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ARTICLE INFO ABSTRACT

Keywords: This study examined the potential health risks posed by the operation of 96 waste-to-energy (WtE) plants in 30
Incineration cities in the Bohai Rim of China. Utilizing a sophisticated simulation approach, the Weather Research and
WRF/CALPUFF

Forecasting (WRF) model coupled with the California Puff (CALPUFF) model, we obtained the spatial distribution
of pollutants emitted by WtE plants in the atmosphere. Hazard indices (HI) and cancer risks (CR) were calculated
for each plant using the United States Environmental Protection Agency's recommended methodologies. The
results indicated that both HIs and CRs were generally low, with values below the accepted threshold of 1.0 and
1.0 x 107°, respectively. Specifically, the average HI and CR values for the entire study area were 2.95 x 1072
and 3.43 x 1077, respectively. However, some variability in these values was observed depending on the location
and type of WtE plant. A thorough analysis of various parameters, such as waste composition, moisture content,
and operating conditions, was conducted to identify the factors that influence the health risks associated with
incineration. The findings suggest that proper waste sorting and categorization, increased cost of construction,
and elevated height of chimneys are effective strategies for reducing the health risks associated with incineration.
Overall, this study provides valuable insights into the potential health risks associated with WtE plants in the
Bohai Rim region of China. The findings can serve as useful guidelines for law enforcement wings and industry
professionals seeking to minimize the risks associated with municipal solid waste (MSW) management and
promote sustainable development.

Health risk assessment
Ridge regression model
MSW classification

1. Introduction

China's rapid economic growth and accelerated urbanization have led
to a significant increase in municipal solid waste (MSW), posing a
growing challenge to human health. To address this issue, the Chinese
government has actively promoted waste-to-energy (WtE) plants due to
their benefits, including land conservation, high efficiency in MSW
reduction, and lower greenhouse gas emissions [1-4]. As a result, the
number of WtE plants doubled between 2017 and 2021, with a total
capacity of 180.2 million tons in 2021 [5,6]. Currently, incineration
accounts for 72.54% of MSW disposal in China, with a growth rate of
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25.92% [6,7]. This highlights the increasing importance of WtE plants in
China's waste management strategy.

However, the operation of WtE plants generates a substantial amount
of air pollutants, including sulfur dioxide (SO3), nitrogen oxides (NOy),
heavy metals, polycyclic aromatic hydrocarbons (PAHs), polychlorinated
dibenzo-p-dioxins, and polychlorinated dibenzofurans (PCDD/Fs).
Exposure to these pollutants via inhalation can result in a wide range of
adverse health effects, such as respiratory problems, cardiovascular dis-
ease, and even cancer [8-17]. For instance, studies have linked exposure
to PAHs and PCDD/Fs, which are byproducts of incomplete combustion,
to immune system suppression, thyroid disruption, and other serious
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health issues [16-21]. Considering the potential health risks associated
with WtE plant emissions, it is essential to identify and implement
effective measures to mitigate these risks.

Many studies have expressed concerns about the health impacts of
incineration. To better understand these risks, researchers first need to
establish an emission inventory to measure the amounts of air pollutants
released by WtE plants. This involves collecting data on Emission Fac-
tors (EFs) to accurately represent local emissions [22,23]. In China,
numerous field tests were conducted to determine EFs for various WtE
plants. Using this data, Fu et al. [24] developed an emission inventory
for MSW incineration in China spanning from 2006 to 2017, providing a
comprehensive view of the characteristic emissions of WtE plants.
Subsequently, researchers employed air diffusion models like
WRF/CALPUFF [14,25,26] and Gaussian Plume Model [8,15] to esti-
mate the spatial distribution of WtE plants' air pollutants. WRF is a
mesoscale numerical weather prediction system used for atmospheric
research, which can provide real meteorological field data across scales
from tens of meters to thousands of kilometers [27]. CALPUFF is an
accurate 3D unsteady lagrangian diffusion model system for simulating
pollutant diffusion and conversion [28]. Compared with the traditional
Gaussian Model, CALPUFF performs much better in complex terrain and
various wind conditions (strong wind, stagnation, inversion, recircula-
tion, etc.) [14,25,26]. Finally, Health Risk Assessment (HRA) models,
developed by the US Environmental Protection Agency (USEPA), were
utilized to evaluate the health effects of these pollutants [9,29-32]. For
instance, Zhou et al. [8] established an emission inventory for WtE
plants in China in 2015 based on literary investigations, then used
Gaussian Plume Models to calculate hazard indices (HI) and carcino-
genic risks (CR) across different regions. By taking these steps, scientists
could better understand the potential health consequences of WtE plant
emissions.

However, in previous studies, the emission inventories obtained by
field tests were limited by the workload, which can only reflect the real
pollution emission situation of a few waste-to-energy (WtE) plants during
the sampling period. In addition, the emission inventories based on
literature investigation cannot distinguish the difference in emission
factors among WtE plants. There was a significant gap in systematic and
comprehensive real-time pollutant measurement of WtE plants, which
can accurately reflect real-time pollutant emissions from all WtE plants.
At the same time, the application of air diffusion models necessitated
extensive hardware facilities and meteorological data. Data collection
and simulation often result in complex work and delayed feedback. Few
studies have focused on a fast and efficient method for health risk
assessment of incineration. In addition, existing health risk assessments
of WtE plants were usually derived from the calculations of pollutant
emission inventories, meteorological data, and the HRA model. Few
studies explored the direct response relationship between health risk
determinants and health risk, making it challenging to explore specific
measures for reducing WtE plants' health risks.

As one of the most important economic and population centers of
China, the Bohai Rim, encompassing 5 provinces/municipalities (Beijing,
Tianjin, Hebei, Shandong, and Liaoning), exhibits high MSW production
per capita and a large quantity of MSW incinerated per capita. Besides,
the population density in the Bohai Rim was 3.3 times that of China [14].
Therefore, the Bohai Rim was selected as the research area in this study.

In addition, in order to reflect the pollutant emission levels of WtE
plants more accurately and realistically, the EFs in this study were
calculated using systematic, actual measured pollutant concentration
data extracted from China's Continuous Emission Monitoring Systems
(CEMS) network [14]. This dataset, established by the Ministry of Ecol-
ogy and Environment of China (MEE), provided nationwide, detailed,
real-time pollutant emissions and other operation information from WtE
plants since January 2020.

In order to address the knowledge gaps related to the health impacts
of WtE plants, this study primarily investigated 96 WtE plants in the
Bohai Rim and set the following research objectives: 1) An emission
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inventory was established for 2020 based on detailed operation infor-
mation and pollutant concentrations from CEMS networks. 2) The WRE/
CALPUFF model was used to simulate the diffusion and deposition of air
pollutants emitted by WtE plants, and the population-weighted HI and
CR were calculated by the HRA model. 3) Ridge regression analysis was
used to examine the relationships between health risk determinants and
the HI and CR, considering factors such as the quantity of MSW com-
ponents incinerated, the technological level of the WtE plants, and at-
mospheric conditions. 4) The study explored feasible methods for
reducing the health risks associated with WtE plants and provided spe-
cific recommendations for future MSW management and health risk
assessment initiatives.

2. Material and methods
2.1. Study area

The Bohai Rim was selected as the research area, encompassing 44
cities across 5 provinces/municipalities (Tianjin, Hebei, Beijing, Shan-
dong, and Liaoning), of which 30 cities had established WtE plants, as
shown in Fig. 1. The Bohai Rim had 96 WtE plants operating normally in
2020, collectively boasting a capacity of 9.98 x 10* t/d. In the Bohai
Rim, moving grates and circulating fluidized beds were the dominant
types of WtE incinerators, accounting for 93.4% and 6.6% of the total
capacity, respectively. Compared to circulating fluidized bed in-
cinerators, moving grate incinerators have demonstrated better perfor-
mance in terms of durability and fly ash yield, making them more widely
adopted at present.

2.2. Emission inventory

The emission inventory of WtE plants in 30 cities in the Bohai Rim
included crucial information including WtE plants' locations, incinerator
types, treatment capacities, and EFs for pollutants, such as SO;, NOy,
cadmium + thallium (Cd + TI), mercury (Hg), PCDD/Fs and
chromium + cobalt + nickel + antimony + arsenic + lead + copper +
manganese (Cr + Co + Ni + Sb + As + Pb + Cu + Mn). These data were
obtained from continuous emission monitoring system (CEMS) networks
developed by MEE. These networks provided daily real-time pollutant
concentrations and detailed operation information of all the WtE plants
in China (Table S1). The pollutant emissions were calculated by Eqs. 1-3
[14,15]:

1 365 ~
EFip=3c5 ; Cips X 4500 x 1 x 107 o)
M,;=N,; xT )
E,=EF,, x M,; x 1 x 107 3)

where, E;, (t) was pollutant i's emission from plant p in 2020; EF;;, (g/t)
was pollutant i's EF of plant p in 2020; M,; (t) was WtE plant p's MSW
disposal quantity in 2020; C;, (mg/m®) was pollutant i's concentration
of plant p in the t day of 2020, 1 < t < 365; N, (t/d) was WtE plant p's
capacity; 4500 (rn3/t) was the theoretical flue gas rate; T (d/a) was WtE
plant' operation days per year, T was 330 d/a for moving gate in-
cinerators and 300 d/a for circulating fluidized bed incinerators.

In addition, Oracle Crystal Ball was applied to calculate the uncer-
tainty of EF;, and E;;, of 96 WtE plants in the Bohai Rim. It was assumed
that N,,; satisfied a normal distribution with a coefficient of variation
(CV) of 10% [8]. Other parameters' distributions came from data fitting,
the detailed information is shown in Table S2. Emission inventories'
uncertainties were obtained through a 10000 Monte Carlo sampling
process, as shown in Fig. S1.
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Fig. 1. The location of 96 WtE plants in the Bohai Rim in 2020. The base map
was the 30’ x 30’ grid population density map, which was provided by Center
for International Earth Science Information Network.

2.3. Health risk assessment

In this study, WRF was used to simulate the real meteorological field
in the research area based on NCEP/NCAR reanalysis data, and the re-
sults were then used as the input meteorological field for CALPUFF.
CALPUFF was applied to obtain the spatial distribution grid of air pol-
lutants emitted by WtE plants in the atmosphere. Because the WRE/
CALPUFF model required high computing conditions, January and July
2020 were chosen as the cold and warm periods of the year to run the
model, respectively. The detailed settings of WRF and CALPUFF are
shown in Text S1, Tables S3 and S4. The characteristics of the modeling
result are shown in Table S5.

The HRA model was used to calculate the health risks of the WtE
plants in the Bohai Rim and in 30 individual cities, based on each pol-
lutant's inhalation exposure concentration output by WRF/CALPUFF. In
order to reflect the impact of WtE plants' location on human health risks
within the respective cities, we took into account the effects of spatial
distribution of population when calculating HI and CR for each city. In
this study, the research area was divided into 4 km x 4 km grids by
CALPUFF (as shown in Text S1), and population-weighted HI and CR
were used to indicate the non-carcinogenic risk and carcinogenic risk in
the Bohai Rim and in each city, which were calculated by population-
weighted average of HI and CR for all grids in the Bohai Rim as well as
in each city, as shown in Egs. 4 and 5:

HI = P

i
m

(€]

> {Z(C,;,,,,n x SF;) x Pm‘,z}

CR = m i
ZPm.n (5)

where, n was the cities' code; m was the grid code in city n; Cimn
(ng/m®) was concentration of air pollutant i in grid m of city n
generated from WRF/CALPUFF, RfC; (mg/m>) was inhalation
chronic reference concentration of pollutant i, P,, was the popula-
tion in grid m of city n from Center for International Earth Science
Information Network (https://sedac.uservoice.com/knowledgebase/t
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opics/110829-gpwv4), SF; [(pg/mS)’l] was inhalation slope factor
of pollutant i [8,14].

The RfC and SF values were listed in Table S6 [14].

Since most WtE plants in the Bohai Rim were located around cities
with high population density [14], considering the impact of population
spatial distribution in the health risk assessment model can avoid the
actual health risks of WtE plants in the regional scale being under-
estimated. Meanwhile, the effect of dose-response relationships on HI
and CR in different exposed populations with different respiratory rate
and body weight was not discussed in this study.

2.4. Ridge regression model

The Ridge regression model was used to analyze the correlation be-
tween carcinogenic risk and non-carcinogenic risk of incineration and
MSW components, the quantity of MSW incinerated, unit construction
cost of WtE plants, and atmospheric diffusion conditions through SPSS
22.0 software.

Unit construction cost (yuan-a/t) was the investment quota of unit
capacity, which reflects the technical level of local WtE plants to some
extent. The dependent variables of Ridge regression model were the log-
arithms of CR and HI of incineration in each city in the Bohai Rim. The
independent variables of Ridge regression model, which affected the
health risks of local MSW incineration, were the logarithms of wind speed
(m/s), temperature (K), rainfall (mm/month), the unit construction cost
(yuan-a/t), and the annual quantity of 6 MSW components incinerated,
such as paper (t/a), wood and straw (t/a), food waste (t/a), plastic and
rubber (t/a), textile (t/a) and dust (t/a), in each city in the Bohai Rim.

Compared with multiple linear regression, Ridge regression analysis
improved the least square method by giving up its unbias, and found the
model equation with more realistic regression coefficients at the cost of
losing some information. As the result, Ridge regression analysis can
avoid the insignificance of parametric regression coefficients due to the
presence of multicollinearity in the independent variables in the
regression equation [33,34].

Ridge regression analysis was used to explore the determinants of
health risks of incineration and their correlations. The basic form of
Ridge regression model was shown as Egs. 6 and 7:

Iny=ay+ Z ailnn; ©)

i=1

a; = (Inn"Inn; + Klp)flln n’ Iny 7

n; was the ith input variable. a; was the regression coefficient, which
can reflect the contribution of each independent variable to the depen-
dent variable. I, was the identity matrix of the same order as In n;"In n;. K
was a constant between 0 and 1, representing the artificial introduction
error in the regression equation. y represented the dependent variable,
which were HI and CR in this study. T represented the transpose opera-
tion of the matrix. The adjusted R? and regression equations were ob-
tained by using stepwise backward elimination to remove independent
variables that were not considered important.

In the analysis, the value of K should meet four conditions: (1) the
ridge trace remains basically stable; (2) no unreasonable value for all
regression coefficients; (3) all regression coefficients no longer have
positive and negative fluctuations, and exhibit reasonable signs; (4) the
sum of residual squares of ridge regression does not increase significantly
compared to multiple linear regression.

In the regression model, the annual MSW disposal quantity of WtE
plants in 30 cities can be calculated by the sum of all local WtE plants' M, ;
(annual MSW disposal quantity of WtE plant p), which was calculated by
Eq. 3. Table S7 lists the MSW disposal quantity of each city.

Through the review of 43 literature sources, we obtained 71 sets of
data on the composition of MSW in different cities, and calculated the
average values to represent the typical composition of MSW in each city,
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as displayed in Fig. S2 [35-70]. For the 12 cities where MSW component
data could not be retrieved (Binzhou, Cangzhou, Chengde, Dezhou,
Dongying, Hengshui, Jining, Rizhao, Weihai, and Xingtai), we utilized
the average value of the MSW component data from adjacent cities to
represent the typical composition of MSW in those cities.

The meteorological data for the 30 cities in the Bohai Rim were ob-
tained from the Natural Environment Research Council (NERC) National
Centre for Atmospheric Science of the United Kingdom (NCAS), which
provided high-resolution grid data for wind speed, temperature, and
rainfall in each of the 30 cities during January 2020 and July 2020. Using
ArcGIS 10.5 software, we derived the wind speed, temperature, and
rainfall data for each city in the Bohai Rim, as presented in Table S8.

3. Results and discussion
3.1. Health risks of WtE plants in the Bohai Rim

The HI of incineration in the Bohai Rim in January and July were
4.07 x 1073 and 1.82 x 1073, respectively, both of which were below the
acceptable threshold (HI < 1). Similarly, the CR of incineration in the
Bohai Rim in January and July were 4.72 x 1077 and 2.13 x 1077, both
of which were also below the acceptable threshold (CR < 1 x 1079).
Notably, the health risks associated with WtE plants in the Bohai Rim
were lower in July compared to January, suggesting that meteorological
factors played a significant role in affecting the health risks of MSW
incineration in the region. Specifically, the lower temperatures and
slower wind speeds in January in the Bohai Rim hindered atmospheric
circulation and the diffusion of pollutants, whereas the “semi-enclosed”
topography and the intensified winter “downdraft” in the region further
impeded the movement of air pollutants [14,71,72].

The order of pollutants' contribution to incineration's HI in the Bohai
Rim was PCDD/Fs (35.45%) > SO (25.58%) > NO3 (22.83%) > Cr
+ Co + Ni + Sb + As + Pb + Cu + Mn (13.88%) > Cd + T1 (1.78%) > Hg
(0.48%), while the order of pollutants' contribution to incineration's CR
in the Bohai Rim was Cr + Co + Ni + Sb + As + Pb + Cu + Mn
(71.6%) > PCDD/Fs (27.8%) > Cd + TI (0.60%).

At the city level, due to the difference of MSW components, MSW
disposal capacity, WtE plants' unit construction cost and meteorological
conditions, the HI and CR of incineration varied widely among cities, as
shown in Table 1. In January, the HI of the 30 cities varied from
7.29 x 10~ to 1.40 x 1072, while the CR of the 30 cities varied from
1.19 x 1077 t0 9.81 x 1077, In July, the HI of the 30 cities varied from
6.64 x 107 to 8.68 x 1073, while the CR of the 30 cities varied from
6.22 x 1078 to 5.74 x 1077. Shenyang and Beijing were the two cities
with the highest health risk. Due to the more dense and larger inciner-
ation capacity, the HI in Shenyang and Beijing were 343.80% (January)—
477.09% (July) and 159.90% (January)-202.97% (July) of the average
HI in the Bohai Rim, while the CR in Shenyang and Beijing were 207.84%
(January)-269.48% (July) and 158.69% (January)-351.64% (July) of
the average CR in the Bohai Rim.

3.2. Contributions of different MSW components on incineration health
risks

The average combustible and non-combustible components of MSW in
Bohai Rim were 94.62% and 10.63%, respectively. Among the combus-
tible MSW, the content of food waste was the highest in the Bohai Rim,
accounting for 39.08%-69.07%. It was followed by dust, plastic and rub-
ber, paper, textile, and wood and straw, accounting for 1.24%-36.41%,
4.80%-19.82%, 3.80%-14.74%, 0.88%-5.90%, and 0.70%-5.57%,
respectively (Table S2). Food waste was widely distributed among MSW
components in the Bohai Rim, and its high water content contributed to
the relatively high water content of MSW in the Bohai Rim.

The contribution of each MSW component to Cd + T1, Hg, SO, NOy,
and Cr + Co + Ni + Sb + As + Pb + Cu + Mn was calculated as a per-
centage of its input quantity with respect to the total input quantity. The

341

Eco-Environment & Health 3 (2024) 338-346

Table 1
HI and CR of 30 cities in the Bohai Rim.
HI CR HI CR
January July
Baoding 0.004759 7.31 x 1077 0.001573 2.56 x 1077
Beijing 0.006508 7.49 x 1077 0.003694 479 x 1077
Binzhou 0.003022 3.92 x 1077 0.001657 2.21 x 1077
Cangzhou 0.003585 5.09 x 1077 0.001256 1.88 x 1077
Chengde 0.000729 1.19 x 1077 0.001019 1.97 x 1077
Dalian 0.002831 2.55 x 1077 0.001048 1.36 x 1077
Dezhou 0.003564 4.29 x 1077 0.001874 1.80 x 1077
Dongying 0.002793 3.85 x 1077 0.001398 2.18 x 1077
Handan 0.002667 3.70 x 1077 0.000664 7.48 x 1078
Heze 0.004179 434 x 1077 0.001224 1.02 x 1077
Hengshui 0.003679 4.72 x 1077 0.001269 1.32 x 1077
Jinan 0.005971 5.98 x 1077 0.002113 2.04 x 1077
Jining 0.004439 4.89 x 1077 0.001321 1.32 x 1077
Langfang 0.004850 6.13 x 1077 0.002185 2.80 x 1077
Liaocheng 0.004084 4.56 x 1077 0.001888 1.75 x 1077
Linyi 0.003300 3.59 x 1077 0.001325 9.00 x 1078
Qinhuangdao 0.002028 3.70 x 1077 0.001052 2.56 x 1077
Qingdao 0.002829 3.51 x 1077 0.001059 1.33 x 1077
Rizhao 0.003465 418 x 1077 0.001177 1.28 x 1077
Shenyang 0.013952 9.81 x 1077 0.008683 5.74 x 1077
Shijiazhuang 0.004239 6.68 x 1077 0.001943 2.54 x 1077
Taian 0.004289 4.67 x 1077 0.001683 1.54 x 1077
Tangshan 0.002536 3.35 x 1077 0.001664 2.20 x 1077
Tianjin 0.005141 6.02 x 1077 0.002005 2.87 x 1077
Weihai 0.001753 2.22 x 1077 0.000993 1.26 x 1077
Xingtai 0.003527 4.85 x 1077 0.000992 1.18 x 1077
Yantai 0.001803 241 x 1077 0.001030 1.37 x 1077
Zaozhuang 0.003162 3.38 x 1077 0.000786 6.22 x 1078
Zibo 0.003480 4.40 x 1077 0.001217 1.83 x 1077
Weifang 0.003100 4.10 x 1077 0.001042 1.48 x 1077

quantity of each MSW component incinerated in the Bohai Rim was
determined from MSW composition and MSW disposal quantity of
incineration (Table S7). The concentration of pollutants in each MSW
component in this study was calculated through the average of 49 sets of
sampled data from 11 literature, as shown in Table S9. The contribution
of each MSW component to PCDD/Fs was calculated as a percentage of its
pollutant production with respect to the total pollutant production.
Additionally, Thomas et al. [73] provided a method to calculate the EFs
of PCDD/Fs through the contents of chlorine (Cl), Cu, and sulfur (S) in
each MSW component.

As a result, the concentration of pollutants significantly varied in
MSW components. Food waste, accounting for the largest portion
(55.1%) of the total MSW, contained high levels of heavy metals. It had
the highest concentrations of Cu and Pb, making it the primary source of
heavy metal emissions from WtE plants. Moreover, food waste had the
highest concentrations of S and nitrogen (N) among all MSW compo-
nents, accounting for up to 0.49% and 3.86%, respectively, making it a
critical raw material for the formation of NOy and SO, during the
incineration process.

Because Cu on fly ash surfaces can catalyze PCDD/Fs formation [73,
74] and S had been identified as an inhibitor of PCDD/Fs formation [73,
75-77], dust with high Cu concentration and the lowest S content can lead
to the formation of a large number of PCDD/Fs in the combustion process.
Although food waste contained more copper and Cl than dust, it had a
high content of S, so the contribution of food waste to the formation of
PCDD/Fs was less than that of dust. Plastic and rubber had the highest
concentration of Cl, accounting for 6.58%, which was mainly due to the
high Cl content of PVC components in plastic and rubber. Therefore,
plastic and rubber contained large amounts of Cl, which was considered to
be a Cl source for the formation of PCDD/Fs [78,79]. As a result, plastic
and rubber, which accounted for 13.27% of MSW incinerated, contributed
22.40% to the PCDD/Fs emitted by WtE plants. In addition, textiles, with
the highest concentrations of As, Ni, Cr, and Co among all MSW compo-
nents, accounting for 2.98% of MSW incinerated, contributed 8.32% to
the Cr + Co + Ni + Sb + As + Pb + Cu + Mn emitted by WtE plants.
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The contributions of individual MSW components to the air pollutants
emitted by WTE plants are shown in Fig. 2.

Based on the analysis of the contribution of each pollutant to the health
risks of incineration in the Bohai Rim, the relative contributions of MSW
components to incineration's health risks were calculated and are shown in
Fig. 3a and b. Food waste was found to be the main contributor to SO,
NOy, and heavy metals, accounting for 56.91% of the total health risks
(HI). Additionally, food waste was the primary contributor to CR, ac-
counting for 57.83%, due to its high concentration of heavy metals. Tex-
tiles, although only comprising 2.98% of the MSW incinerated, contributed
6.98% of the incineration CR due to their high heavy metal content.

3.3. Performance of the ridge regression model

The ridge trace diagram was obtained through ridge regression
analysis. When K values were 0.5 and 0.6, the standardized regression
coefficient of the independent variable tended to be stable.

When K value was 0.5 and 0.6, the ridge regression was carried out
for In (HI) and In (CR), and the results showed that R? value was 0.654
and 0.613, respectively, indicating that the independent variables, such
as wind speed, temperature, rainfall, unit construction cost, paper, wood
and straw, textile, food waste, dust, and plastic and rubber could explain
65.4% of the variation of HI and 61.3% of the variation of CR, as seen in
Table 2. Through ANOVA test of the ridge regression model, it can be
seen that the P value of the two regression results was less than 0.05,
indicating that the model was significant. The detailed data of ANOVA
test are shown in Table S10.

The unit construction cost was negatively correlated with HI and CR.
This meant that for WtE plants with the same capacity, the higher the in-
vestment, the lower the carcinogenic risk and non-carcinogenic risks caused
by incineration. This was because that the higher investment was conducive
to the implementation of more efficient clean incineration technology.

For meteorological conditions, wind speed, temperature, and rainfall
were negatively correlated with HI and CR. This implies that when the
wind speed, temperature, and rainfall increased, the air pollutants
diffused and deposed more rapidly, consequently reducing the non-
carcinogenic risk and carcinogenic risk caused by local WtE plants. In
addition, the q; of rainfall was much higher than those of temperature
and wind speed, indicating that rainfall had the most efficient impact on
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40% 80% 80%10g9,

20%
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Fig. 2. Contributions of MSW components to pollutants emitted by WtE plants
in the Bohai Rim. In 2020, a total of 0.174 t of Cd + TI, 9.25 t of
Cr + Co + Ni + Sb + As + Pb + Cu + Mn, 0.727 t of Hg, 3,079.78 t of SO,

19,019.50 t of NOy and 3.29 g-TEQ of PCDD/Fs were emitted from WtE plants.
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health risks among these meteorological parameters. This was because
the CALPUFF model was used to simulate the diffusion of pollutants
emitted by WtE plants in this study, which can reflect the wet deposition
of particulate and non-particulate pollutants, as well as the chemical
reactions of NO, and SO, [81-83]. Besides, wet deposition was an
important mechanism for removing atmospheric pollutants, especially
for Cu, Mn, Ni, Cr, and Pb, which were major contributors to in-
cineration's health risks [84,85].

For the MSW components, the quantity of paper, wood and straw,
textile, food waste, dust, and plastic and rubber incinerated was positively
correlated with HI, and the regression coefficients were 0.066, 0.001,
0.046, 0.114, 0.108, and 0.04, respectively. This indicated that the order of
the influence degree of MSW components on non-carcinogenic risk caused
by incineration was: food waste > dust > paper > textile > plastic and
rubber > wood and straw.

The quantity of paper, wood and straw, textile, food waste, dust, and
plastic and rubber incinerated was positively correlated with CR, and the
regression coefficients were 0.045, 0.004, 0.026, 0.061, 0.097, and
0.027, respectively. This indicated that the order of the influence degree
of MSW components on carcinogenic risk caused by incineration was:
dust > food waste > paper > plastic and rubber > textile > wood and
straw. Notably, food waste and dust contained more abundant Cl, N, and
S compared to wood and straw, plastic and rubber, paper and textile, and
heavy metals (Fig. 3). These components had a great influence on the
health risk of MSW incineration. Therefore, reducing the content of food
waste and dust in feedstock can reduce the health risks caused by
incineration in the Bohai Rim.

Among the six components of MSW in the Bohai Rim, wood and
straw have the lowest coefficient. This is due to two main reasons. First,
wood and straw make up a small fraction of the pollutants emitted by
WHE plants in the Bohai Rim, as shown in Fig. 3. Second, these com-
ponents can reduce the production of fly ash and PCDD/Fs in in-
cinerators [86]. Following the principles governing the generation of
PCDD/Fs, fundamental elements, including carbon (C), hydrogen (H),
and Cl, undergo synthesis within the temperature range of 200-400 °C.
Notably, within the incinerator's post-combustion area, the peak for-
mation rate of PCDD/Fs occurs at temperatures between 300 and
325 °C [87,88]. Studies have shown that the addition of wood and
straw to the incineration process can effectively reduce the weight loss
of polyvinyl chloride (PVC) in the temperature range of 200-400 °C.
This, in turn, leads to a reduction in the production of PCDD/Fs [86].
Additionally, it is important to note that fly ash can act as a catalyst for
the formation of PCDD/Fs [89]. In contrast, wood and straw, which are
two of the six combustible components of MSW, have the lowest ash
content [41]. Therefore, the lower ash content and associated proper-
ties of wood and straw make them less likely to pose health risks when
incinerated.

3.4. Implication

Mandatory MSW classification is an effective measure to mitigate the
emission factors of pollutants from WtE plants. By separating food waste,
plastics, papers, textiles, and other materials, it becomes possible to
recycle and treat them, using appropriate technologies, such as aerobic
composting and anaerobic fermentation, to reduce the amount of waste
sent to incinerators. This approach can significantly decrease the quan-
tities of heavy metal-containing materials entering incinerators (e.g.,
waste batteries and electronic waste), thereby reducing the emissions of
heavy metals, Cl, S, N, and other pollutants into the flue gas. This, in turn,
minimizes the health risks associated with WtE plants [90,91].

Due to the large variation in pollutants' concentration of each MSW
component in the Bohai Rim, the effects of different MSW components'
recovery on HI and CR of WtE plants in the Bohai Rim were significantly
different. When the MSW recovery rate was 0-90%, the possible change
of HI and CR was displayed based on the ridge regression model, as
shown in Fig. 4a and b.
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Fig. 3. Contributions of MSW components to the HI (a) and CR (b) of incineration in the Bohai Rim. The HI of incineration in the Bohai Rim in January and July was
4.07 x 1073 and 1.82 x 1073, respectively. The CR of incineration in the Bohai Rim in January and July was 4.72 x 1077 and 2.13 x 1077, respectively. The

conversion ratio of NO,/NOy is 0.75 [80].

Table 2
Ridge regression analysis results.

Parameter Regression coefficient
HI CR

K 0.5 0.6
Constant 15.274 5.922
Unit construction cost (yuan-a/t) —0.127 —0.084
Wind speed (m/s) —0.547 —0.286
Temperature (K) —-0.104 -0.101
Rainfall (mm/month) —4.331 —4.089
Paper (t/a) 0.066 0.045
Wood and straw (t/a) 0.001 0.004
Textile (t/a) 0.046 0.026
Food waste (t/a) 0.114 0.061
Dust (t/a) 0.108 0.097
Plastic and rubber (t/a) 0.04 0.027
R? 0.654 0.613
Adjusted R? 0.561 0.509

For the non-carcinogenic risk of incineration in the Bohai Rim, when
the recovery rate was the same, food waste, dust, and paper's recovery
had the most significant effect on the reduction of HI. When the recovery
rate of food waste, dust, and paper was 40%, the HI was reduced by
5.66%, 5.37%, and 3.32%, respectively. For the carcinogenic risk of
incineration in the Bohai Rim, when the recovery rate was the same, dust,
food waste and paper's recovery had the most significant effect on the
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reduction of CR. When the recovery rate of dust, food waste, and paper
was 50%, the CR was reduced by 6.50%, 4.14%, and 3.07%, respectively.

Assuming uniform recovery quality, the recovery of textiles from
MSW in the Bohai Rim had the greatest potential to reduce HI and CR
associated with incineration. This was followed by paper, dust, plastic,
rubber, food waste, and finally wood and straw, in descending order of
their impact on HI and CR reduction. A textile recovery volume of
1.44 x 10% ¢t (equivalent to 90% of the textile incinerated in the Bohai
Rim) resulted in a significant reduction of 10.05% in HI and a corre-
sponding decrease of 5.81% in CR. In contrast, a recovery quantity of
2.23 x 107 t of food waste was required to achieve similar outcomes.

This phenomenon is primarily caused by the high levels of Cr, As, Ni,
and Sb found in textiles [41,92-99], as shown in Table S9. These heavy
metals have relatively low reference concentrations (RfCs) and high slope
factors (SFs), indicating a relatively high risk to human health, both in
terms of cancer and non-cancer effects. Therefore, textiles have a higher
health risk than other components of MSW.

In conclusion, the recovery of food waste proves to be the most
effective way to mitigate the health risks associated with incineration.
The recovery of textiles is also effective in reducing these risks. The
classification of MSW can change the composition of the feedstock in
incinerators, which can help reduce the negative health effects of pol-
lutants emitted by WtE plants.

In addition to the above, the health risks of incineration (HI and CR)
decrease with the increasing unit construction cost. The upgrade and

E
0 pozyewoy

Fig. 4. The effects of different MSW components' recovery on HI and CR of WtE plants in the Bohai Rim.
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optimization of clean incineration and ultra-low emission technologies
can significantly reduce the health risks of incineration. For example,
upgrading the “semi-dry + dry” deacidification process and incorpo-
rating wet scrubbers in WtE plants can effectively reduce the concen-
tration of SO, [100].

The ridge regression model revealed a significant impact of the unit
construction cost on health risks, particularly on HI compared to CR, as
seen in Fig. S3. When the unit construction cost increases by 60,000
yuan-a/t, the HI decreases by 3.28% and the CR decreases by 2.18%. The
development of more effective technologies for the removal of heavy
metals and PCDD/Fs holds promise in mitigating these risks. On the other
hand, reducing investment increases health risks, especially non-
carcinogenic ones. This is because the unit construction cost of in-
cinerators and purification facilities is limited by economic constraints.

Meteorological conditions also exert a significant impact on the
dispersion and deposition of pollutants. Higher wind speed, rainfall, and
temperatures are associated with lower health risks. Additionally, the
height of the chimney affects the landing concentration of pollutants
emitted by WtE plants. The simulation results show that taller chimneys
improve pollutant dispersion, dilution, deposition, transformation, and
decomposition, effectively reducing health risks, as seen in Fig. S4. For
example, increasing the chimney height from 80 m to 100 m reduces HI
and CR by 41.28% and 33.19%, respectively. Further increasing the
height to 200 m reduces HI by 21.47% and CR by 15.03%. Therefore,
increasing the chimney height from 80 m to 100 m is an effective mea-
sure to mitigate the health risks associated with WtE plants.

4. Conclusions

Based on the emission inventory of WtE plants in the Bohai Rim in
2020, this study innovatively assessed the health risks from waste
incineration by using ridge regression analysis. The study examined the
correlation between health risks and potential influencing factors, and
proposed specific measures to lessen the risks.

The conclusions are as follows:

(1) Incineration in 30 cities in the Bohai Rim had HI ranging from
7.29 x 10~*t0 1.40 x 10~ 2 in July and from 6.64 x 10 *t0 8.68 x 10~ in
January. The CR ranged from 1.19 x 10~ t0 9.81 x 1077 in July and from
6.22 x 1078 to 5.74 x 1077 in January. Both HI and CR were within
acceptable limits (HI < 1, CR < 1 x 1079). However, HI and CR differed
widely across cities.

(2) Ridge regression models for HI and CR had R? 0f 0.654 and 0.613,
respectively, and were significant according to ANOVA tests. The
regression coefficients for both models exhibited a negative relationship
with unit construction cost, wind speed, temperature, and rainfall, and a
positive relationship with quantities of various incinerated materials.
MSW classification effectively reduced the health risks of incineration.

(3) When the recovery rate was constant, the recovery of food waste,
dust, and paper had the most significant impact on reducing HI. In
addition, dust, food waste, and paper had the most significant effect on
reducing CR. When recovery quality was the same, textile recovery
yielded the most substantial reduction in both HI and CR, followed by
paper, dust, plastic and rubber, food waste, and wood and straw.

(4) Increasing the chimney height of WtE plants was found to accel-
erate the diffusion, deposition, transformation, and decomposition of air
pollutants emitted by the plants. This led to a significant reduction in the
health risks of incineration in the Bohai Rim, especially when the
chimney was upgraded from the current height of 80 m to 100 m.
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