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Cross-site scripting (XSS) attacks are currently one of the most threatening

network attack methods. Effectively detecting and intercepting XSS attacks

is an important research topic in the network security field. This manuscript

proposes a convolutional neural network based on a modified ResNet block

and NiN model (MRBN-CNN) to address this problem. The main innovations

of this model are to preprocess the URL according to the syntax and semantic

characteristics of XSS attack script encoding, improve the ResNet residual

module, extract features from three different angles, and replace the full

connection layer in combination with the 1∗1 convolution characteristics.

Compared with the traditional machine learning and deep learning detection

models, it is found that this model has better performance and convergence

time. In addition, the proposed method has a detection rate compared to a

baseline of approximately 75% of up to 99.23% accuracy, 99.94 precision, and

a 98.53% recall value.

KEYWORDS

XSS, URL, ResNet, word vector, code injection

Introduction

The worldwide web has become the most common, least expensive and fastest
communication medium in the world today (Cao et al., 2021; Kotzur, 2022). Tens
of millions of people are using it for their daily activities due to its convenient
access and variety of available services. Social networking sites, online shopping sites,
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and cloud storage services are becoming increasingly popular.
In this case, a typical feature that attracts internet customers
is a user-friendly, attractive and dynamic web page (Lu et al.,
2022; Luo et al., 2022). Server and client-side scripts play an
important role in providing a better experience for web users.
In contrast, malicious users or attackers use these scripts to
construct direct or indirect attack vectors to attack network
users (Yu et al., 2021; Deng et al., 2022). Their main purpose
is to steal account credentials such as usernames and passwords,
personal details, session cookies, gain access to remote systems
and spread malware (Zhang et al., 2020, 2021).

Cross-site scripting (XSS) has become one of the main attack
vectors for various websites (Lee et al., 2022). As shown in
Figure 1, in the statistical survey recently conducted by OWASP,
XSS attacks are still the most harmful attacks. Among the top ten
security threats, XSS attacks rank from seventh in 2017 to third
in 2021, just behind broken access control and cryptographic
failures. XSS attacks are a very common security problem that
exists in nearly two-thirds of applications, and their threat level
is always at the forefront. An XSS attack consists of malicious
code execution by attackers exploiting the XSS vulnerability
left during web application development. The attacker injects
malicious script content into the web application so that when a
normal user accesses the web application, the malicious script is
embedded in the response of the traffic data and then returned
to the browser to be executed. The hazards of XSS vulnerabilities
include the following (Schuckert et al., 2022): obtaining normal
users’ website cookie information, intercepting browser session
information, and arbitrarily using the identities of other users
to manifest a series of malicious behaviors. Such behaviors may
lead to website hanging and controlling normal users’ computers
as well as phishing scams to obtain users’ private information,
such as bank card passwords, maliciously controlling other
users’ computers to carry out various distributed attacks and
spreading worm scripts on the network, thereby endangering
the network environment (Zhao et al., 2021).

Improving XSS vulnerability detection has become a
research hotspot in the network and information security field
(Kalouptsoglou et al., 2022). The current XSS detection methods
still have the following problems. In feature engineering, it
takes too much time to manually extract features, and a lack
of professional knowledge limits the feature extraction quality.
In addition, the deep logical features of complex semantics
are not easy to extract (Zheng and Yin, 2022). There are
many encryption and obfuscation methods, and the obfuscated
data greatly increase detection difficulty. In complex XSS data,
there are semantic features with strong relevance, which are
difficult to mine and extract by traditional techniques. With
the continuous development of network technology, there will
be a large number of unknown attacks that are not easy to
detect. Therefore, we must pay attention to the technology of
detecting XSS attacks for in-depth research. To avoid the harm
caused by XSS attacks on web applications, we should use XSS

attack detection technology to regularly scan web applications.
Once XSS attacks are found, we must immediately repair the
corresponding XSS vulnerabilities.

Related work

According to the HackAgon report (Hackagon, 2016),
12.75% of network attacks are XSS attacks, and almost 70%
of network vulnerabilities are classified as being related to
XSS vulnerabilities. Therefore, many researchers have proposed
analysing web page codes to discover XSS attacks in networks.
The methods used consist of static detection, dynamic detection,
machine learning and deep learning.

Static detection

Static detection can directly find possible vulnerabilities by
analysing the program source code when the program is not
running (Liu et al., 2019). Shar and Tan (2012) proposed an
automated method for statically removing XSS attacks from
program code based on static analysis and pattern matching
techniques. This method used static analysis and pattern
matching techniques to track user input while identifying
potentially vulnerable statements, discovered the location of XSS
vulnerabilities and removed them. Its limitation is that it is only
for the server side and cannot detect document object model
(DOM)-type XSS attacks. Ahmed and Ali (2016) proposed a
genetic algorithm to generate a set of test data to detect XSS
attacks. They stored the data with three types of XSS attacks
in the database and found the optimal method in these data
through a genetic algorithm to mark all XSS attacks and verified
whether these attacks were successful. This test method is used
for web applications developed by PHP and MySQL. The final
test results showed that the generated test data can well identify
various types of XSS attacks.

Dynamic detection

Dynamic detection requires inputting test data to test the
program and analysing the results and the response content
of the page returned by the server. If there are specific data
in the response content, then there is a vulnerability (Hou
et al., 2018). Fazzini et al. (2015) proposed CSP-based web
application automation technology. This technology has four
parts: dynamic detection, web page analysis, CSP analysis and
source code conversion. It collected the web application and
test data accepted by CSP, marked the encoded value in the
server-side code as trusted data, and ran the web program
when performing dynamic detection analysis. Experiments
showed that it can effectively detect XSS attack vulnerabilities.
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FIGURE 1

OWASP high-risk vulnerability statistics.

Parameshwaran et al. (2015) designed a DOM XSS test platform
based on taint analysis. The platform includes a detection engine
and a vulnerability generator. First, it accepts the browser’s
request and obtains the website URL, finds the script that exists
in the response and modifies it, and uses taint analysis to
automatically verify the vulnerability. Then, when the platform
receives a URL, it inspects the source code of the application,
analyses the data stream to find potential threats, and sends it to
the vulnerability generator to determine its location. Finally, a
link is created to verify the original website. This method has a
good effect on detecting DOM XSS attacks.

Cross-site scripting detection based on
machine learning

The traditional XSS detection method usually extracts some
features based on experience and then detects whether it is
an XSS attack based on the rule-based matching method.
However, this method cannot identify increasingly complex
XSS attack sentences. With the rapid development of machine
learning, an increasing number of researchers have attempted to
solve problems in network security through machine learning
algorithms, especially XSS attack detection, and have made
corresponding progress (Wu et al., 2020, 2021a,b,c,d, 2022;
Yan et al., 2021). Zhou et al. (2019) proposed a cross-
site script detection model based on the combination of a
multilayer perceptron and a hidden Markov model. This model
preprocesses the data through a natural language processing
method and then uses a multilayer perceptron to adjust
the initial observation matrix of the hidden Markov model
(HMM). The improved HMM improves the detection efficiency
compared with the unmodified hidden Markov model. Wang
et al. (2019) proposed an XSS attack detection method based
on a Bayesian network. First, the nodes in the network are
obtained, and 17 XSS attack characteristics are extracted. Then,
malicious IP and malicious domain name information are
used to improve the model. This method has achieved good
detection results for nonpersistent XSS attacks. Zhao et al.

(2018) established an improved SVM classifier to identify XSS
attacks and extracted typical five-dimensional features for model
optimization. This method improved the detection efficiency of
deformed XSS attacks.

Cross-site scripting detection based on
deep learning

In recent years, researchers have applied deep learning to
XSS attack detection. Luo et al. (2018, 2020) designed a URL
feature representation method by analysing the existing URL
attack detection technology and proposed a multisource fusion
method based on a deep learning model, which can improve
the detection accuracy and system stability of the entire XSS
detection system. Abaimov and Bianchi (2019) presented a
CODDLE model against web-based code injection attacks such
as XSS. Its main novelty consists of improving the convolutional
deep neural network’s effectiveness via a tailored preprocessing
stage that encodes XSS-related symbols into value pairs. The
results showed that this model can improve the detection
rate from a baseline of approximately 92% recall value, 99%
precision, and 95% accuracy.

Timely detection and interception of possible attacks is an
effective method for preventing XSS. Traditional vulnerability
detection methods, such as static detection and dynamic
detection, are unsatisfactory in the face of diverse attack loads
and require considerable manual participation. The integrity of
attack vectors will also have an important impact on the results.
The machine learning detection method requires artificially
defined features. Hence, it requires relatively high amounts
of prior knowledge, and the detection effect depends heavily
on the accuracy of the predefined features. The continuous
maturation of deep learning in various fields provides new
research directions for the XSS attack problem but also faces
many challenges. The first is the automatic feature definition and
extraction of deep learning, which ignores the characteristics
of the security field and cannot completely retain the valid
information in the URL. Second, deep learning models are
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Module structure. Panel (A) is the residual block and panel (B) is the modified residual block (MRB).

usually time consuming, and stacking models increase the
convergence time while improving the detection accuracy (Fan
et al., 2022). On the premise of considering the characteristics of
the security field, how to build a deep learning security detection
model and realize the rapid detection of malicious code in
URLs is a problem that needs to be considered in the current
network security field.

Our approach

This manuscript analyses the hidden XSS attack in the URL
from a new perspective. It treats the URL as a text language,
performs word segmentation on the URL script, and then

understands the intent of the entire URL from the perspective of
syntax and semantics to find the attack loaded in the URL. We
modify the residual block in ResNet (MRB) and combine the 1∗1
convolutional layer of NiN to replace the fully connected layer
to build a modified convolution neural network-based ResNet
block and NiN (MRBN-CNN).

Overall model

The overall structure of the MRBN-CNN is similar to that
of the traditional CNN and is shown in Figure 2. The inputs
of the entire model are normal website script data and XSS
malicious attack sample data, and the feature vector is obtained
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1*1 Convolution calculation.

after data preprocessing. In the deep learning model, five MRB
modules are combined in parallel. By stacking multiple different
convolutions, the adaptability of the whole deep learning
network to different features and the comprehensiveness of
feature extraction increase, but the depth of the whole neural
network does not increase. In the MRB stacking part, the
convolution operations in each MRB network structure use
different convolution kernels for feature extraction, and the
parameters of the pooling layer are different. Each MRB
structure in the feature extraction layer outputs multiple feature
maps, which are used to represent the effective features extracted
by the MRB from the feature vector. These feature maps are
concatenated and fed into a convolutional layer combination,
which consists of three convolutional layers, the last two of
which use a 1∗1 convolution kernel. As the output layer,

softmax normalizes the final decision result and estimates
the probability.

Core ideas

The model needs to learn the characteristics of normal
URL scripts and XSS attack scripts from the feature vector.
On the one hand, it needs to retain as much information of
the entire URL as possible, and on the other hand, it needs to
analyse the position and semantic relationship between words.
XSS attack scripts and normal URL scripts reflect whether the
grammatical and semantic relationship between various words
will produce malicious operations and the different positions of
various words or symbols in attack scripts and normal scripts.
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The entire MRB module is designed based on these two factors.
The f1 (x) pooling branch and the f2 (x) convolution branch in
the MRB module are used to analyse the grammatical semantic
relationship and positional relationship between words in the
URL. The location information and semantic information
hidden in the feature vector are extracted, and f3 (x) is used
to retain the frequency information and location information,
which will compensate for the loss of URL part information in
the pooling branch and convolution branch feature extraction.

ResNet is a well-known deep learning model (He et al.,
2016), and its core residual module is shown in Figure 3A.
The output of its module is x+ f (x), where f (x) is composed
of two convolutional layers. The entire module extracts the
feature information in the input x through the convolution layer
while retaining the information in the original feature vector
x to avoid the loss of important features in the convolution
operation during feature extraction. In this manuscript, the
residual module is improved (Figure 3B). The input of the
module is processed in three parts: f1 (x), f2 (x) and f3 (x). f1 (x)

and f2 (x) are used to learn the feature part of the input data, and
their purpose is to ensure that the entire training process more
easily fits the objective function. The difference from the ResNet
residual module is that there is an additional pooling branch
for feature extraction, while f3 (x) is a high-speed channel that

maintains the input and is directly connected to the output and
retains the integrity of the original input information to a certain
extent. The original input feature vector x is effectively extracted
from different angles, and three coefficients α, β, and χ are
added when the last three branches are merged so that the entire
network can learn the best combination of the three branches
(Figure 4). The modified residual block (MRB) structure can be
expressed as follows:

f1(x) = pool(x) (1)

f2(x) = Relu(Conv(x)) (2)

f3(x) = x (3)

F(x) = pool(αf1(x)+ βf2(x)+ χf3(x)) (4)

In the classic CNN classification model, the local features
obtained by the convolution operation are often connected
through a fully connected layer before the output results to
consider the global features of the data. However, because the
fully connected layer has many parameters, it will make the
model calculation more complicated. The convolution layer
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TABLE 1 HTML code table.

Character Name Entity
encoding

Decimal
encoding

Hexadecimal
encoding

‘’ Quotation
marks

&quot: &#34; &#x22;

& Logical
AND

&amp; &#38; &#x26;

> Greater than
sign

&gt; &#62; &#x3E;

< Less than
sign

&ıt; &#60; &#x3C;

TABLE 2 URL code table.

Character Description URL encoding

% Special characters %25

# Bookmark %23

& The separator between the specified
parameters in the URL

%26

space Code or use the symbol ‘+’ %20

? Separate the actual URL from the
parameters

%3F

= The value of the specified parameter
in the URL

%3D

/ Separate directories and
subdirectories

%2F

+ Space %2B

generally needs to set the height and width, and it will identify
the features in the convolution window. If the height and
width of the convolutional layer are exactly 1 (Lin et al., 2013),
then the calculation mode will be as shown in Figure 5. The
convolution kernel has three input channels and two output
channels;

(
N0,0

)
,
(
N0,1

)
,
(
N0,2

)
corresponds to the parameters

of the first channel of the output, and
(
N1,0

)
,
(
N1,1

)
,
(
N1,2

)
correspond to the parameters of the second channel of the
output. The output is multiplied by the purple part of the input
and the purple part of the convolution kernel one by one, as
shown in Formula 5.

(
M0,i,j

)
,
(
M1,i,j

)
,
(
M2,i,j

)
and other input

vectors on different channels are features in the MLP network,
and

(
N0,0

)
,
(
N0,1

)
,
(
N0,2

)
are weight parameters in the MLP

network. The features and weights are multiplied one by one,
which is almost the same as the operation of the fully connected
layer. Therefore, the work required for the fully connected
layer can be performed by 1∗1 convolution. The experiments

use a 1∗1 convolutional layer instead of fully connected layers.
The convolutional neural network has the characteristics of
parameter sharing, so the use of a 1∗1 convolutional layer can
reduce the parameters in the model under the condition of
ensuring the effect of the model, thereby reducing the model
complexity.

M0,i,j N0,0 +M1,i,j N0,1 +M2,i,j N0,2 (5)

Dataset preprocessing

Data preprocessing cannot only greatly affect the final
detection ability of a model but also determine the difficulty
of training a model. To improve the modeling quality, the
collected positive sample data and negative sample data need
to be preprocessed. Due to the particularity of XSS attacks, the
collected dataset is in the form of text. Hence, natural language
processing is used to process the data. The process is roughly
divided into three steps: data coding and normalization, word
segmentation and vectorization. All data preprocessing steps are
shown in Figure 6.

The purpose of data encoding and normalization is to
exclude noncritical information and minimize the impact
of nonimportant information on the algorithm model
construction. To ensure the safety and reliability of the
data, noncritical information regarding the protocol, domain
name, port, etc., in the URL request is excluded. Instead, only
the virtual directory, file name and parameters are retained as
valid information to train the model. XSS attacks are encoded
to evade detection, including URL encoding, HTML encoding
and JavaScript encoding. The HTML encoding includes
HTML entity encoding and HTML system encoding. HTML
entity encoding can distinguish itself from semantic markup.
This entity code begins with an “&” symbol and ends with
a semicolon. For example, to encode “<”, the HTML entity
encodes it as “&ıt”. HTML system encoding, starting with
the “&#” symbol and ending with a semicolon. Normally,
only HTML decimal and HTML hexadecimal are recognized.
For example, to encode “<”, HTML decimal encodes it as
“&#60” and HTML hex encodes it as “&#x3c”. Common
HTML encodings are shown in Table 1. The URL encoding
method is very simple, and attackers can easily complete XSS
attacks by using URL encoding. For example, angle brackets
“<”, URL-encoded as “%3C”. Table 2 shows the common

TABLE 3 JavaScript code table.

Different forms Function code

JavaScript octal <script>eval("\163\163\57\51\164\50\57\170\141\154\145\162");</script>

JavaScript hexadecimal coding <script>eval("\x73\x73\x2f\x29\x74\x28\x2f\x78\x61\x6c\x65\x72");</script>

Jsunicode coding <script>eval("\u0073\u0073\u002f\u0029\u0074\u0028\u002f\u0078\u0061\u006c\u0065\u0072");</script>
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URL-encoded characters in XSS attacks. There are many forms
of JavaScript coding, including JavaScript hexadecimal coding,
JavaScript octal coding and Jsunicode coding. For example,
“<” is encoded by JavaScript hex as “\x3c”, JavaScript octal as
“\074”, and Jsunicode as “\u003c”. JavaScript coding will not
be parsed in HTML tags in browsers, because Jsunicode can
be used for coding, but only function names can be coded.
The onerror event in Javascript coding is special. Onerror
event can capture JavaScript errors in web pages, so the
content in onerror event can be parsed by JavaScript. Several
JavaScript codes are shown in Table 3. According to these three
codes, the XSS attack adopts malicious deformation to avoid
detection, and direct feature extraction will lose the attack code
characteristics, which is not conducive to detection accuracy.
Thus, the corresponding decoding must be performed first.
After decoding, to reduce the number of word segmentations, it
is necessary to normalize numbers and hyperlinks; for example,
“0” is used to replace numbers, and “http://u” is used to replace
hyperlinks.

According to the characteristics of the XSS attack script,
we design the word segmentation principles that meet the
syntax and semantics requirements: single and double quotation
marks, http/https hyperlinks, end tag, start tag, attribute
name, and function body. These six word segmentation
principles are matched with their corresponding regular
expressions. The word segmentation rules are shown in
Table 4.

Vectorization uses the CBOW model in word2vec to convert
text into digital vectors that can be recognized by computers.
The converted word vectors cannot only represent words as
distributed word vectors but also capture the similarity between
words. To verify the effect of the trained word vector, t-SNE is
used to visualize the word vector (Figure 7).

Experiments and results

Dataset

The data of normal samples (negative samples) come
from the DMOZ database, and 75,428 pieces of standard
data are obtained after data preprocessing. The malicious
samples (positive samples) come from the XSSed database
and the tested payload (Payload) in the penetration test.
Additionally, 75,428 pieces of standard data are obtained
to ensure a balanced selection of samples (Zheng et al.,
2021; Cai et al., 2022). In the experiment, the training set
and the test set are randomly selected from the samples
at a ratio of 7:3. Our experiment was performed using a
notebook computer with a 3.20 GHz AMD Ryzen 7 5800H,
32 GB of RAM, NVIDIA GTX3070 of GPU, Ubuntu16.04
operating system. The Keras framework based on Tensorflow-
Gpu is used.

TABLE 4 Word segmentation rules.

Word segmentation rules Regular expression

Function body (?x)[\w\.]+?\

Attribute name \w+=

Start tag <\w+>

End tag </\w+>

http/https hyperlinks http://s+,https://s+

Single and double quotation marks ‘[ˆ’]+’,”[ˆ\”]+”

Metrics

We use four indicators of recall, precision, accuracy, and F1
as the evaluation criteria for the model performance results. The
formulas for the indicators are as follows:

Recall =
TP

TP + FN
(6)

Precision =
TP

TP + FP
(7)

Accuracy =
TP + TN

TP + FN + TN + FP
(8)

F1 =
2∗(Precision∗Recall)
Precision+ Recall

(9)

In these formulas, FN is the abbreviation for false negatives,
which means that malicious samples are identified as normal
samples, FP is the abbreviation for false positives, which means
that normal samples are identified as malicious samples, TN is
the abbreviation for true negatives, which means that normal
samples are identified as normal samples, TP is the abbreviation
for true positives, which means that malicious samples are
identified as malicious samples.

Model training

The effect of vector dimensions on model
performance

Model training needs to choose a suitable vector dimension
to make full use of the sample information. If the vector
dimension is too short, a large amount of effective information
will be lost, and the detection accuracy will be reduced. In
contrast, if the vector dimension is too long, the training time
will greatly increase, the accuracy cannot be improved, and the
real-time detection performance will be affected. To obtain a
suitable vector dimension, this manuscript compares the effects
of different vector dimensions on the accuracy and training
time, and the results are shown in Figure 8. The experimental
results show that the accuracy does not change significantly
when the dimension exceeds 100, but the training time increases
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FIGURE 7

Cross-site scripting (XSS) attack word vector.

almost linearly. Considering the accuracy rate and training time,
100 is selected as the vector dimension.

The effect of convolution kernel size on model
performance

To study the influence of the convolution kernel on
the MRBN model, this work uses different combinations
of convolution kernels to test the MRBN model under
the same conditions. The MRBN models all use different
convolution kernel combinations. The specific information of
the convolution kernel combinations of the seven groups of
experiments is shown in Table 5, and the relevant experimental
results are shown in Figure 9. When the convolution kernel
combination of the MRBN structure is Group-A, the three
evaluation indicators of accuracy, recall and precision are
all approximately 0.99. However, the convolution kernel only

extracts the feature vectors of a single word and does not
convolve the feature vectors of adjacent words. In other
words, the convolution operation cannot be used to extract
the semantic and grammatical features between adjacent words.
When the convolution kernel combination is modified to
Group-B, the values of accuracy and precision increase to
a certain extent, while recall decreases to a certain extent.
However, from the perspective of the three indicators, it is
still within the acceptable range, which indicates that after
the feature extraction of adjacent words, the hidden semantic
and grammatical relationships between adjacent words can be
learned, and as a result, the values of accuracy and precision will
increase. When the convolution kernel combination is modified
to Group-C, the recall value increases slightly, but the accuracy
and precision decrease significantly, which indicates that there
are more false positives, and more normal URLs are identified
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FIGURE 8

Training time and accuracy under different vector dimensions.

as malicious URLs by the model. When the convolution kernel
combination is modified to Group-D, it can be seen that the
values of the three evaluation indicators of accuracy, recall
and precision significantly improve based on the convolution
kernel combination to Group-C, and both accuracy and recall
reach the maximum values of their respective records. This
indicates that when the convolution kernel combination is
Group-D, the semantic and grammatical information between
the words of the URL can be extracted more accurately. In
contrast, when the convolution kernel combination is modified
to Group-E, recall decreases significantly, and accuracy and
precision also decrease to a certain extent. This indicates that
the omission rate of the whole model increases significantly,
and more malicious URLs are recognized as normal URLs
by the model. As we continue to modify the size of the
convolution kernel, from Group-F to Group-G, it can be seen
that the gap between the three evaluation indicators of accuracy,
recall and precision becomes increasingly obvious. Based on
the accuracy, recall and precision of the seven groups of
experiments, we adjusted the convolution kernel combination
in the MRBN neural network model according to Group-
D.

Model testing
To verify the effectiveness and advantages of the MRBN

model, we design comparative experiments involving machine
learning and deep learning.

Machine learning comparison experiments

Three classic machine learning algorithms, namely,
AdaBoost (Freund and Schapire, 1997), ADTree (Freund and

Mason, 1999), and SVM (Cortes and Vapnik, 1995), were
selected for comparative experiments. AdaBoost trains multiple
weak classifiers and then aggregates the weak classifiers into

TABLE 5 Details of convolution kernel groupings.

Experimental grouping Combination of convolution kernels

Group-A 3*3, 2*2, 5*5, 4*2, 2*1

Group-B 2*1, 3*5, 5*5, 3*1, 3*4

Group-C 2*1, 3*1, 3*4, 3*5, 5*1

Group-D 2*1, 5*5, 7*7, 4*4, 3*1

Group-E 2*1, 3*2, 5*5, 4*4, 3*5

Group-F 2*1, 5*5, 3*5, 4*4, 3*1

Group-G 2*1, 5*5, 3*5, 4*4, 3*2

Group-A Group-B Group-C Group-D Group-E Group-F Group-G
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FIGURE 9

The influence of the convolution kernel on the MRBN.
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TABLE 6 The result of comparing machine learning.

Models Precision (%) Accuracy (%) Recall (%) F1 (%)

SVM 95.71 91.35 86.59 90.92

ADTree 96.47 92.37 87.96 92.02

AdaBoost 98.48 93.41 88.18 93.05

MRBN-CNN 99.94 99.23 98.53 99.23

The best results are highlighted in bold.

TABLE 7 The result of comparing deep learning.

Models Precision (%) Accuracy (%) Recall (%) F1 (%)

GRU 98.89 92.68 86.32 92.18

CNN 98.56 94.53 90.38 94.29

LSTM 99.15 96.43 93.67 96.33

BiLSTM 98.47 96.18 93.81 96.09

BiLSTM-CNN 99.99 97.34 94.69 97.27

MRBN-CNN 99.94 99.23 98.53 99.23

The best results are highlighted in bold.

a strong classifier (Hastie et al., 2009). ADTree is a decision
tree learning algorithm based on boosting, and its classification
performance is better than other decision trees. Support vector
machine (SVM) is a linear classifier that performs binary
classification on data according to supervised learning. The
experimental results are shown in Table 6. The three machine
learning models have good results and reasonable accuracy
values, but the recall value is not very good, and the false
negative rate in the detection results is high. This indicates that
the three models have not truly learned the characteristics that
can identify malicious URLs and normal URLs. The accuracy

of the MRBN-CNN model reaches 99.23%, the precision
is 99.94%, the recall is 98.53%, and the F1 value is 99.23%.
Compared with the three machine learning algorithms, the
proposed model greatly improves the detection effect. This is
because it can learn relevant features in URLs very accurately
from three perspectives.

Deep learning comparison experiments

The GRU, CNN, LSTM, BiLSTM, and BiLSTM-CNN are
selected for comparison experiments with our model. The
experimental results are shown in Table 7 and Figure 10. It
can be seen that the accuracy and precision of the GRU model
are good, but the recall is poor, indicating that the system
shows a high false negative rate in the experiment. This means
that the system does not accurately learn the characteristics of
XSS attacks in URLs, resulting in identifying many URLs with
attack payloads as normal URL requests. The CNN, LSTM,
and BiLSTM models have better performance and achieve
better accuracy. These systems have been able to learn the
characteristics of XSS attacks in URLs to a certain extent. The
precision of the BiLSTM-CNN model is as high as 99.99%,
and its accuracy also reaches 97.34%, but the recall is slightly
worse, indicating that this model can better learn the relevant
features in the URL. The MRBN-CNN model performs better,
and the values of the three indicators are very close. It is a stable
system. It learns the characteristics of XSS attacks in URLs very
accurately. It cannot only detect malicious URLs but also ensure
fewer false positive and false negatives. Experiments show that
the improved method proposed in this work can accurately learn
the potential XSS attack features in URLs and can fit a very
suitable high-dimensional function to correctly classify URLs.
Compared with other works, it shows a certain superiority.
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The result of comparing deep learning.
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Because the deep learning model is usually time consuming,
the stacking model will increase the convergence time while
improving the detection accuracy (Zhou et al., 2022). Hence,
we compare the convergence time of the above deep learning
models, and the results are shown in Figure 10. It can be
seen that the CNN convergence time is relatively short, while
the convergence time of the other models gradually increases,
and the BiLSTM-CNN model has the longest convergence
time. In contrast, MRBN-CNN replaces the fully connected
layer by a 1∗1 convolution, the model parameters are greatly
reduced, the training difficulty is reduced, and its convergence
time is the least.

Conclusion

This manuscript proposes an MRBN-CNN model. Its
significance is as follows. First, by applying natural language
processing technology to URLs for attack detection, learning
the semantics and syntax in URLs and performing feature
representation can filter out irrelevant information. Second, in
the deep learning model design, combined with the traditional
ResNet module modification for the XSS attack scenario, the
MRB module was designed and proposed. It can obtain the
semantic and grammatical information of the feature vector
without losing the relevant position, frequency and other basic
information and can realize the accurate identification of the
attack with a low false-positive rate. Third, by replacing the fully
connected layer with a 1∗1 convolution, the model parameters
can be reduced, the training difficulty can be reduced, and the
phenomenon that too many parameters cause overfitting can be
avoided. This manuscript only uses the MRBN-CNN model to
detect XSS vulnerability attacks. In the future, we will study the
applicability of this model to various web vulnerability detection
and vulnerability mining, such as buffer overflow, SQL injection,
and cross-site request forgery.
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