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a b s t r a c t 

Cytokine storm and inflammatory cytokine release syndrome are often found to be associated with severe in- 

stances of the 2019 coronavirus disease (COVID-19). However, factors that contribute to the development of the 

COVID-19-associated cytokine storm and intensify the hyperinflammatory response are not well known. Here, 

we integratively analyzed scRNAseq data of 37,607 immune cells of eight different cell types from four studies 

involving COVID-19 patients in either moderate or severe conditions. Our analysis showed that pyroptosis —a 

lytic, inflammatory type of programmed cell death —may play a critical role in the SARS-CoV-2-induced cytokine 

storm. The expression of the key markers of pyroptosis, such as pro-inflammatory cytokine genes IL1B and IL18 , 

is significantly higher in moderate and severe COVID-19 patients than in healthy controls. The pattern is more 

pronounced in macrophages and neutrophils than in adaptive immune cells such as T cells and B cells. Fur- 

thermore, the lack of interferon-gamma (IFN- 𝛾) and overexpression of ninjurin 1 ( NINJ1 ) in macrophages may 

exacerbate the systemic inflammation, as shown in severe COVID-19 patients. Finally, we developed a scoring 

metric to quantitatively assess single cell’s pyroptotic state and demonstrated the use of this pyroptosis signature 

score to scRNAseq data. Taken together, our study underscores the importance of the pyroptosis pathway and 

highlights its clinical relevance, suggesting that pyroptosis is a cellular process that can be a potential target for 

the treatment of COVID-19 associated diseases. 
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Coronavirus disease 2019 (COVID-19) is an unprecedented disease

aused by the severe acute respiratory syndrome coronavirus 2 (SARS-

oV-2). COVID-19 usually causes mild cold-like symptoms, but in cer-

ain cases, serious illness with deadly consequences is developed. Cy-

okine storm can develop at a systemic level in COVID-19 patients, espe-

ially in severe cases, according to clinical research. Cytokine blockade

uch as glucocorticoids can improve the clinical outcome of most severe

OVID-19 patients who are at risk of respiratory collapse [1] . However,

he selection of patients and the timing of the treatment are critical [2] .

hus, a better understanding of the initiation of the systemic cytokine

torm is essential to determine the disease state and choose effective

reatments. 

Pyroptosis, a regulated form of cell death induced by pathogens, is

nown to intensify the cytokine storm in severe COVID-19 [ 3 , 4 ]. The

ecretion of cytokines during the pyroptosis process is triggered by in-

ammasome assembly and activation. The inflammasome is a multipro-

ein complex recruited during the innate immune response. The inflam-
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asome comprises of three basic protein units: (1) a sensor molecule

uch as a nucleotide oligomerization domain (NOD)-like receptor (NLR)

r an absent in melanoma 2 (AIM2)-like receptor (ALR), (2) the adap-

or PYCARD, often referred to as apoptosis-associated speck-like pro-

ein containing a caspase recruitment domain, and (3) pro-caspase 1,

he cysteine protease that can initiate pyroptosis. The activation of the

nflammasome leads to cell membrane damage and rapid release of pro-

nflammatory cytokines, which induce the formation of the cytokine

torm. 

Several lines of evidence have been accumulated to support the ac-

ivation of inflammasome and pyroptosis, and their critical roles, in se-

ere COVID-19 cases [ 5 , 6 ]. Pyroptosis is found to be associated with

aspase-1 activation, GSDMD cleavage, and enhanced pro-inflammatory

ytokine levels in primary monocytes and macrophages of COVID-19 pa-

ients [ 1 , 6 ]. Other studies also reported elevated IL1B levels, which is

n indicator of pyroptosis, in COVID-19 cases [7] . However, it is un-

lear whether pyroptosis occurs and contributes to the cytokine storm

n other cell types, such as B cells, CD4 + T cells, dendritic cells, and

eutrophils. It is also unclear which cell type contributes most to the in-

ammatory niche. To address these questions, we integrated four pub-
l 2022 
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icly available single-cell RNA-seq (scRNAseq) datasets, which contain

 total of 37,607 cells spanning eight different cell types from healthy

ndividuals and moderate, severe cases. Our analysis revealed pyropto-

is marker gene expression increases in moderate and severe COVID-19

atients, including CASP1, CASP4, TLR2, IL18, IL1B and GSDMD . By

ooking into different pyroptosis marker genes’ expression patterns in

ifferent cell types and disease conditions, we found that not all the cell

ypes play equal roles in the initiation of pyroptosis. Phagocytes, espe-

ially macrophages and neutrophils, play a more important role in the

yroptosis-related cytokine storm in comparison to lymphocytes such

s B cells and natural killer (NK) cells. Results suggested that the in-

ate immune system is a major player in patients’ responses to the virus

nfection. In addition, we found that a lack of IFN- 𝛾 in macrophages is

ccompanied by an excessive expression level of NINJ1 , the encoder of a

embrane damage protein, from severe patients. Our findings indicated

hat pyroptosis is closely related to the clinical outcome of COVID-19,

nd the cellular process may be exploited as a target for therapeutic use.

ethods 

atasets 

Data used in the analysis of this study was gathered from four pre-

ious studies [8–11] and comprised four datasets, namely the periph-

ral blood mononuclear cell dataset (PBMC), the bronchoalveolar lavage

uid dataset 1 (BALF1), the bronchoalveolar lavage fluid dataset 2

BALF2), and the control dataset (Healthy lung) (Supplementary Fig.

1). The PBMC dataset [8] contains scRNAseq data from six healthy

onors and eight COVID-19 patients, three of whom developed acute

espiratory distress syndrome. The BALF1 dataset from the COVID-19

ell Atlas [10] contains scRNAseq data of three patients with moderate

OVID-19 and three patients with severe/critical infection. The BALF2

ataset from [11] contains scRNAseq data of two patients with moder-

te and 20 with severe COVID-19. The Healthy lung dataset [9] contains

cRNAseq data of five healthy donors. The curation and analysis of the

atasets are depicted in Fig. 1 . We combined the datasets and divided

he samples into three categories: healthy, moderate, and severe. Pa-

ients who did not require mechanical ventilation or were discharged

live were designated as moderate patients. Patients that required me-

hanical ventilation, intubation or died were designated as severe pa-

ients. The datasets, which included samples from different organs and

issues, were merged and integrated to form the described categories.

he cell type makeup of the COVID-19 patient groups and healthy con-

rols was visualized using uniform manifold approximation and projec-

ion (UMAP) [12] . The final combined dataset contains 37,607 single

ells from eight different cell types. 

ingle-cell data analysis 

The data analysis was carried out using Seurat (v4.0.2) [13] in R soft-

are environment (v4.1.0). Individual expression matrices were used

o construct Seurat objects. The number of unique molecular identifiers

UMIs) in each cell was adjusted using the “NormalizeData ” function,

hich first divides UMIs by the total counts for that cell, then multiplied

y the default scale factor of 10,000, and then natural log-transformed

sing log1p. The “ScaleData ” function was used to scale the normal-

zed data such that the mean expression across cells was 0 and the vari-

nce 1. To group comparable cells from each dataset, principal compo-

ent analysis [14] was employed by the “RunPCA ” function in Seurat

o reduce the dimensionality of the data. We performed UMAP using

he “RunUMAP ” function in Seurat to display high-dimensional cellular

ata. The “RunHarmony ” function in Harmony (v0.1.0) [15] was used

o remove the batch effect across the four datasets. The clustering was

omputed using the smart local moving (SLM) algorithm [16] in Seurat’s

FindClusters ” function. 
2 
ell type annotation 

We used the cell type annotation of each dataset from their original

apers. We also verified each cell type annotation for all datasets by

nding differentially expressed (DE) genes for each cluster using Seu-

at’s implementation of the MAST [17] test and comparing those mark-

rs to known cell-type-specific genes from previous datasets [18–22] .

he marker gene expressions are shown with dot plots in Supplemen-

ary Fig. S2. 

ene set enrichment analysis 

The fast gene set enrichment analysis (fgsea) package (v1.18.0)

23] was used to perform the gene set enrichment analysis (GSEA)

ith the pre-ranked DE genes. To obtain the ranked gene list, DE genes

ere sorted according to the signed fold change. The function “fgsea-

ultilevel ” in the fgsea package was then used with default settings to

uery the Bioplanet database [24] and identify enriched signaling path-

ays. Permutation test with Benjamini–Hochberg multiple test correc-

ion [25] was used to determine the statistical significance of enriched

athways. 

ingle-cell pyroptosis signature scoring 

We calculated pyroptosis signature scores for single cells based on

he expression of eight pyroptosis marker genes: CASP1, CASP4, IL18,

L1B, NINJ1, GSDMD, TLR2 , and NLRC5 , in each cell. The marker genes

ere selected according to their roles during the pyroptosis process. If

 given cell shows a high level of expression of the eight marker genes

ollectively, then the pyroptosis signature score is high. We used the

ifference between the total expression of the eight marker genes and

he total expression of eight selected random genes as a scoring metric

n order to quantify the collective expression level, which we hereafter

all single-cell pyroptosis signature scoring. 

Specifically, given a gene expression matrix of dimension 𝑔 × 𝑐,

here 𝑔 is the number of genes and 𝑐 the number of cells, we first cal-

ulated the mean μ and standard deviation 𝑠𝑑 for each gene and then

alculated the squared coefficients of variation: 𝐶 𝑉 2 = 𝑠𝑑∕ 𝜇2 . Next, we

andomly sampled genes with similar μ and 𝐶 𝑉 2 to the selected pyrop-

osis markers, and calculated the proptosis score for a cell k using the

ormula: 𝑆𝑐𝑜𝑟 𝑒 𝑘 = 

𝑛 ∑

𝑖 =1 
𝑀 𝑘,𝑖 − 

𝑛 ∑

𝑖 =1 
𝑅 𝑘,𝑖 , where 𝑀 𝑘,𝑖 is the expression level

f the i th gene in the pyroptosis pathway and 𝑅 𝑘,𝑖 the expression level

f the corresponding, pre-selected random gene. 

The corresponding random gene for the i th marker gene was se-

ected from a pool of random genes with similar natural log-transformed

and 𝐶 𝑉 2 . For a random gene to be in the pool, its μ and 𝐶 𝑉 2 need

o be in the ranges defined as follows: ( 𝑙𝑜𝑔( 𝜇𝑀 𝑖 
) − 0 . 02 ) < 𝑙𝑜𝑔( 𝜇𝑅 𝑖 ) <

 𝑙𝑜𝑔( 𝜇𝑀 𝑖 
) + 0 . 02 ) and ( 𝑙𝑜𝑔( 𝐶𝑉 2 

𝑀 𝑖 
) − 1 . 0 ) < 𝑙𝑜𝑔( 𝐶𝑉 2 

𝑅 𝑖 
) < ( 𝑙𝑜𝑔( 𝐶𝑉 2 

𝑀 𝑖 
) + 1 . 0 ) ,

here 𝜇𝑀 𝑖 
and 𝜇𝑅 𝑖 are expression means, and 𝐶𝑉 2 

𝑀 𝑖 
and 𝐶𝑉 2 

𝑅 𝑖 
are

quared coefficients of variation of the i th marker gene and random

ene, respectively. The range-defining cutoffs (i.e., 0.02 and 1.0 for log-

ransformed μ and 𝐶 𝑉 2 , respectively) were selected so that we had ran-

om gene pools of 50 up to 150 genes for different marker genes. We

ampled one random gene for each pyroptosis marker out of its cor-

esponding random gene pool. We used all the eight pyroptosis marker

enes and their corresponding random genes to calculate one pyroptosis

core for each cell. 

omparison of pyroptosis scores between cell groups 

The pyroptosis scores were compared between phagocytes and lym-

hocytes, and between cells of different patient groups, to character-

ze the pyroptotic states of cell groups. The comparisons were made

sing two-sample t -tests. The reliability of the comparison results was

urther assessed using permutation tests when the numbers of cells in
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Fig. 1. Multi-tissue and multi-stage scRNAseq data integration of COVID-19 patients and healthy controls. The PBMC dataset was collected from six healthy 

donors and eight patients separated into moderate and severe COVID-19 conditions, BALF1 and BALF2 from moderate and severe conditions, and the healthy lung 

dataset from healthy donors. cDC, dendritic cells. A. Overview of the cell types in the integrated single-cell transcriptomes of 37,607 cells derived from COVID-19 

patients and healthy controls. Cells are colored by the cell type. B. The cell types in the healthy lung group, PBMC dataset, BALF dataset, and BALF2 dataset. C . 

The COVID-19 disease conditions in the integrated and D. Separate datasets. Cells are colored according to their COVID-19 condition. The orange color stands for 

the severe condition where the patients received mechanical ventilation or died from the SARS-CoV-2. The purple color stands for patients diagnosed as COVID- 

19-positive but only showed mild symptoms. The green color stands for the healthy group. E. The natural log-normalized expression levels of the eight pyroptosis 

marker genes across cell types, i.e., genes for two caspases: CASP1 and CASP4 , two inflammatory cytokines: IL1B and IL18 , two membrane damage proteins: NINJ1 

and GSDMD , and two pattern recognition receptors: TLR2 and NLRC5 . 
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wo groups differ substantially. Permutation tests were performed as

ollows: 1000 cells were randomly sampled from each group with re-

lacement. The pyroptosis score was then calculated for every sampled

ell in each group. Two-sample t -tests were performed to compare the

ean of pyroptosis scores between different groups. A positive t -statistic

ndicated a higher mean pyroptosis score in the first group than the sec-

nd. For each paired comparison between two groups, the procedure

as repeated 10,000 times to evaluate the significant level of the differ-

nce. 

ata source and code availability 

The PBMC dataset was obtained from the Gene Expression Om-

ibus (GEO) database using accession GSE150728. The BALF dataset

as downloaded using the link https://covid19.cog.sanger.ac.uk/

ubmissions/release2/vento_pbmc_processed.h5ad . The BALF2 dataset

as downloaded using the link http://covid19.lambrechtslab.org .

he Healthy lung dataset was downloaded using the link

ttps://cellgeni.cog.sanger.ac.uk/tissue-stability/lung.cellxgene.h5ad . 

he source code for calculating the proptosis score is provided

or download at https://github.com/qianxu05172019/Pyroptosis _

OVID19 . 
3 
esults 

ncreased expression of pyroptosis marker genes in moderate and severe 

OVID-19 patients 

Monocytes infected by SARS-CoV-2 undergo pyroptosis and release

ro-inflammatory cytokines, implying that monocytes may be the ma-

or driver of cytokine storm [6] . However, it is less clear whether other

ell types such as neutrophils, macrophages, and NK cells in the lung

nd peripheral blood also undergo pyroptosis, thus propagating sys-

emic cytokine storm. To address this question, we collected 37,607 cells

panning eight cell types from four publicly available datasets and in-

egrated them into a single dataset ( Fig. 1 A). The cell types included

our lymphocytes (B cells, CD4 + T cells, CD8 + T cells, and NK cells),

hich are key components of the adaptive immune system, and four

hagocytes (dendritic cells, macrophages, monocytes, and neutrophils),

hich are key components of the innate immune system. Each dataset

ontained a slightly different cell type composition ( Fig. 1 B). For exam-

le, neutrophil infiltration in the three datasets which contain COVID-19

atients was higher than the Healthy lung dataset, which is consistent

ith a previous study [26] . The integrated dataset contained cells from

ealthy, moderate and severe COVID-19 patients ( Fig. 1 C). The moder-

te group consisted of patients who were tested positive for COVID-19

ut did not require ventilation or were fully recovered after treatment.

https://covid19.cog.sanger.ac.uk/submissions/release2/vento_pbmc_processed.h5ad
http://covid19.lambrechtslab.org
https://cellgeni.cog.sanger.ac.uk/tissue-stability/lung.cellxgene.h5ad
https://github.com/qianxu05172019/Pyroptosis_COVID19
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he severe group consisted of patients who required ventilation or even-

ually died. Fig. 1 D shows three group conditions for each dataset. 

The eight pyroptosis marker genes showed an overall elevated ex-

ression level in moderate and severe COVID-19 patients compared with

he healthy group ( Fig. 1 E). The pyroptosis process consists of the pro-

ein products encoded by those maker genes. Specifically, two caspases,

ASP1 and CASP4, are the initiators of pyroptosis. Gasdermin D (GS-

MD) is a pore-forming protein and a well-known trigger of pyroptosis.

INJ1 is a membrane protein essential for pyroptosis-related plasma

embrane rupture [27] . The inflammatory cytokine IL1B (IL-1 𝛽), a key

ediator of the inflammatory response, is processed by CASP1 and re-

eased during pyroptosis. IL1B also exacerbates damage during chronic

iseases and acute tissue injuries [28] . IL18 is processed and released

fter inflammasome activation. Additionally, IL18 is a strong indicator

f pyroptosis and is used as a predictive biomarker for clinical outcomes

f COVID-19 [6] . Our analysis found an overall elevated expression of

yroptosis-associated marker genes, more specifically higher in the se-

ere group of cells. 

LR2 and NLRC5 may be involved in inflammasome activation in 

OVID-19 

Inflammasome activation occurs when molecules from pathogens or

eleased by damaged cells bind to pattern recognition receptors (PRRs),

uch as NOD-like receptors (NLRs) and toll-like receptors (TLRs) [29] .

ubsequently, inflammasome activation induces the production of pro-

L-1 and pro-IL-18 in an NF- 𝛽-dependent way [29] . In fact, inflamma-

omes are categorized and named based on the sensor protein that ini-

iates their activation [30] . NLRs such as NLRP1b, NLRC4, and NLRP3

ave well-established roles during inflammasome assembly and pyrop-

osis initiation [31] . Other NLRs, such as NLRP6, NLRP7, and NLRP12,

re known to be involved in the inflammasome signaling pathway. 

Additionally, NLRP3 inflammasome is known to be activated in re-

ponse to SARS-CoV-2 infection [3] . However, it is unclear whether

ther PRRs are also involved in SARS-CoV-2 inflammasome activation.

o address this question, we systematically examined all genes of 23

LRs and 10 TLRs in the human genome (Supplementary Fig. S3). The

xamination identified another member of the NLR family, NLRC5, that

ay participate in the activation of SARS-CoV-2 associated inflamma-

ome. NLRC5 interacts with NLRP3 to cooperatively activate the inflam-

asome [32] . However, NLRC5 is not well studied for inflammasome

unction in COVID-19 associated diseases. In our study, NLRC5 showed

 significantly higher expression level in the severe condition group than

ealthy and moderate groups, especially in macrophages ( P < 0.0001,

 -test) (Supplementary Fig. S4). Collectively, our analysis suggested for

he first time that NLRC5 may be involved in the COVID-19 associated

nflammasome activation. 

We identified TLR2 as another PRR gene that may participate in py-

optosis activation during SARS-CoV-2 infection. In our analysis, TLR2

howed a higher expression in the macrophages, monocytes, and neu-

rophils of the severe COVID-19 group than in other cell types and

he healthy and moderate groups (Supplementary Fig. S3). TLR stim-

lation can induce the production of pro-inflammatory cytokines and

hemokines, such as IL1B and IL6 , in the lung macrophages [33] . In ad-

ition, TLR2 is reported to be required for inflammasome activation in

nfection by cytosolic bacterial pathogens [27] and in asthma [34] . In

ummary, our analysis indicated that TLR2 might play a critical role in

he pyroptosis activation during SARS-CoV-2 infection, especially in the

riggering cells such as macrophages and neutrophils. 

yroptotic macrophages stimulate the SARS-CoV-2-associated cytokine 

torm 

Macrophages showed a higher expression of pyroptosis marker genes

mong all the cells investigated ( Fig. 1 E, Supplementary Figs. S4, S5), in-

piring us to examine macrophages from different COVID-19 conditions.
4 
e randomly sampled macrophages and made the numbers of cells from

he three conditions more comparable ( Fig. 2 A). We performed cluster-

ng analysis and DE analysis in order to compare gene expression be-

ween cells of different condition groups. 

Macrophages were clustered into five different groups ( Fig. 2 B). In

luster #3, macrophages (123 cells) from the severe condition showed

igh expression of three pyroptosis genes ( CASP1, IL1B , and NINJ1 )

 Fig. 2 C, left). IL1B is a downstream pro-inflammatory cytokine that

s released after CASP1 activation [35] . NINJ1 is a gene encoding a

embrane damage protein ( Fig. 2 C, left). Moreover, NINJ1 is a critical

layer which mediates plasma membrane rupture during lytic cell death

27] . Thus, macrophages in cluster #3 are likely to induce pyroptosis-

ssociated cell rupture. 

Then, DE genes were identified for each cluster ( Fig. 2 D). The col-

ective function of DE genes from cluster #3 was studied using GSEA

nalysis, revealing significantly enriched pathways ( P < 0.05, permu-

ation test). In brief, the enriched pathways include NF- 𝜅B signaling

 Fig. 2 E, left), NOD signaling, IL-1R signal transduction ( Fig. 2 E, mid-

le), and MAPK signaling pathways. These pathways play essential roles

n pyroptosis. For example, the NF- 𝜅B signaling pathway is a common

ignaling event that follows the PRR activation and also is responsible

or transcriptional induction of the pro-inflammatory cytokines [36] . IL-

R signaling pathway can initiate caspase-1 cleavage, pyroptosis, and

ecretion of pre-synthesized IL-18 [37] . Our analysis suggested that the

acrophages from the severe group, compared with the moderate and

ealthy groups, showed higher pyroptosis activity, which is more likely

o lead to cell membrane rupture. These features of macrophages in the

evere condition may propagate systemic inflammation and augment

mmune cell depletion. 

ack of interferons in macrophages may intensify the COVID-19 severity 

We then focused on macrophages from the moderate group and per-

ormed the DE analysis between cells in cluster #1 (443 cells) and cells

n other clusters. GSEA analysis for genes differentially expressed in clus-

er #1 revealed several pathways, including IFN- 𝛼/ 𝛽 and IFN- 𝛾 signaling

athways ( Fig. 2 E, right). IFN- 𝛼/ 𝛽 and IFN- 𝛾 are structurally unrelated

ype I and type II interferons (IFNs), respectively, grouped according

o receptor specificity and sequence homology. IFNs may be produced

nd released by host cells in response to viral infection [38] . IFN- 𝛼/ 𝛽

an initiate cell-mediated immune responses at the early infection stage

39] . More importantly, IFNs also have anti-inflammation effects as evi-

enced by inhibiting the transcription of pro-IL-1 𝛽 as well as IL-1 𝛽 mat-

ration [40] . IFN- 𝛾 is an immunomodulator that can be effective while

ot inducing pro-inflammatory effects [41–43] . 

Unlike the moderate group, DE genes of the macrophages from the

evere group were not enriched in the same IFN pathways. Moreover, on

he monocyte-derived macrophages subtype, there was a downregula-

ion of both IFN- 𝛼/ 𝛽 and IFN- 𝛾 signaling pathways in the severe COVID-

9 patients (Supplementary Fig. S6). Monocyte-derived macrophages

howed increased pyroptosis signatures compared with tissue-resident

lveolar macrophages (Supplementary Fig. S5). Thus, our analysis sug-

ested that IFNs in the macrophages from the moderate group might

elp to reduce tissue damage in the lung. On the other hand, the lack of

FNs in the macrophages of severe COVID-19 patients, specifically the

ack of IFN- 𝛾, might be a factor that intensifies the disease by causing

ncontrolled inflammation. 

ingle-cell pyroptosis signature scoring 

We found a positive association between the level of pyroptosis and

he symptomatic severeness of patients, thus suggesting the pyroptosis

s clinically relevant. Therefore, a scoring system based on pyroptosis

as proposed to indicate the developmental stage of COVID-19. We de-

eloped such a scoring system using single-cell pyroptosis signatures in

rder to evaluate the level of pyroptosis. We selected the same eight
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Fig. 2. Analysis of macrophages for different conditions of COVID-19 patients. A. The clusters of macrophages are colored according to the COVID-19 condition. 

B. The macrophages are clustered into five groups. For example, cluster #0 mainly consists of cells from the healthy condition, clusters #2 and #3 of cells from the 

severe condition, and cluster #1 of cells from the moderate condition. C. The joint density of DE genes in macrophages from three COVID-19 conditions (healthy 

group on the right, moderate group in the middle, and severe group on the left). D. Dot plot showing the expression level of genes in each cluster. E. GSEA analysis 

of DE genes for cluster #3 (left and middle) and cluster #1 (right). 

p  

o  

u  

t  

w  

T  

i  

t  

e  

m  

t  

a  

a

 

C  

s  

v  

t  

m  

a  

b  

c  

w  

(  

a  

t  

i  

a  

a  

c  

i  

r

D

 

s  

T  

i  

r  

i  

p  

e  

t  

s  

f  

a  

fl  

c  

t  

c  

n  

c  

r  

d  

w  

w

e

 

s  

t  

t  

H  

a  

s  

5 
yroptosis markers as in Fig. 1 , which are associated with the severity

f COVID-19. The expression levels of these eight marker genes were

sed to evaluate the progress of pyroptosis in specific single cells. De-

ails for scoring metric calculation are presented in Methods . Briefly,

e first calculated the sum of all pyroptosis marker genes’ expressions.

hen, we randomly subsampled genes with similar mean and variation

n gene expression level across cells to the marker genes, regardless of

heir biological functions. Random genes’ expression levels were consid-

red as the baselines and were compared with the expression levels of

arker genes in each cell. The comparison is computed for each cell as

he difference between the total expression of pyroptosis marker genes

nd corresponding random genes (see Methods ). This difference is used

s a metric to evaluate the pyroptosis state of certain single cells. 

Each cell type’s pyroptosis score is computed for cells in different

OVID-19 conditions using our pyroptosis scoring metric. We found a

ignificantly greater average pyroptosis score in phagocytes of the se-

ere COVID-19 group than the healthy group ( P < 0.0001, permutation

est), while no difference was observed in lymphocytes ( P = 0.16, per-

utation test). The moderate and severe COVID-19 groups had higher

verage pyroptosis scores than the healthy control group. This is true for

oth phagocytes and lymphocytes ( Fig. 3 A) but more evident for phago-

ytes than lymphocytes. The more pronounced pattern for phagocytes

as mainly due to the contribution of neutrophils and macrophages

 Fig. 3 B). For lymphocytes, merely CD8 + T cells showed slightly higher

verage pyroptosis scores in the moderate and severe COVID-19 groups

han the healthy control group ( Fig. 3 C). We changed the box plot group-

ng to further illustrate the positive correlation between pyroptosis score

nd COVID-19 severeness in phagocytes ( Fig. 3 D). Taken together, our

nalysis revealed the central role of myeloid-lineage phagocytes, espe-

ially the macrophages and neutrophils, in COVID-19 associated hyper-

nflammation, suggesting the innate immune system has a more critical

ole than the adaptive immune system in the COVID-19 pathogenesis. 
iscussion 

COVID-19 caused over 4.5 million deaths worldwide and cast a

hadow across the global industries and economy in the 21st century.

he most life-threatening complication in severe COVID-19 patients

s the cytokine storm, accompanied by other symptoms such as acute

espiratory distress syndrome and subsequent lung fibrosis. Accord-

ng to current data, seriously sick individuals have a higher level of

ro-inflammatory cytokines, such as IL-1B, than those who are mod-

rately ill [44] . In addition, lymphopenia is another common charac-

eristic of severe COVID-19 [31] that often indicates a poor progno-

is [45] . Our study showed that pyroptosis —an intensely inflammatory

orm of programmed cell death in which pro-inflammatory cytokines

re released —might be the link between lymphopenia and hyperin-

ammation in the severe COVID-19, which constitute a pathogenic cy-

le. In this cycle, pyroptosis causes lymphocyte death and inflamma-

ory cytokines release. At the same time, the release of the excessive

ytokines attracts more inflammatory cells such as macrophages and

eutrophils. The cytokines release and the gathering of inflammatory

ells can then propagate inflammation and lymphopenia. In fact, py-

optosis has been considered a culprit behind more than 95% of the

eath of lymphoid CD4 + T cells in HIV-infected patients [46] . Like-

ise, our results highlighted the importance of the pyroptosis path-

ay in COVID-19, as evidenced by increased pyroptosis marker gene 

xpression. 

This study found an unbalanced activation and inhibition of pyropto-

is among different immune cells. Notably, macrophages may intensify

he uncontrolled tissue response. Macrophages are reported to initiate

he hyperinflammation and cytokine storm in COVID-19 patients [31] .

owever, it is unclear what causes patients to show diverse macrophage

ctivation stages and disease severity. We found macrophages from the

evere group show an increment of pyroptosis signs and plasma mem-
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Fig. 3. Comparison of single-cell pyroptosis scores of different cell types and disease conditions. A. Box plots showing single-cell pyroptosis score comparison 

between the two types of white blood cells, namely phagocytes and lymphocytes. In the moderate and severe groups, phagocytes (dendritic cells, monocytes, 

neutrophils, and macrophages) have higher pyroptosis scores than those in the healthy group. In contrast, lymphocytes (B cells, NK, CD8 + T - cells, and CD4 + T - 
cells) in moderate, severe, and healthy groups have comparatively similar scores. B. Box plots showing single-cell pyroptosis score for phagocytes. Neutrophils and 

macrophages show an increased level of score across the COVID-19 disease conditions. H, healthy group. M, moderate group. S, Severe group. C. Single-cell pyroptosis 

score for lymphocytes, also colored as in B . CD8 + T cells show more considerable score difference among different COVID-19 conditions when compared with other 

lymphocytes, such as B cells. D. Single-cell pyroptosis score comparison among three COVID-19 conditions. The cells are colored by being either lymphocytes or 

phagocytes. 
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[  
rane rupture over the healthy and moderate groups. The major dif-

erence between severe and moderate COVID-19 patients is the lack of

nterferons in the macrophages of severe COVID-19 patients. 

Hence, we developed a single-cell pyroptosis scoring metric in order

o evaluate each cell type’s pyroptosis state. The scoring metric sup-

orts the elevated pyroptosis shown in COVID-19 patients with severe

nd moderate symptoms. Pyroptosis may propagate the uncontrolled re-

ease of pro-inflammatory cytokines and the subsequent lymphopenia.

dditionally, we showed that innate immune cells such as macrophages,

onocytes, and neutrophils have higher pyroptosis scores. Thus, these

nnate immune cells should be considered as primary therapeutic tar-

ets. Indeed, a potential usage for our scoring metric is to predict

he clinical outcome of COVID-19 patients having single-cell data 

vailable. 

Our study is limited due to the lack of protein-level confirmation of

he pyroptosis state. Future studies may focus on evaluating pyropto-

is signatures at the protein level, including caspase activation and GS-

MD cleavage. Nevertheless, our study provided single-cell transcrip-

omic evidence for overactivated pyroptosis in severe COVID-19 pa-

ients. The pyroptosis-associated pathway may be a therapeutic tar-

et to alleviate the cytokine storm, especially in severe COVID-19 

atients. 
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