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Following infection with Mycobacterium tuberculosis, the causative agent of tuberculosis
(TB), most human hosts are able to contain the infection and avoid progression to active
TB disease through expression of a balanced, homeostatic immune response.
Proinflammatory mechanisms aiming to kill, slow and sequester the pathogen are key
to a successful host response. However, an excessive or inappropriate pro-inflammatory
response may lead to granuloma enlargement and tissue damage, which may prolong the
TB treatment duration and permanently diminish the lung function of TB survivors. The
host also expresses certain anti-inflammatory mediators which may play either beneficial
or detrimental roles depending on the timing of their deployment. The balance between
the timing and expression levels of pro- and anti-inflammatory responses plays an
important role in the fate of infection. Interestingly, M. tuberculosis appears to
manipulate both sides of the human immune response to remodel the host
environment for its own benefit. Consequently, therapies which modulate either end of
this spectrum of immune responses at the appropriate time may have the potential to
improve the treatment of TB or to reduce the formation of permanent lung damage after
microbiological cure. Here, we highlight host-directed TB therapies targeting pro- or anti-
inflammatory processes that have been evaluated in pre-clinical models. The repurposing
of already available drugs known to modulate these responses may improve the future of
TB therapy.

Keywords: tuberculosis, PARP inhibition (PARPi), MMPs (metalloproteinases), immunotherapy, diphtheria fusion
protein toxin, MDSCs, host-directed therapies
INTRODUCTION

Tuberculosis (TB) is a devastating communicable disease caused by Mycobacterium tuberculosis
(M.tb) that is responsible for approximately 10 million infections and 1.4 million human deaths
every year (1). Global TB control is complicated by long treatment durations and emerging drug
resistance (1). Interestingly, most people infected withM.tb develop lifelong latent TB without ever
experiencing signs and symptoms of disease. Successful containment is the result of a multifaceted
immune response that restricts bacterial expansion but may fail to completely eliminate the
pathogen (2). When sterilization is not achieved, the host may nevertheless successfully contain
org April 2021 | Volume 12 | Article 6609161
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the infection by forming granulomas. However, in individuals
who progress to active TB, granulomatous containment breaks
down, resulting in lesion expansion, necrosis and liquefaction
accompanied by bacterial proliferation and lung damage (2).
This granulomatous inflammation during active TB may
permanently diminish lung function even after completion of
TB therapy (3).

The host utilizes both anti- and pro-inflammatory mechanisms
in an effort to contain the infection: during latentM.tb infection, the
immune response is successfully balancedbut during active disease,
this homeostatic balance is lost and disease progression occurs.
Anti-inflammatory responses, mediated by regulatory T cells
(Tregs), myeloid-derived suppressor cells (MDSCs), M2-
polarized macrophages and cytokines such as interleukin (IL)-10,
are observed during active TB andmay antagonize the bactericidal
effects of the immune system (4). Despite the presence of these
immuno-tolerizing cells, host pro-inflammatory responses during
active TB are often inappropriately expressed at high levels, either
spatially or temporally, resulting in lung damage. Consequently,
host-directed therapies (HDTs) that modify these non-productive
immunologic responses may offer potential benefit as adjunctive
agents alongside antimicrobial TB therapy (5). In this mini-review,
we highlight FDA-approved drugs as well as select agents in
development that have immunomodulatory activity and are
under study as HDTs for TB in pre-clinical models and/or
human clinical trials.
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IMPROVING TB THERAPY BY
MODULATING PRO-INFLAMMATORY
RESPONSES

In immunocompetent patients with active TB, pro-inflammatory
immune responses are often robust but fail to contain bacterial
proliferation, leading to tissue damage and nonproductive
inflammation. Nearly half of all active TB patients suffer from
persistent or even progressive pulmonary dysfunction and face an
increased risk of chronic lung disease even after microbiologically
successful cure (3, 6–9). Post-TB lung defects (PTLD) include
obstructive or restrictive lung disease, both of which may lead to
chronic dyspnea, cough, reduced exercise tolerance, and a
heightened risk for infections (3). In addition to shortening the
duration of therapy, a parallel goal for TB HDTs is to avoid the
development of irreversible lung damage from nonproductive
inflammatory responses and to concomitantly improve the
quality of life of TB survivors (3, 10). In this section, we discuss
several classes of HDTs that may reduce nonproductive
inflammation and PTLD (Figure 1, left; Table 1, top).

MMP Inhibitors
Tissue-degradingmatrix metalloproteinases (MMPs), in particular
MMP-1, -3 and -9, are major drivers of TB-associated lung
damage (51–55). While extracellular matrix remodeling is
important for immune cell migration and granuloma formation,
FIGURE 1 | Both pro- and ani-inflammatory responses play critical roles in TB pathogenesis. (Left) Proinflammatory responses and tissue remodeling in TB are
important for bacterial clearance but may lead to excessive inflammation and persisting lung damage. Adjunct modulation of lung remodeling (for example, via TNFa
or MMP inhibition) or inflammation (for example, by corticosteroids) may improve the outcome of TB therapy. Inhibition of PARP1, an essential NF-kB, TNFa and
MMP cofactor and driver of lung inflammation, may be similarly beneficial. (Right) Anti-inflammatory responses safeguard against tissue damage but may result in less
than desirable bacterial clearance. These responses are often mediated by immunosuppressive cell populations, such as MDSCs, Tregs and M2 macrophages.
Inhibition or elimination of these cell types may be achieved using the inhibitors shown. This figure was created using BioRender.
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MMP levels in TB patients remain elevated even after treatment
completion and thus may drive progressive lung dysfunction (55,
56). Consequently, adjunctiveMMP inhibition has been studied as
an HDT to improve TB outcome. Doxycycline, a well-known
antibacterial agent, also is known to have MMP inhibitory
properties, making it the only currently FDA-approved MMP
Frontiers in Immunology | www.frontiersin.org 3
inhibitor. Doxycycline has been shown to not only inhibit TB-
inducedMMP activation but also to contain mycobacterial growth
in cells and guinea pigs (11). Results from a phase II pilot study
(NCT02774993) that evaluated the efficacy of adjuvant
doxycycline as a novel HDT for pulmonary TB are pending and
may offer insights into the safety and efficacy of this approach.
TABLE 1 | Immune-modulatory drugs that may improve TB therapy.

Drug HDT Class Host Target Applications Preclinical data in TB Ref.

Doxycycline MMP Inhibitors Multiple MMPs Bacterial
infections

Improved TB containment in cells, guinea pigs; Phase II trial
ongoing (NCT02774993)

(11)

Marimastat MMP Inhibitors Multiple (MMP-1, -2, -7, -9, -14) Cancer
(discontinued)

Improved TB containment in mice (12,
13)

Andecaliximab MMP Inhibitors MMP-9 Cancer, auto-
inflammatory
disorders (in
development)

Reduced relapse rates in mice (14,
15)

Cipemastat MMP Inhibitors MMP-1, -8, -13 Rheumatoid
arthritis
(discontinued)

Increased lung damage and death in mice; no effect in rabbits (16,
17)

Etanercept TNF
antagonists

TNFa Arthritis (various
forms), ankylosing
spondylitis

Accelerated bacterial clearance, reduced relapse rates in mice; may
improve outcome in TB-HIV patients (Phase I) or severely ill TB
patients; risk of impaired bacterial containment without adequate
anti-TB therapy

(15,
18–
22)

Dexamethasone/
Prednisolone

Corticosteroids Broad-spectrum anti-inflammatory
effects via modulation of
glucocorticoid/mineralocorticoid
receptor signaling

Inflammatory and
immune-mediated
disorders
(numerous)

Modest improvements in lung function; recommended for TB
meningitis (survival benefit) but not for pulmonary TB (23–

31)

Talazoparib PARP
inhibitors

PARP1/2; PARP3, PARP4,
TNKS1, TNKS2

Cancer May reduce inflammation and TB lung damage in mice
(32–
36)

Olaparib PARP
inhibitors

PARP1/2; PARP3, PARP4,
PARP16, TNKS1, TNKS2

Cancer N/A (33,
34,
36)

Rucaparib PARP
inhibitors

PARP1/2, PARP3, PARP10,
TNKS1, TNKS2

Cancer N/A (33,
34,
36)

Niraparib PARP
inhibitors

PARP1/2, PARP3, PARP4,
PARP12

Cancer N/A (33,
34,
36)

Metformin MDSCs HIF1a, CD39, CD73, AMPK-
DACHi-CXCL1

Diabetes Reduced severity and mortality in diabetic patients (37,
38)

Tasquinamod MDSCs S100A9 Cancer Decreased lung and spleen bacillary burden in mice (39)
ATRA MDSCs Upregulates glutathione synthase Cancer Decreased lung bacillary burden and pathology in mice and rats

(40–
42)

DABIL-4 MDSCs IL-4R Preclinical model
of breast cancer

Decreased lung bacillary burden in mice (43)

Sildenafil MDSCs PDE-5i Erectile
dysfunction and
pulmonary
hypertension

Reduced lung bacillary burden, pathology and severity in mice (44)

Roflumilast and
CC-11052

MDSCs PDE-4i COPD Improved lung function in mice (45,
46)

Denileukin
Diftitox (Ontak®)

Tregs IL-2R Refractory
cutaneous T-cell
lymphoma

Reduced lung bacillary burden in mice (47)

Checkpoint
blockade
therapy

Tregs CTLA4, PD1 Cancer Mtb-infected macaques overexpress CTLA-4 (48)

Curcumin M2
macrophages

IL-10 Preclinical models
of cancer

Modest efficacy in mice (49)

Anti-IL-10
antibody

Tregs IL-10 Preclinical model
of cancer

Reduced lung bacillary burden in mice (50)
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Excess MMP activity is observed in a number of human
degenerative diseases and hence several targeted MMP inhibitors
have been developed and evaluated in human studies. While
adverse effects hindered early MMP inhibitors, there is newfound
optimism that this may be overcome with a newer generation of
inhibitors (57). For example, the broad-spectrumMMP inhibitor
marimastat (BB-2516) reduced granuloma formation and
bacterial growth in vitro and increased the efficacy of TB
antibiotics in mice but its clinical development was
discontinued due to its side effects (12, 13). However, the
humanized monoclonal MMP-9 antibody andecaliximab is in
late-stage development for cancer and auto-inflammatory
disorders (14) and might improve TB outcome since the
addition of an anti-MMP-9 antibody has been shown to
reduce TB relapse rates in mice (15). In contrast, the MMP-1
inhibitor cipemastat increased immunopathology and death in
M.tb-infected C3HeB/FeJ mice and failed to prevent M.tb-
mediated cavity-generation in a rabbit model (16, 17).
Nonetheless, the next generation of MMP inhibitors with
improved selectivity, specificity and safety is a promising class
of drugs that warrants consideration for HDT activity in TB.

TNF Antagonists
An alternative to direct MMP inhibition is to modulate the factors
that promote MMP expression and TB inflammation, such as
tumor necrosis factor a (TNFa) and the transcription factor NF-
kB (55). TNFa is an important driver of TB lung damage by
enhancing granuloma progression, cavitation, and MMP
expression, and its expression levels are inversely correlated
with the resolution of lung lesions during TB therapy (58–61).
Correspondingly, HIV-positive TB patients generally have less
lung damage than HIV-negative TB patients, and TB-immune
reconstitution inflammatory syndrome (TB-IRIS) following
antiretroviral therapy is associated with increased lung damage
and reduced lung function (8, 62–64). TNFa also contributes to
restrictive and obstructive airflow deficits by promoting
fibrogenesis (18, 65, 66). Adjuvant administration of the TNFa
antagonist etanercept accelerated bacterial clearance and reduced
relapse rates in mice, and a promising phase I trial showed that
etanercept may improve lung involvement and treatment
responses in TB-HIV patients (15, 19, 20). There have also
been case reports of TNFa inhibitors being used successfully to
improve the clinical course of patients with advanced drug-
susceptible TB who were doing poorly (21). In contrast,
however, TNFa inhibitors are well-known to impair bacterial
containment when used without accompanying multidrug anti-
TB therapy (18, 22). While TNFa antagonists have the potential
to improve TB therapy when used as adjunctive agents, there have
been concerns about their expense, their need to be given
parenterally, and the potential for disease worsening if
administered without adequate anti-TB chemotherapy, and due
to these concerns advanced clinical trials to test them as
adjunctive HDTs for TB have not been performed (18, 60, 67).

Corticosteroids
Corticosteroids are another class of anti-inflammatory drugs
that have garnered attention as potential TB-HDTs (68).
Frontiers in Immunology | www.frontiersin.org 4
In pulmonary TB, adjunctive corticosteroids, including the
broadly immunosuppressive agents dexamethasone and
prednisolone, have been studied for their ability to reduce post-
treatment morbidity. Indeed, while some studies have
demonstrated modest improvements in clinical outcomes, such
as preservation of lung vital capacity, major improvements in the
prevention of lung disability have not been shown (23–28). Thus,
corticosteroids are not recommended in current TB treatment
guidelines for the management of pulmonary TB (29, 30).
Corticosteroids have also been evaluated in the management of
tuberculous pericarditis, but they do not appear to change
outcomes and are currently not recommended in that setting
(69). In contrast, well-controlled studies have demonstrated a
clear-cut survival benefit for use of corticosteroids in TB
meningitis, and hence corticosteroids are considered mandatory
in the treatment of that form of TB (31).

PARP Inhibitors
Poly(ADP-ribose) Polymerase (PARP) inhibitors (PARP-Is) are a
new class of anticancer drugs introduced in the last decade, and
four such agents are already FDA-approved. The PARP family of
enzymes, comprised of at least 17 members, regulates wide-
ranging cellular functions via the post-translational modification
of mono- or poly(ADP-ribosyl)ation (70–74). PARP1, the
founding member of the PARP family, is a eukaryotic master
regulator particularly important for inflammatory processes and
stress responses and accounts for at least 85% of cellular poly-
ADP-ribose (PAR) formation (75). Importantly, PARP1 amplifies
and sustains chronic inflammation by inducing inflammatory
mediators that further stimulate its own activation (75, 76).
Consequently, PARP1 contributes to disorders such as endotoxic
shock, sepsis, asthma, COPD and ARDS, and PARP-Is have been
shown to reduce inflammation and disease severity in numerous
inflammatory conditions (75–78). PARP1 is an essential NF-kB,
TNFa and MMP cofactor, and PARP-Is protect against tissue
degradation by inhibiting multiple MMPs (71, 79–86). Therefore,
PARP-Is have been proposed as HDTs for reducing TB-induced
inflammation and lung disease (32). There are currently four FDA-
approved PARP-Is for cancer therapies, talazoparib (Talzenna,
Pfizer), olaparib (Lynparza, AstraZeneca), rucaparib (Rubraca,
Clovis Oncology) and niraparib (Zejula, GlaxoSmithKline), with
many more in various phases of development looking to expand
their application in cancer therapy and beyond (33–35). Since it
has been shown that PARP1 inhibition can ameliorate numerous
inflammatory conditions, including rheumatoid arthritis, asthma,
atherosclerosis and allergy-, toxicity- and injury-induced
inflammation, the addition of a PARP inhibitor might similarly
improve TB therapy by reducing inflammation and lung damage
(75, 79, 87).
IMPROVING TB THERAPY BY
MODULATING ANTI-INFLAMMATORY
RESPONSES

An important theme in TB pathogenesis research in recent
decades has been the observation that M.tb carries virulence
April 2021 | Volume 12 | Article 660916
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traits that subvert normal host immune responses and lead to
pathogen survival and/or proliferation. One such mechanism is
the recruitment of immunosuppressive or tolerizing cells to the
site of infection, resulting in blunted bactericidal responses and
the expression of elevated levels of IL-10 which further promotes
anti-inflammatory responses (88). Indeed, it has recently been
shown that the microbial polypeptide ESAT6 is one mediator
that promotes the differentiation of M1 macrophages into anti-
inflammatory M2 macrophages (89). Other tolerizing,
immunosuppressive cells that are recruited to the site of
infect ion include MDSCs, Tregs and M2-polarized
macrophages. In this section, we highlight the major cell types
involved in these anti-inflammatory responses and discuss drugs
that target them and may be candidate TB HDTs (Figure 1,
right; Table 1, bottom).

Myeloid-Derived Suppressor Cells
(MDSCs)
MDSCs represent an immunosuppressive cell population
increasingly recognized as an important driver of TB
pathogenesis. MDSCs are comprised of two distinct subsets:
polymorphonuclear MDSCs (PMN-MDSCs) and mononuclear
MDSCs (M-MDSCs). In mice, PMN-MDSCs are defined as
CD11b+ Ly6G+ Ly6Clow and M-MDSCs as CD11b+ Ly6G-

Ly6CHigh. In humans, MDSCs are identified as CD11b+ CD33+

HLA-DRlow∕neg cells (90, 91), and these are further subdivided
into PMN-MDSCs by the markers CD14− CD66b+ CD15+, and
M-MDSCs as CD14+ (92–95). While the role of MDSCs in
suppressing inflammation has been extensively studied in
cancer, it is becoming increasingly evident that MDSCs play an
important role in the establishment of chronic infections
including TB. Clinical studies have revealed that levels of
MDSCs are high in the blood and sputum of active TB
patients at the time of diagnosis and that they decline in
response to successful chemotherapy (96–98). This association
suggests that MDSCs may play an important role in the
pathogenesis of active TB pathology and its dysfunctional
inflammatory processes. Further evidence comes from murine
studies where the relative abundance of MDSCs has also been
found to correlate with the TB susceptibility of a given mouse
strain. Relatively high levels of MDSCs are observed in
susceptible mouse strains, such as 129S2 and C3HeB/FeJ, while
lower MDSC levels are found in relatively resistant strains,
such as BALB/c and C57BL/6 (99). Multiple HDTs have been
tested in both pre-clinical and clinical settings that (1) inhibit the
recruitment, expansion or function of MDSCs; or (2) specifically
or non-specifically deplete their population.

Metformin. The widely used diabetes drug metformin
inhibits the frequency and recruitment of MDSCs in cancer by
modulating the expression and activity of HIF-1a, CD39, and
CD73 and the AMPK-DACH1-CXCL1 axis (100, 101). A widely
cited study in 2014 revealed that metformin reduced disease
severity and inflammation in mice and was retrospectively
associated with a lower degree of disease severity in diabetic
patients with active TB who happened to be taking metformin
during TB treatment (37). Another retrospective study showed
that metformin therapy reduces the elevated TB mortality
Frontiers in Immunology | www.frontiersin.org 5
observed in diabetics (38). In spite of these observations, long-
term chemotherapy studies in mice have failed to demonstrate a
significant beneficial effect of adjunctive metformin together with
standard TB chemotherapy (102). Clearly, prospective human
studies are needed, and the NIH has recently funded a prospective
Phase 2A study of metformin in patients with TB (103).

Tasquinimod is an experimental quinoline-3-carboxamide
drug that has been studied in human prostate cancer (104). It has
been shown to slow tumor growth in murine cancer models and
to reduce MDSC tumor infiltration (105). It is believed to act by
binding to and inhibiting the activity of the S100A9 protein;
S100A9 together with S100A8 are known to modulate myeloid
cell activity though TLR4 binding (104, 106). Because of its anti-
MDSC properties, tasquinimod has been tested in murine TB
models, and it has been shown not only to deplete MDSCs but
also to decrease the relative bacterial burden in both lungs and
spleens of infected animals (39).

All-trans Retinoic Acid (ATRA, tretinoin, a vitamin A
derivative) is an FDA-approved drug which has been tested
extensively in cancer models and has been shown to deplete
MDSCs and slow tumor growth. While its precise mechanism of
action is unknown, ATRA upregulates glutathione synthase
(GSS), neutralizes high levels of reactive oxygen species (ROS)
and induces differentiation of myeloid cells away from the
MDSC phenotype (107). Importantly, however, ATRA has
pleotropic effects on numerous cell types so in instances where
it was found to be effective, one cannot be certain that its efficacy
was through MDSC inhibition. Multiple groups have tested the
effects of ATRA in murine TB models both as a monotherapy
and in combination with standard TB therapy. InM. tb.-infected
mice and rats, ATRA has been shown to reduce relative bacterial
burden and lung pathology in a manner that correlates with
MDSC depletion. The drug also exhibits anti-mycobacterial
activity in vitro (96, 108).

In addition to the non-specific depletion of MDSCs, our
group has recently tested the diphtheria toxin-related IL-4
fusion protein, DABIL-4, as a targeting agent against MDSCs
which are known to express the IL-4 receptor, CD124. In an
acute murine model of TB, DABIL-4 administration depleted IL-
4R+ MDSCs, IL-4R+ M2 macrophages and IL-4R+ lymphocytes.
Depletion of these cell populations coincided with a significant
reduction in the lung bacillary burden at day 21 post infection
(43). We have also tested DABIL-4 in a murine breast cancer
model and demonstrated that targeted depletion of MDSCs
results in slower tumor growth and reduced splenomegaly and
metastasis (109).

Phosphodiesterase inhibitors. Sildenafil, an FDA-approved
type 5 phosphodiesterase-selective inhibitor (PDE-5i), is used in
human patients for the treatment of erectile dysfunction and
pulmonary hypertension. The drug downregulates arginase-1
and nitric oxide synthase-2 (NOS2) in a cGMP-dependent
fashion, thereby hampering the immunosuppressive potential
of MDSCs (110). Maiga et al. showed that the combination of
sildenafil and cilostazol (an FDA-approved PDE-3 inhibitor)
reduced pathology, disease severity and bacterial burden in
murine TB; however, monotherapy with sildenafil alone
showed no statistically significant benefit in the same mouse
April 2021 | Volume 12 | Article 660916
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model (44, 111). PDE-4 inhibitors, such as roflumilast and CC-
11052, a Celgene PDE4 inhibitor in development, have also
shown promising activity against TB in animal models (45, 46).
A clinical trial evaluating CC-11052 as an adjunctive HDT
alongside standard therapy has been conducted (NCT02968927),
and preliminary results suggest that use of CC-11052 was
associated with improvements in lung function (112).

Regulatory T-Cells (Tregs)
Tregs comprise an immunosuppressive CD4+ T-cell population
which express CD25 and FoxP3. CD8+ Tregs also exist but their
role in TB has not been extensively studied. Classic CD4+ CD25+

FoxP3+ Tregs are anti-inflammatory cells which keep effector
T-cell function in check while promoting MDSC recruitment
and maturation to further facilitate immunosuppression. Their
presence in active TB is believed to inhibit anti-bacterial immune
responses and to contribute to disease progression (113).
Consistent with this, elevated Treg levels have been described
in the blood and pleural fluid in pulmonary TB patients
compared with healthy controls, and Treg levels were observed
to decline to healthy control levels after successful TB
chemotherapy (114).

Treg-depleting immunotherapies. The administration of
anti-CD25 monoclonal antibodies in various cancer models
has not only depleted Tregs but also slowed tumor progression
(115). Anti-CD25 antibodies have been tested in the mouse TB
model and were found to reduce relative bacillary loads in the
lung and spleen and to improve lung pathology (116).
Denileukin diftitox (Ontak®), a diphtheria toxin-related IL-2
fusion protein that was previously approved by the FDA for the
treatment of refractory cutaneous T-cell lymphoma, is known to
have potent Treg-depleting activity and has also been tested in
murine TB models (47, 117). Ontak® monotherapy not only
decreased Treg and MDSC frequencies in lungs and spleens but
also significantly reduced relative bacterial CFU counts in a
short-term TB mouse model. Additionally, the fusion protein
toxin when combined with standard TB therapy significantly
accelerated bacterial clearance in mice (47, 117).

Checkpoint Blockade Immunotherapy
Checkpoint blockade therapies, such as anti-PD-1 and anti-
CTLA4 antibodies, have revolutionized the field of
immunotherapy and have become an essential part of standard
care for various human malignancies (118). In M.tb-infected
macaques, Tregs have been shown to express CTLA-4,
suggesting that anti-CTLA-4-directed checkpoint inhibitors
may offer a potential HDT TB treatment (48). However, several
groups have reported TB reactivation in cancer patients treated
with checkpoint blockade therapy (119–121). While this does not
necessarily indicate that checkpoint inhibitors given as adjuvants
alongside appropriate anti-TB chemotherapy will fail to accelerate
TB cure, more studies will be needed reach a conclusion regarding
the efficacy of checkpoint blockade therapy as HDT for TB.

Anti-IL-10 Therapies
IL-10 is a key anti-inflammatory cytokine secreted by CD4+ T
cells, macrophages and MDSCs that suppresses T-cell function,
Frontiers in Immunology | www.frontiersin.org 6
blunts inflammatory responses, and promotes TB disease
progression (50). IL-10 has been implicated in the M2-
polarization of macrophages and this may further contribute to
anti-inflammatory responses. An abundance of M2-polarized
macrophages has been described in human lung granulomas
(122), although it remains unclear if these M2 macrophages are
causal in granuloma formation or rather a secondary
consequence. IL-10 inhibitors would be expected to inhibit the
direct anti-inflammatory effects of IL-10 and also prevent
conversion of M1 macrophages into M2 macrophages. Indeed,
IL-10 inhibitors have been tested both in cancer models and also
in models of TB. Curcumin (diferuloylmethane), one of the
active compounds found in turmeric, has been shown to
modulate IL-10 levels and the frequency of M2 macrophages
(123). Preparations of curcumin have been shown to drive a
therapeutic benefit in a murine metastatic breast cancer model
(124). In the context of TB, curcumin has also been shown to
control the growth of M.tb in THP-1 macrophages and in
primary alveolar macrophages derived from healthy human
controls (125). More recently, a nanoparticle preparation of
curcumin was tested in a murine TB model where it showed
modest activity as monotherapy and more potent activity in
combination with isoniazid (49). Direct inhibition of IL-10 with
an anti-IL-10-receptor antibody in a murine TB model was
shown to reduce bacterial CFU counts although it had little
impact on the lung pathology (50).
DISCUSSION

Host-directed therapies have the potential to improve the
treatment of TB by modulating either pro- or anti-
inflammatory immune mechanisms. Interference with certain
pro-inflammatory mechanisms offers the potential to reduce
lung damage, increase antibiotic efficacy and shorten treatment
duration. On the other hand, modulation of certain
immunosuppressive immune responses may enhance the
innate bactericidal activity of the immune system and thus
accelerate bacterial clearance. Repurposing drugs that are safe
and approved for human use is an approach that may fast-track
the clinical development of new host-directed TB treatment
regimens. Here, we reviewed HDTs of interest for TB that
target pro- or anti-inflammatory immune mechanisms (Figure
1; Table 1). On the proinflammatory side, we highlighted MMP
inhibition, TNFa antagonists, corticosteroids and PARP
inhibition to reduce TB-associated lung damage and
inflammation. However, immune modulation in TB should be
approached with caution as disrupting the intricate host-
pathogen relationship can also increase the risk for disease
progression or exacerbate inflammation. It is important that
the dosing, frequency and timing of TB-HDTs are carefully
optimized to minimize potentially harmful effects. Moreover,
HDTs should be primarily evaluated as treatment adjuvants to be
utilized alongside fully active traditional anti-TB chemotherapy.
A related concern is that of drug-drug interactions and the
potential for one agent to reduce the circulating concentration
of another.
April 2021 | Volume 12 | Article 660916
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Even though TB-associated persistent lung dysfunction is a
common disability in TB survivors, there are currently no
guidelines for the diagnosis or management of PTLDs, and it
is unclear to what extent they contribute to the economic burden
of TB (8, 126). Reducing TB-associated lung dysfunction has the
potential to greatly improve the quality of life after TB by
reducing morbidity and loss of income. While pulmonary
function testing in early TB carries some risk of TB
transmission, it has been safely implemented in numerous
cl inical trials . We therefore recommend that more
consideration should be given to the routine assessment of
lung function in TB clinical trials. In addition to HDTs, non-
pharmacological interventions , such as pulmonary
rehabilitation, may improve lung function after completion of
TB therapy and should be considered in the management of TB
Frontiers in Immunology | www.frontiersin.org 7
patients on a case-by-case basis (127). Importantly, we hope to
increase awareness that the fight against TB does not end with
microbiological cure.
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