
that is not shared by other statins. Marsh et al. assessed
nine statins for methane inhibition at a concentration of
5 mg/g in homogenised human stool; lovastatin lactone
and hydroxyacid, pravastatin lactone and hydroxyacid,
simvastatin lactone, mevastatin lactone, rosuvastatin
hydroxyacid, atorvastatin lactone and hydroxyacid.
Lovastatin lactone was identified as the only effective
methane inhibitor, significantly inhibiting methane levels
by – 65% of the control stool. Lovastatin lactone at

5 mg/g produced the maximum inhibiting effect, provid-
ing an average methane level of 3% of the control over
time. In a final validation comparison of three lovastatin
species (5 mg/g), both lactone and lactone-diol types
proved to be effective. In all assessments, statins of the
hydroxyacid form were least able to inhibit methane pro-
duction in fresh stool samples.61

CLINICAL DEVELOPMENT PROGRAMMES
To summarise, there is an association between irritable
bowel syndrome with constipation and high breath
methane levels, and there is experimental evidence sug-
gesting that methane may slow down intestinal transit.
Statins, specifically lovastatin, have been shown to lower
methanogenesis in human stool samples. In addition,
recent research examining the effects of lovastatin in a rat
model of diet-induced constipation and M. smithii prolif-
eration showed that gavage with lovastatin significantly
reduced the ratio of M. smithii to total bacteria in the
ileum. Most importantly, there was an increase in stool
wet-weight (a proxy for soft stools in rats) noted in rats
receiving lovastatin lactone gavage.62 Naturally, a clinical
development programme that evaluates the ability of sta-
tins to suppress methane production and associated
symptoms in humans makes sense and we have conse-
quently embarked on a proof-of-concept clinical trial.

To our knowledge, this is the only such programme in
humans. This Phase 2, randomised, multi-centre, multi-
dose study has enrolled sixty subjects with irritable bowel
syndrome with constipation who were between the ages
of 18 and 65, with a trial duration of up to 43 days.63 The
study has one placebo and two active comparator arms:
Low Dose 21 mg and High Dose 42 mg with an assign-
ment of 1:1:1. The main outcome measure is change from
baseline in the area under the curve (AUC) of breath
CH4 production at day 7. The active drug, SYN-010, is a
proprietary lovastatin dual pulse dosage form. Our com-
pany, Synthetic Biologics hopes to release preliminary
results towards the end of 2015.

CONCLUSION AND OUTLOOK FOR THE FUTURE
Many issues will need to be addressed on both basic
science and clinical science levels. Most of the knowledge
gaps are apparent from this review, and we will highlight
some which we think are particularly important. Further
research needs to be conducted to elucidate methane’s
role as potential gasotransmitter. Like research conducted
around nitrous oxide, the payoffs may go beyond a bet-
ter understanding of animal physiology. Next we need to
understand the conditions which determine the ‘methane
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phenotype’ in both farm animals and humans.
M. smithii is obviously tightly integrated into a network
of microbial neighbours, and its own fate depends to a
large extent on the composition of the local microbiome
or symbiome. Next, we need to better understand the
mechanism of action of statins as it pertains to archaeal
growth and methanogenesis. Research in this direction
could not only benefit individual humans directly by
reducing their own intestinal methane production but
also H. sapiens as a species, if this research leads to
methods by which the production of the greenhouse gas
methane can be curbed in an economical fashion. Lastly,
clinical studies that evaluate statins for the treatment of
IBS-C are currently in the proof-of-concept stage, and
further clinical trials need to be conducted.
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