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Abstract

Cognitive reappraisal is associated with major depressive disorder (MDD), while spontaneous activity patterns of the default
mode network (DMN) is implicated in reappraisal and MDD. However, neural mechanisms subserving the close association
of spontaneous reappraisal and depression are unclear. Spontaneous reappraisal, depression and resting-state functional
magnetic resonance imaging were measured from 105 healthy subjects. We assessed the temporal complexity (Hurst
exponent), Regional Homogeneity (ReHo) and fractional Amplitude of Low Frequency Fluctuation (fALFF) profiles of DMN, a
network involved in both reappraisal and depression. Mediation effects of these standard measures on the relationship
between reappraisal and depression, and the contributions of each DMN subregion, were assessed. Results indicated that
Hurst exponent (H) of DMN, whether extracted by independent component analysis or region of interest, was significantly
associated with reappraisal scores. An individual with a higher reappraisal score has a lower Hurst value of DMN. Mediation
analyses suggest that H of DMN partially mediates the association between reappraisal and the degree of depression, and
this mediation effect arises from the contribution of medial prefrontal cortex. Neither ReHo nor fALFF showed a similar
correlation or mediation effect. These findings suggest that temporal dynamics of DMN play an important role in emotion
regulation and its association with depression. H of DMN may serve as a neural marker mediating the association between
reappraisal and depression.
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Cognitive reappraisal refers to changing the way one thinks
about a potentially emotion-eliciting situation to regulate its
emotional impact (Buhle et al., 2014). Several studies have
demonstrated reappraisal is effective at reducing subjective,
behavioral and physiological aspects of emotions (Egloff et al.,
2006; Johnco et al., 2014). Multiple studies have shown that

cognitive reappraisal is associated with default mode network
(DMN) regions that are implicated in self-referential processing
and emotional appraisal (Abler et al., 2010; Sambataro et al., 2013;
Vanderhasselt et al., 2013; Lau et al., 2015; Martins and Mather,
2016). For instance, key nodes of DMN have been implicated in
successful reappraisal (Ochsner et al., 2012; Uchida et al., 2015).
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In addition, DMN increases its activity and functional connec-
tivity with key nodes of the emotional circuit (e.g. the right
amygdala and insula) during cognitive reappraisal relative to
passive viewing of negative stimuli (Sripada et al., 2014; Xie et
al., 2016). These evidences suggest that DMN plays an important
role in cognitive reappraisal process.

Recently, there is increasing interest on spontaneous
(or habitual) reappraisal (Ehring et al., 2010; Volokhov and
Demaree, 2010; Quigley and Dobson, 2014; Samson et al., 2015).
Distinct from instructed, task-driven reappraisal, spontaneous
reappraisal arises spontaneously, without explicit instructions
from another person, as in most cases of daily-life reappraisal.
Several studies have demonstrated spontaneous reappraisal
can occur during resting state without any explicit requirement
of emotion regulation (Disner et al., 2011; Liao et al., 2011;
Ertl et al., 2013; Uchida et al., 2015). It has been established
that spontaneous reappraisal serves a predictor for depression
(Martin and Dahlen, 2005; Abler et al., 2010; Min et al., 2013).
Specifically, Joormann and Gotlib (2010) found that individual
differences in the use of reappraisal play an important role
in depression, with less reappraisal use, predicting higher
levels of depressive symptoms. DMN function is considered
to subserve individual differences in reappraisal. For instance,
Uchida et al. (2015) found that lesser resting-state functional
connectivity (RSFC) between right amygdala and two nodes
of DMN [i.e. medial prefrontal cortex (MPFC) and posterior
cingulate cortex (PCC)] predicted greater reappraisal success.
Also, studies indicate that individual differences in spontaneous
reappraisal affect DMN’s intrinsic functional connectivity at rest
(Martins and Mather, 2016; Morawetz et al., 2016). Therefore, it is
plausible that DMN’s activity at rest is associated with individual
differences in spontaneous reappraisal.

Furthermore, many studies have shown a close relationship
between reappraisal, DMN activity and depressive disorder
(Johnstone et al., 2007; Sheline et al., 2009; Shi et al., 2015;
Wei et al., 2015). The neuroimaging research on reappraisal
indicates less effective modulation of emotion-processing
regions by key nodes of DMN in major depressive disorder (MDD).
One study found greater activation of temporal pole and dorsal
cingulate in MDD adults compared with controls during reap-
praisal (Beauregard et al., 2006). A separate study of MDD adults
reported that during reappraisal of emotional pictures, non-
depressed individuals, but not their depressed counterparts,
displayed both increased dorsolateral prefrontal cortex (DLPFC)
activation and decreased amygdala activation, mediated by
activity in the ventromedial prefrontal cortex (Johnstone et al.,
2007). Together, these findings suggest that MDD is characterized
by increased activation of emotional reactivity regions during
reappraisal of negative emotions and that this reactivity may
be associated with abnormal function of DMN, leading to
deficient emotional regulation. Moreover, one study of individual
difference found that in contrast to the association of expressive
suppression with higher self-reported symptoms, cognitive
reappraisal was associated with lower levels of depression in
the undergraduate sample (Moore et al., 2008). Therefore, it is
possible that the relationship between spontaneous reappraisal
and depression is associated with DMN’s activity.

As stated, previous studies have studied DMN-reappraisal
association in terms of functional connectivity between brain
regions. However, reappraisal is a process unfolding over time,
entailing breakdown of stereotyped cognitive schema and refor-
mulation of a new evaluation (Koval et al., 2015). In this regard,
the temporal dynamics of brain activation should be pivotal in
the representation of emotion regulation, which was confirmed

by substantial studies (Thiruchselvam et al., 2011; Paul et al.,
2013; Pavlov et al., 2014; Koval et al., 2015). Since the mid-1990s,
the dynamics of the brain at rest has been attracting a growing
body of research in neuroscience. Neuroimaging studies have
revealed distinct functional networks that slowly activate and
deactivate, pointing to the existence of an underlying network
dynamics emerging spontaneously during rest (Fox et al., 2007;
Deco et al., 2011; Ciuciu et al., 2012). Several studies have
already shown that DMN dynamics is disrupted in depression
(Hamilton et al., 2011; Wei et al., 2015; Kaiser et al., 2016), and
abnormal dynamic RSFC in MDD was associated with medial
prefrontal and temporal regions which involved in emotion
regulation processing, such as reappraisal (Dillon and Pizzagalli,
2013; Murphy et al., 2016). For instance, Kaiser’s findings indicate
that depression was related to decreased dynamic (less variable)
RSFC between MPFC and other regions of the prototypical default
network, but increased dynamic (more variable) RSFC between
MPFC and regions of insula and lateral prefrontal cortex (Murphy
et al., 2016). In the present study, we examine the relationship
between reappraisal, DMN activity and depression by the Hurst
exponent, a single numerical quantity indicating the behavior
of the autocorrelation function of a monofractal time series
(He et al., 2010; He, 2011; Ciuciu, et al., 2012).

The Hurst exponent was applied to blood oxygen level-
dependent (BOLD) signal measured under both physiological
and pathological conditions (Wink et al., 2006; Lai et al., 2010;
Lei et al., 2013; Gentili et al., 2015). The original value of H
ranges continuously between 0 and 1. Specifically, H closer
to 0.5 indicates more randomness or chaos (e.g. Brownian
motion) whereas the H value closer to 1 indicates more
regular or persistent fluctuations (e.g. Euclidian order). A
value of 0.5 < H < 1 represents positively autocorrelated or
persistent behavior; while 0 < H < 0.5 demonstrates negatively
autocorrelated or anti-persistent behavior; H = 0.5 corresponds
to classical Gaussian white noise. It means that the time course
is a random white noise series when Hurst exponent is equal
or close to 0.5. Previous studies found that DMN exhibited
smaller Hurst exponent in MDD as compared with healthy
controls (Wei et al., 2013; Wei et al., 2015). In these studies,
Wei and colleagues extracted the weight vectors defined by the
distance to the hyperplane to observe the effect of different
features on the classification. Specifically, the Hurst exponent
corresponding to resting-state networks was represented by
the weight vectors in MDD vs healthy control comparison, in
order to extract classification features with the support vector
machine (SVM) approach. SVM achieved good discriminative
performance and effectively identified MDD patients as shown
by this study (Wei et al., 2013). However, in the present study,
we aim to explore individual differences in DMN in order to
account for the relationship between spontaneous reappraisal
and depression. Therefore, extracting original values of H, which
ranges from 0–1 continuously, is more appropriate to our current
study instead of using the weight vectors of DMN.

By using original values of H, previous evidences showed
that individual with high social anxiety and introversion has a
higher Hurst exponent (Lei et al., 2013; Gentili et al., 2015), and a
number of studies have demonstrated that individual with high
social anxiety and introversion has a higher depression score
(Janssonfröjmark and Lindblom, 2008; Uliaszek et al., 2010; Grav
et al., 2012; Shanahan et al., 2014). For instance, Lei and colleagues
showed an inverse relationship between H in DMN and extraver-
sion (Lei et al., 2013). And Gentili and colleagues found a positive
correlation between the H and the social anxiety scores in DMN
regions including the posterior cingulate, the precuneus and
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bilateral inferior parietal sulcus (Gentili et al., 2015). Additionally,
severity of autistic symptoms was negatively correlated with
H in retrosplenial and right anterior insular cortex (Lai et al.,
2010). However, these brain regions are not involved in DMN.
Relatively, Maxim and colleagues demonstrated that patients
with early Alzheimer’s disease had greater persistence of rsfMRI
noise (larger H) in medial and lateral temporal cortex, dorsal
cingulate and premotor cortex, and left pre- and post-central
gyrus which are involved in DMN (Maxim et al., 2005). Therefore,
we hypothesize that a higher original value in Hurst exponent of
DMN corresponds to a higher risk of depression.

In contrast to the temporal dynamic profiles depicted by the
Hurst exponent, other standard rsfMRI measures like Regional
Homogeneity (Reho) and fractional Amplitude of Low Frequency
Fluctuation (fALFF) depict complementary information about
network integrity and both have been found to be useful in
characterizing regional alterations (Denier et al., 2015; Xu et al.,
2015). More specifically, fALFF is thought to reflect the strength of
spontaneous neural activation (Chao et al., 2017; Zou et al., 2008)
while ReHo represents the local synchronicity of neural activa-
tions in the same functional cluster (Zang et al., 2004; Jiang and
Zuo, 2016), both irrelevant to temporal dynamic features. And
given the close association between spontaneous reappraisal
and resting-state DMN function and that between DMN and
depression, we hypothesize that the resting-state functioning of
DMN may be an important neural mechanism underpinning the
association between spontaneous reappraisal and depression.
This hypothesis was tested by a line of mediation analyses in
the present study, including Hurst exponent, ReHo and fALFF
measures of resting-state DMN. According to aforementioned
analyses, we predict that temporal dynamics of DMN measured
by Hurst exponent, rather than other resting state measures,
may mediate the association between spontaneous reappraisal
and depression. Finally, we computed the Hurst exponent in
the subregions of DMN and evaluated the contributions of each
subregion to the mediation, respectively.

Methods and Materials
Participants and individual difference measures

A total of 110 right-handed, healthy college students participated
in the study (58 females; mean age = 21.13 years, s.d. = 1.58).
Five participants were excluded (excessive head movement,
>2 mm) and 105 participants were included in the final analysis
(55 females; mean age = 21.04, s.d. = 1.52). All participants gave
written informed consent and were paid for their participation.
This study was approved by the local ethical committee of
Southwest University and the Institutional Human Participants
Review Board of the Southwest University Imaging Center for
human brain research. Individual differences in everyday use of
reappraisal measures were administered before fMRI scanning.
The depression scale that we used was the Beck’s Depression
Inventory (Beck et al., 1961). We controlled for individual
differences in emotion reactivity by assessing neuroticism and
trait anxiety and controlled for the use of another common
strategy to downregulate emotion by assessing suppression.
The primary measure of interest was the reappraisal scale of the
Emotion Regulation Questionnaire (ERQ; Gross and John, 2003).
This scale consists of 10 items designed to assess individual
differences in reappraisal (six) use (e.g. ‘I control my emotions by
changing the way I think about the situation I’m in’). This scale
has been shown to have good internal consistency and test–
retest reliability and to be independent from intelligence and

socioeconomic statues (Gross and John, 2003). Control measures
also included (i) the Chinese version of 48-item Neuroticism
questionnaire of the Neuroticism-Extraversion-Openness (NEO)
Five-Factor Personality Inventory (Szymkowicz et al., 2016) which
assesses individual’s preference to experience psychological
distress; (ii) the trait version of the State Trait Anxiety Inventory
(STAI trait version; Spielberger et al., 1970) which assesses
individual differences in trait anxiety; and (iii) the suppression
scale of the ERQ which assesses individual differences in the use
of suppression.

fMRI data analysis

Data acquisition. rsfMRI data were acquired with a Siemens 3 T
scanner (Siemens Magnetom Trio TIM, Erlangen, Germany). Each
scan contains 232 functional volumes (about 5 min), collected
with an Echo-planar imaging (EPI) sequence (TR = 2 s, TE = 30 ms,
flip angle = 75◦, matrix size = 64 × 64, FoV = 220 × 220 mm2,
voxel size = 3.4 × 3.4 × 3 mm3, Slices = 32). Anatomical images
were also collected for normalization with a T1-weighted pro-
tocol (TR = 1900 ms, TE = 2.52 ms, FA = 9◦, matrix = 64 × 64,
FoV = 256 × 256 mm2, voxel size = 1 × 1 × 1 mm3). All subjects
were instructed to fixate on the center of the screen, not to think
about or concentrate on anything in particular and to remain
as motionless as possible. Head movements were minimized by
using a cushioned head fixation device.

Preprocessing. FMRI data were preprocessed and analyzed using
Data Processing Assistant for rsfMRI Advanced Edition (DPARSFA
v3.2, http://rfmri.org/DPARSF) (Yan et al., 2016) of Data Processing
& Analysis of Brain Imaging (DPABI v1.3, http://rfmri.org/DPABI)
toolbox and SPM8 software (http://www.fil.ion.ucl.ac.uk/spm)
implemented in Matlab (R2010a, processing MathWorks, Inc.,
USA). The first 10 volumes of each functional time series were
discarded to allow for scanner stabilization. The remaining
functional images were initially corrected for within-scan
acquisition time differences between slices. In order to remove
motion related confounds (Satterthwaite et al., 2013; Power et al.,
2014; Power et al., 2015; Siegel et al., 2016), we performed motion
correction using SPM’s realign function to align each individual’s
BOLD fMRI data to the mean of the images. During motion
correction, head movement was recorded in six directions and
used to exclude individuals with significant motion (2 mm)
and to regress out the effects of motion on BOLD signal.
Following motion correction, each individual’s rsfMRI data
were coregistered to their corresponding anatomical image.
Each anatomical image was segmented into gray matter, white
matter (WM) and cerebrospinal fluid (CSF) probability maps
using the ‘New Segment’ function in SPM8 while deriving a
deformation field. Following segmentation individual’s rsfMRI
data were transformed to MNI standard space using the
deformation field derived during the segmentation step. For all
individuals, probability maps for CSF and WM were thresholded
at P > 0.95 to create CSF and WM masks, respectively.
Using these masks, the BOLD time series were extracted
from the resting-state dataset and the first five principal
components were derived. A principal component analysis
(PCA)-based noise correction (CompCorr) and Friston-24-based
generalized linear model (GLM) model (Friston et al., 1996) was
implemented to reduce the effect of physiological noise and
motion time series from the BOLD fMRI data using DPABI. The
GLM model thus included a total of 34 regressor time series
(5 principal components of WM, 5 principal components of CSF,
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Fig. 1. The power spectra of all subjects without band-pass filtering from the cumulative sum of the time courses of ICA (red) and region of interests (ROIs; green). The

scale parameters were chosen to correspond to a frequency range of (0.016, 0.063) Hz.

6 motion parameters, 6 autoregressive motion parameters
and 12 quadratic models of the motion parameters). Finally,
normalized functional images were resliced into 3 × 3 × 3 mm3
voxels and spatially smoothed with a Gaussian kernel (8 mm
FWHM).

DMN identification with group independent component analysis.
The preprocessed data from all the subjects were analyzed

with group ICA (GIFT, http://icatb.sourceforge.net/). The optimal
number of principal components was set as 30, using the GIFT
dimensionality estimation tool. First, data from each subject was
reduced using PCA, according to the selected number of compo-
nents. Second, the data was separated by ICA using the Extended
Infomax algorithm. Third, independent components (ICs) and
time courses for each subject were back-reconstructed and the
mean spatial maps for each group were transformed to Z-scores
for display. The IC that best matched DMN as previously reported
(Greicius and Menon, 2004) was selected and the corresponding
time course DMNICA was used to generate the Hurst exponent
estimation (Figure 1).

DMN identification with seed at PCC. Seed-based analysis was
also used for defining DMN as an attempt to avoid potential
selection effects of defining DMN. A single spherical region
(radius 10 mm) positioned in the PCC (0, −52, 30) was selected
as the seed (Fransson, 2005). Cross-correlation analysis was per-
formed by computing temporal correlation between the mean
time course of the seed and BOLD signal intensity of all brain
voxels. Correlation coefficients of each voxel were normalized
to Z-scores with Fisher’s r to z transformation and thus an entire
brain Z-score map was created for each subject. The mean signal
of all the voxels with a Z-score larger than 3 was regarded
as the time course DMNROI, and was input for Hurst exponent
estimation (Figure 1).

Hurst exponent.. The scale parameters were chosen to corre-
spond to a frequency range of (0.016, 0.063) Hz (Ciuciu et al.,
2012). For the log–log scale plot of the power spectra, the linear
slope (B) is used to calculate the Hurst exponent by the formula
H = (B − 1) / 2 (Figure 2). Further analyses were conducted using
Matlab 11.0 (Math Works, Natick, MA) and the Hurst exponent
was calculated from DMNICA and DMNROI using the WLBMF
toolbox (https://www.irit.fr/∼Herwig.Wendt/). For details on our
parameters, see Supplementary Table S1. Finally, the Spearman
rank correlations were calculated between the Hurst exponent

and individuals’ scores on ERQ. Including the age and gender as
covariates led to comparable results.

fAFLL and ReHo. Other standard measures (fALFF, ReHo) used
in resting state MRI analysis were also calculated in this study.
ReHo reflects the temporal homogeneity of the regional BOLD
signal and fALFF is the fraction of ALFF in a given frequency
band to the ALFF over the entire frequency range detectable
in the given signal (Zou et al., 2008). ReHo and fALFF analy-
ses were performed by using the rsfMRI Data Analysis Toolkit
(http://resting-fmri.sourceforge.net).

Analysis of DMN subregions. The default network comprises
a set of interconnected brain regions, including MPFC, PCC
and medial temporal lobe (MTL). Though these subregions,
from a point of functional integration, constitutes an organized
network during rest (Greicius and Menon, 2003; Fox et al., 2005),
increasing evidence has suggested greater heterogeneity within
DMN than is commonly appreciated (Roy et al., 2009). Therefore,
it is possible that the components of DMN may play different
roles in emotion regulation process. To address this issue,
we also examined whether the H of DMN at subregion level
may mediate individual differences in spontaneous reappraisal
and their association with depression. We divided DMN into
three key nodes (Andrews-Hanna, 2012) by the ‘Free ROI’ tool
(http://freeroi.brainactivityatlas.org).We then extracted the time
courses and calculated the Hurst exponent of MPFC, PCC
and MTL separately. Finally, H of three key nodes of DMN
was involved in the subsequent correlation and mediation
analysis.

Results
Spatial patterns of DMN

The correlation analysis showed significant negative correla-
tions between reappraisal and depression scores, r (105) = −0.288;
P = 0.003 (Figure 3). Consistent with previous studies Martin and
Dahlen, 2005; Abler et al., 2010; Min et al., 2013), our current result
showed that an individual with a higher reappraisal score had a
lower depression score.

The correlation analysis showed significant negative corre-
lations between reappraisal scores and H of DMNICA, r (105) =
−0.311; P = 0.001 (Figure 4A). Thus, an individual with a higher

reappraisal score had a lower Hurst value of DMNICA. However, no

http://icatb.sourceforge.net
http://www.irit.fr/\ Herwig.Wendt/
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Fig. 2. The spatial patterns of DMN extracted by ICA and ROI. DMN extracted by group ICA (Top) and DMN extracted by ROI seeded in PCC region (Bottom). Axial map

was shown to be superimposed on the MNI152 standard space template image. The statistical thresholds of both spatial patterns were P < 0.05 (FDR-corrected, 20

adjacent voxels).

Fig. 3. Spearman rank-correlations and scatter-plots displaying the relationship

between the scores of reappraisal and depression scores. Significant negative

correlation between reappraisal and depression scores, r (105) = −0.288; P < 0.01.

significant correlations were found between suppression scores
and H of DMNICA, r (105) = −0.01, P = 0.918. These results
indicated that during rest, the temporal complexity of DMN was
associated with the use of reappraisal, but not with the use of
suppression. Of note, the alternative approach, calculating the
correlation between the ERQ scores and H of DMNROI, yielded
a similar result that the H of DMNROI was significantly asso-
ciated with the use of reappraisal, r (105) = −0.294, P = 0.002
(Figure 4B), but not with the use of suppression r (105) = −0.03,
P = 0.725.

Moreover, given the heterogeneity within DMN, we also
examined the relationship between Hurst in key components
of DMN and the use of reappraisal. Results showed that the use

of reappraisal, but not the use of suppression, was negatively
associated with H of PCC, H of MPFC and H of MTL, respectively
(Table 1. For more details on fALFF/ReHo, see Supplementary
Table S1). These findings suggest that the Hurst of both DMN and
its components may serve as a specific neuroimaging marker of
the spontaneous and uninstructed reappraisal.

Specificity of findings

Previous studies demonstrated that extraversion and trait anxi-
ety are correlated with Hurst exponent in DMN (Lei et al., 2013;
Gentili et al., 2015) and reappraisal (Martin and Dahlen, 2005;
Uliaszek et al., 2010). In order to ensure our findings indepen-
dent of emotional reactivity (Gentili et al., 2015) and personality
trait (Lei et al., 2013), we used a hierarchical regression analysis
to test (i) whether extraversion and trait anxiety scores were
related to H of DMN and its components and (ii) whether the
relationship between reappraisal and H of DMN (including its
components) withstood correction for these factors. Regression
analyses on H of DMN showed that 14.4% of the variance in the
criterion variable was accounted for by the statistical model (F
(3, 101) = 5.661; P < 0.001; Table 2). Reappraisal captured 9.7% of
the variance while the addition of trait anxiety and extraversion
to the equation did not result in a significant increment of R2.
These findings indicated that our primary results were not due
to individual differences in emotional reactivity or personality
trait, and specific to reappraisal.

Other standard measures (fALFF, ReHo) used in resting state
MRI measures were also calculated using these indexes. No
significant correlations were found between fALFF/ReHo of
DMN and reappraisal scores (Table 1). Therefore, the association
between DMN and spontaneous reappraisal is specific to the
Hurst index of this network, as other standard measures (fALFF,

https://academic.oup.com/scan/article-lookup/doi/10.1093/scan/nsy092#supplementary-data
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Fig. 4. Spearman rank correlations and scatter plots displaying the relationship between the scores of reappraisal and the Hurst exponents in DMNICA (A) and in

DMNROI (B). Significant negative correlation between reappraisal scores and H of DMNICA, r (105) = −0.311; P < 0.01; H of DMNROI, r (105) = −0.294; P < 0.01.

Table 1. The correlation between resting-state measurements and
reappraisal/suppression scores

Reappraisal Suppression

H of PCC r = −0.208; P = 0.033 r = −0.012; P = 0.900
H of MPFC r = −0.241; P = 0.013 r = 0.111; P = 0.260
H of MTL r = −0.210; P = 0.031 r = 0.065; P = 0.510
fALFF of DMN r = 0.020; P = 0.840 r = 0.133; P = 0.175
ReHo of DMN r = −0.065; P = 0.509 r = 0.087; P = 0.376

ReHo) cannot reflect the relationship between DMN activity
and spontaneous reappraisal. Previous studies have indicated
that fALFF and ReHo help to reveal the complexity of the
brain function, by reflecting the intensity and homogeneity of
regional spontaneous brain activity, respectively (Zang et al.,
2004; Zou et al., 2008). However, these indicators cannot reflect
the temporal dynamic property of spontaneous brain activity.
Therefore, our current results suggested that temporal scale of
spontaneous brain signals may play a more important role in
emotion regulation process and depression.

H of DMN mediates the association of reappraisal with
depression

The mediation analysis is based on a standard three-variable
path model and with a bootstrap test for the statistical signifi-
cance of the indirect effect, as diagrammed in Figure 5. As illus-
trated in Figure 5, the results showed that the indirect effects of
the use of reappraisal on the subjective depression scores were
significant (H of DMNICA: a∗b = −0.0718,P < 0.05; H of DMNROI:
a∗b = −0.1023, P < 0.05). But further mediation analysis results of
three subregions of DMN showed that only H of MPFC mediates
the association between the use of reappraisal and depression.
For details on our mediation analysis, see Supplementary Table
S1. These results, shown in Table 3, indicate that resting-state
temporal complexity in DMN explains a part of the reappraisal
and depression association.

Discussion
Most literature on DMN-reappraisal association to date focused
on the functional connectivity between brain regions. The

present fMRI study explored the temporal dynamics of DMN
during resting state and examined the association between
the Hurst exponent of DMN and the ERQ scores. Our findings
indicate that more use of spontaneous reappraisal predicts less
memory of resting-state neural signals (i.e. Hurst exponents
closer to 0.5) in DMN, regardless of whether the Hurst exponent
was extracted by ROI or ICA. Importantly, further mediation anal-
ysis indicated that the temporal dynamics of DMN (particularly
the MPFC) measured by Hurst exponent mediate the association
between spontaneous reappraisal and depression. Our findings
suggest that temporal scale of spontaneous brain signals may
play an important role in emotion regulation process and its
association with depression.

In the present study, we found that a higher Hurst exponent
of DMN corresponds to a higher risk of depression. This
appears inconsistent with previous findings that DMN exhibited
decreased Hurst value in MDD as compared with healthy
controls (Wei et al., 2013; Wei et al., 2015). We consider that two
reasons may contribute to this difference. On the one hand,
as stated before, different algorithms were used to represent
Hurst exponent in the above and the current studies, driven by
different research purposes. We used original Hurst value that
ranges continuously from 0–1, while Wei and colleagues used
weight vectors in support vector machine approach, to represent
the H. On the other hand, individual differences in healthy
population, as involved in the current study, may be reflected by
distinct DMN temporal dynamic profiles from those in clinical
population. Specifically, Wei and colleagues considered that the
decreased H may suggest irregular regional oscillation originated
from persistent negative thoughts in MDD. However, previous
studies demonstrated that there are different behaviors and
brain mechanisms between MDD and healthy people (Wang
et al., 2015; Kaiser et al., 2016; Tozzi et al., 2017). For instance,
Kaiser et al., 2016 found that MDD with ruminative thinking have
abnormal patterns of fluctuating communication among brain
systems compared with healthy people. In this regard, healthy
population, who have no symptoms of persistent negative
thoughts and ruminative coping (Zetsche et al., 2012; D’Avanzato
et al., 2013), may have distinct individual difference profiles
in the temporal dynamics of DMN; that is, the implication
of individual differences in Hurst exponent of DMN should
be considered in the context of different populations. The
relationship between emotion regulation strategy and Hurst
exponent of DMN in depressed patients should be examined in
future studies.

https://academic.oup.com/scan/article-lookup/doi/10.1093/scan/nsy092#supplementary-data
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Table 2. Regression coefficients (R2, �R2) and statistical results of hierarchical linear regression analyses on H of DMN with respect to the
influence of reappraisal, trait anxiety and extraversion are shown

Dependent Variables Step H of DMN
Beta R2 �R2 P<

reappraisal 0.097 0.001
reappraisal alone −0.312 0.097 0.001

reappraisal, TA 0.114 0.002
reappraisal added first −0.275 0.097 0.005
TA added second 0.135 0.017 0.166

reappraisal, TA, extraversion 0.144 0.001
reappraisal added first −0.263 0.097 0.007
TA added second 0.136 0.017 0.159
extraversion added third −0.172 0.030 0.065

Note: TA, trait anxiety. Probability values are two tailed. R2 illustrates the regression model, whereas �R2 illustrates the improvement of the regression model when
additional independent variables are considered.

Fig. 5. The relationship between reappraisal and depression scores was mediated

by H of DMN. The lines are labeled with path coefficients and standard errors are

shown in parentheses. The direct path between spontaneous reappraisal and

depression is calculated controlling for H. Indirect path a = −0.31136, indirect

path b = 0.2289, total relationship c = −0.3078 and direct path c = −0.2360. The

values in parentheses indicate the strength of the path prior to the inclusion of

the mediating variable, ∗P < 0 .05.

The Hurst exponent is a useful measure to characterize dif-
ferent physiological states, as shown multiple times (Berthouze
et al., 2010; Bojic and Vuckovic, 2010; Ciuciu et al., 2012; Tagli-
azucchi et al., 2013; Kantelhardt et al., 2015; Churchill et al., 2016).
According to previous evidences, a smaller value of H suggests
the brain network is more efficient in online information pro-
cessing and less in long-range memory (Yang and Tsai, 2013).
However, a recent study suggests that the stationary fractional
Gaussian noise (fGn) process is not sufficient to describe neural
data (Von et al., 2018). So the interpretation of memory effects
in real-world signals may benefit from information-theoretical
analyses, in addition to Hurst exponent estimation. As a result,
the interpretation that the long-range memory can be predicted
by Hurst exponents correctly should be more cautious.

Resting-state studies of spontaneous fluctuations in fMRI
signals have demonstrated huge potential in mapping the
brain’s intrinsic functional features (Krüger and Glover, 2001;
Yan et al., 2010). Ciuciu et al., 2012 found that spontaneous brain
activity exhibits scale-free dynamics, suggesting the temporal
complexity and fractal-like of the resting-state BOLD signal. In
previous study, researchers quantified the temporal complexity
of rsfMRI based on H, because H can reflect the property of
scale-free dynamics via describing the self-similarity of time
courses (Maxim et al., 2005; Park et al., 2010). The complexity
of resting-state BOLD signals could provide some evidence of
dynamics of intrinsic brain activity (Yang et al., 2013). Wink
et al. utilized H to quantify fractal complexity and describe
pathological and physiological features, then found that normal
aging is accompanied by a loss of complexity (decreased H)

Table 3. Mediation effects of H of DMN in the prediction of depression
(N = 105)

Depression
Mediator Point estimate (a∗b) Bootstrapping BC 95% CI

H of DMNICA −0.0718 [−0.1651, −0.0112]
H of DMNROI −0.0691 [−0.1706, −0.0105]
H of PCC −0.0180 [−0.0818, 0.0306]
H of MPFC −0.0788 [−0.1897, −0.0175]
H of MTL 0.0218 [−0.0147, 0.0871]

Note: The mediation effects of the use of reappraisal on subjective depression
were bootstrapped using 5000 samples. Approximately 95% bias-corrected confi-
dence intervals for all indirect effects and contrasts were generated.

in bilateral hippocampus. Therefore, in the present study, the
negative correlation between reappraisal and H of DMN may
suggest that participant with a higher reappraisal score (a lower
H value) is associated with increase of complexity in the DMN.
Recently, Dong et al., 2018 used the H exponent to explore
fractal complexity of the rsfMRI signal in the human brain
across the adult lifespan. And they found a significant positive
correlation between the mean H of whole-brain gray matter
and the age of all subjects, suggesting that H increases with
age. That is, complexity of BOLD activity is reduced with age.
Further, their results showed that healthy aging is accompanied
by reduced complexity (increased H) in frontal and parietal lobes
and by increased complexity (decreased H) in insula, limbic
and temporal lobes. They speculate that age-related increase of
complexity in insula is because insula is critical for emotional
feeling (Gasquoine, 2014), and with aging, the adult’s ability to
regulate emotion remains stable and improves in some aspects
(Nashiro et al., 2012). Previous studies have suggested that the
DMN is critical for self-referential processing, affective cognition
and emotion regulation (Buckner et al., 2008; Andrewshanna
et al., 2010). Therefore, it is reasonable that increase of
complexity (decreased H) in the DMN is associated with a higher
reappraisal score.

Prior studies have indicated a close association between
information processing efficiency in the brain and one’s
cognitive flexibility (Blackwell et al., 2009; Wingenfeld et al., 2011;
Ragozzino et al., 2012). In this regard, cognitive flexibility might
be another interpretation for our results. Cognitive flexibility is
defined as the ability to adjust one’s emotional, cognitive and
behavioral responses to a situation based on new information
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(Martin and Rubin, 1995; Johnco et al., 2014). Cognitive flexibility
predicts effective reappraisal of emotion situation (Malooly,
2012) and is closely linked to rumination [i.e. failure to shift
thoughts away from a past threat (Nolen-Hoeksema, 2000;
Joormann et al., 2011; Nolen-Hoeksema, 2000)] and worry
[i.e. failure to shift thoughts away from future threat (Lee and
Orsillo, 2013)]. It has been reported that cognitive inflexibility
is associated with difficulty in adjusting cognition, attitude and
behavior despite the input of new information (Hamtiaux and
Houssemand, 2012). Previous studies have demonstrated that
cognitive flexibility is associated with depression and depressed
patients have impaired cognitive flexibility (Joormann and
Siemer, 2011; Murphy et al., 2012); that is, similar to the Hurst
of DMN that mediates the association between reappraisal and
depression, cognitive flexibility also predicts both reappraisal
and depression. On the other hand, the Hurst exponent reflects
the temporal complexity of neural activity patterns. Low
complexity is analogous to the continuation of the established
cognitive schema over time, as reflected by cognitive inflexibility.
Based on these considerations, we posit that a higher Hurst may
correspond to greater cognitive inflexibility; that is, people with
a higher Hurst value (worse online information processing), are
less effective in reappraisal and at higher risk of depression,
most likely as a result of cognitive inflexibility. However, caution
should be exercised during inferring the Hurst of DMN to
cognitive flexibility, as this variable was not directly assessed
in the current study. This potential association needs to be
addressed in future studies.

The mediation analysis showed that the relationship
between spontaneous reappraisal use and depression is
mediated by H from DMN, particularly the MPFC. Several
previous studies have shown that MPFC is generally involved in
cognitive control and has important relation with the successful
reappraisal during emotion regulation (Ridderinkhof et al., 2004;
Etkin et al., 2006; Goldin et al., 2008; Buhle et al., 2014). Goldin
et al. (2008) suggest that MPFC regions play a crucial role in
downregulating neural responses of emotion-generating regions
to negative stimuli, like amygdala and insula. Many studies have
suggested that the other two subregions in DMN are involved
in both memory and emotion. There is considerable evidence
that the MTL has functions related to episodic or remote
autobiographical memories (Simons and Spiers, 2003; Phelps,
2004; Buchanan et al., 2005; Aggleton, 2012) and the PCC shows
increased activity when individuals retrieve autobiographical
memories or plan for the future (Mantani et al., 2005; Addis et al.,
2007; Mason et al., 2007; Leech and Sharp, 2013). Together with the
function of three subregions in DMN mentioned in the previous
paragraph, our results indicate that people who use reappraisal
more (lower Hurst value) tend to have a greater capability of
online information processing, which facilitate the cognitive
control of MPFC. What’s more, a shorter long-range memory in
PCC or MTL can help people to ruminate less but more engage in
online cognitive activity, which facilitate successful reappraisal.

However, further mediation analysis showed that only the
temporal complexity of MPFC mediates the relationship between
reappraisal use and depression. One possible explanation is that
MPFC is involved in both cognitive control and self-referential
processing. MPFC is critical in internal, self-referential process-
ing (Northoff et al., 2006) and has been suggested to play an
important role in self-referential processing in major depression
(Mitchell et al., 2005; Lemogne et al., 2010; Lemogne et al., 2012).
Lemogne et al. (2012) has provided a compelling evidence for
the role of an increased MPFC activity in the depressive self-
focus which is associated with acute depressive states and with

an increased risk of depressive relapse through ruminative
processes. Additionally, previous studies have shown that
successful performance of cognitive flexibility depends on the
normal structure and function of MPFC (Dalley et al., 2004; Hang
et al., 2016). For instance, both lesions in MPFC and alterations
of the level of MPFC dopamine have been found to induce
disturbances in cognitive flexibility (Logue and Gould, 2014;
Hernandez et al., 2016). The Hurst exponent has been proposed
as a measure of online information-processing efficiency: lower
Hurst values are related to lower temporal redundancy and more
freedom to vary (cognitive flexibility; He, 2011). Therefore, we
suggest that differences of the temporal complexity in sponta-
neous MPFC activity may represent a possible neurobiological
correlate of cognitive flexibility. Together, we suggest a loss of
complexity in MPFC may reflect a decreased ability of cognitive
control, more rumination on self-referential memories and
cognitive inflexibility, which causes vulnerability to depression.

Clinical implications

There is an increasing consensus that dysfunctional emotion
regulation is a core feature of major psychiatric illnesses like
depression or anxiety disorders (Martin and Dahlen, 2005; Abler
et al., 2010; Min et al., 2013). Decreased use of reappraisal in
particular, as indexed by the ERQ, is associated with increased
depressive symptoms (Gross and John, 2003). In addition, a series
of studies have shown that dysfunction of the default-mode
network is associated with depression (Johnstone et al., 2007;
Sheline et al., 2009; Shi et al., 2015; Wei et al., 2015). Our results
suggest the temporal complexity in DMN plays a crucial medi-
ating role in the relationship between the use of reappraisal
and depression. This suggests that people who use reappraisal
less (higher Hurst value) tend to have a loss of complexity of
neural signals in DMN, implying reduced cognitive flexibility
(and difficulty in adapting to environmental changes). Those
people are more likely to ruminate in the negative context, which
causes them to fall into stronger depression. The present study,
therefore, offers a consideration on depression treatment by
changing the temporal complexity in DMN, for example, by the
reappraisal training.

Limitations and future directions

The study has five limitations that necessitate future investi-
gation and research. First, only rest-state data were studied.
Therefore, it is possible that the results of this study cannot
be generalized to task activity studies. Future studies should
combine with emotion regulation task to further study this
association. Second, although the association between H of
DMN and the use of reappraisal has been examined by different
methods and appear to be robust, these findings are limited
only to the index of H of DMN. Therefore, future studies should
apply multiple approaches to delineate brain network dynamics
like sliding window methods (Kaiser et al., 2016), co-activation
pattern analysis (Chen et al., 2015) and multi-layered dynamic
analysis (Raz et al., 2012) to further confirm the observed associa-
tions in follow-up studies. Third, only healthy young participants
were studied, and it is therefore unknown whether our results
are generalizable to all age groups. Because age differences are
often observed in studies of emotion regulation (Martins et al.,
2016; Scheibe et al., 2015), it is important to examine whether
there is an association between emotion regulation tendencies
and age differences. Fourth, MDD patients are not involved
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in the current study. Thus, individual differences in temporal
dynamics of DMN in MDD patients and its association with
emotion regulation tendencies should be examined in future
studies. Finally, recent study has found that the mutual
information function of neurophysiological data behaves
differently from fGn, and the H phenomenon is a sufficient
condition to prove long-range memory only in the stationary
fGn process (Von et al., 2018). Thus, the interpretation that
the long-range memory can be predicted by Hurst exponents
correctly should be more cautious, and future study should
use the time-lagged mutual information function (a novel
and effective tool to assess long-range dependence in finite
length empirical data) as a complementary method to measure
memory effects.

Conclusion
In conclusion, the present study provides first evidence for a neg-
ative association between the use of cognitive reappraisal and
the temporal dependence of DMN during resting state. Specifi-
cally, individual with a higher reappraisal score has a lower Hurst
value of DMN as shown by the resting-state functional MRI. More
importantly, our mediation results suggest that the temporal
complexity of DMN plays an important role in the relationship
between spontaneous reappraisal and depression, which shed
light on depression intervention in the field of clinical practice.
These findings suggest that H of DMN at rest may serve as a
neuroimaging marker of one’s spontaneous, uninstructed reap-
praisal and its association with depression.
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Supplementary data are available at SCAN online.
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