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Most EEG phase synchrony measures are of bivariate nature. Those that are multivariate focus on producing global indices of
the synchronization state of the system. Thus, better descriptions of spatial and temporal local interactions are still in demand.
A framework for characterization of phase synchrony relationships between multivariate neural time series is presented, applied
either in a single epoch or over an intertrial assessment, relying on a proposed clustering algorithm, termedMultivariate Time Series
Clustering byPhase Synchrony,which generates fuzzy clusters for eachmultivalued time sample and thereuponobtains hard clusters
according to a circular variance threshold; such cluster modes are then depicted in Time-Frequency-Topography representations
of synchrony state beyond mere global indices. EEG signals from P300 Speller sessions of four subjects were analyzed, obtaining
useful insights of synchrony patterns related to the ERP and even revealing steady-state artifacts at 7.6Hz. Further, contrast maps
of Levenshtein Distance highlight synchrony differences between ERP and no-ERP epochs, mainly at delta and theta bands. The
framework, which is not limited to one synchrony measure, allows observing dynamics of phase changes and interactions among
channels and can be applied to analyze other cognitive states rather than ERP versus no ERP.

1. Introduction

There is a growing interest among the neuroscientific com-
munity to unravel the intricate neural mechanisms involved
in the broad integration of different brain structures, which
enable the emergence of cognitive processes. Several studies
conducted with electroencephalography (EEG) and magne-
toencephalography (MEG) have provided evidence that sup-
ports the idea of neural synchronization intrinsic to mental
tasks, with the fluctuating disposition of communication
channels in the nervous system, especially between active
regions in the brain [1–5].

In this regard, phase locking analysis of neural oscillations
and other different measures of synchronization has gained
attention, as several methods have been developed to provide
a quantitative view of synchronism in brain sources and their
behavior, estimating phase synchrony (PS) from different

perspectives, depending on the purpose of the study in
question [6]. This same variety of methods and proposals
causes lack of agreement in the terminology used to refer to
all thesemeasures. Roach andMathalon have provided awide
review attempting to clarify this situation [7]. Thus, for the
sake of following a standard of terms, descriptions of any PS
measure will follow the referred publication.

In order to perform PS analysis, instantaneous phase
information of EEG signals must be extracted. Most methods
are based on wavelet analysis [6–10]. Another common tech-
nique besides wavelets for extracting instantaneous phase
values from the analytical signal is the Hilbert transform.
Analytic phase from wavelets or Hilbert transform has been
shown to give almost same results as Short Time Fourier
Transform adjusting the filter settings adequately [11, 12].
There are also other Time-Frequency (TF) decompositions
used for obtaining phase information, such as Rihaczek
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distribution, Empirical Mode Decomposition, sinusoidal
quadrature filters, and Matching Pursuit [13–16].

In general, for the study of PS, it can be said that there
are twomain approaches: phase locking and phase coherence.
The former refers to the event-related phase locking across
trials regarding an event’s onset over one electrode, that
is, the Phase Locking Factor (PLF). If instantaneous phase
angles between trials are closer to a uniform distribution
over the unit circle, the PLF is close to zero; otherwise, it
is close to one if instantaneous phase angles between trials
are highly synchronized in the same direction over the unit
circle.The latter approach, phase coherence, also called Phase
Locking Value (PLV), or within the context, the event-related
phase coherence across trials, evaluates consistency of phase
differences between 2 electrodes across trials, also with values
between 0 and 1. As the reader already noticed, each measure
determines different types of PS; therefore, bothmeasures can
be complementary to each other [7].

Other types of measures, such as linear coherence or
magnitude squared coherence, are not suitable to analyze PS;
unlike PLF and PLV, both measures yield results weighted by
magnitude, and the interpretation of these becomes unclear,
since phase synchronization patterns and amplitude changes
are not necessarily related to the same neural process [6–8];
Rosenblumdemonstrated that PS of chaotic oscillators is pos-
sible, where bounded phase differences exist and variations
of amplitude are chaotic and uncorrelated [17]. The Phase
Cross-Coherence (PCC) eliminates amplitude information
and produces a function of phase differences averaged across
trials [6].

All PS measures mentioned above focus on the eval-
uation of intertrial phase consistency over an individual
EEG channel or phase differences between signals from two
recoding sites, that is, providing only univariate or bivariate
approaches. Nevertheless, the complete scenario involves
a multichannel recording; thus a bivariate approach may
not capture relevant information of all the dynamics and
interactions of the full system [18, 19]. Thereupon, existing
methods of multivariate synchronization analysis comprise
even other metrics besides PS, based on different types of
correlation measures. Correlation between probabilities of
recurrence is used to measure PS, clearly distinguishing
preseizure and seizure states of epileptic EEG [20, 21]. Based
on Random-Matrix Theory (RMT), Osorio and Lai compute
the average phase synchronization times (APSTs) among
pairs of channels in order to construct a matrix, from which
they use both the determinant and the eigenvalue spectra
for assessing synchronization [22]. Li et al. presented another
method based on RMT, using equal-time correlation instead
of PS, and then the eigenvalue decomposition is used to
calculate a global synchronization index that increases during
epileptic seizures [23]. Mutlu et al. extend the concept of
phase differences between two signals, mapping these dif-
ferences onto an 𝑁-dimensional hyperspherical coordinate
system; however, the authors later reported that Hyper-
spherical Phase Synchrony (HPS) is dependent on how the
phase differences are sorted, which is corrected with another
hyperdimensional coordinate system [19, 24]. Alba et al.
proposed a visualization system with multitoposcopic graphs

and Time-Frequency-Topography (TFT)maps for synchrony
patterns, indicating increase, decrease, or an equal level of
synchronization between pairs of electrodes with respect to
a previous state, using different PS bivariate measures [15].

Some other approaches aim to improve the resolution
of the TF decomposition used for extracting phase infor-
mation. Aviyente and colleagues used a reduced interfer-
ence distribution-Rihaczek (RID-Rihaczek) for computing
PLV [25]. Subsequently, the authors extend their method
to quantify all possible pairwise comparisons and analyze
those interactions between electrodes through a graph clus-
tering algorithm, which allows overlapping clusters, and
each electrode has a “participation score” that reflects their
significance in the formation of a cluster [26]. Previous
works also conceive the idea of clustering with degrees of
membership. Allefeld and Kurths addressed the multivariate
synchronization as a mean-field cluster of oscillators that
participate in different degrees, that is, how close an oscillator
phase is close to a reference phase, which is determined by
the circular mean of all oscillator phases [27]. Nevertheless,
the single cluster assumption dismisses other possible cluster
formations. Later, the authors made a generalization of the
cluster analysis to correct this issue based on eigenvalue
decomposition of a matrix containing indices of bivariate
synchronization strength, associating each eigenvalue greater
than one to a cluster [28]; however, the one-to-one corre-
spondence between dominant eigenvectors and clusters is not
always fulfilled [29].

Summarizing, multivariate methods help in perceiving
overall synchronization patterns, providing a global index
instead of matrices of bivariate comparisons [19]. Since many
of these investigations focus on epilepsy studies, it makes
sense to provide a general assessment of the synchronization
state of the system with a crisp numerical value in order
to distinguish seizure and preseizure conditions. Rather
than a global index and aiming to characterize a broader
variety of cognitive states, such as mental tasks for Brain-
Computer Interface (BCI), the framework proposed in this
article points to observing the dynamics of phase changes
along multivariate neural time series over the TF plane and
projecting their interactions in TFT maps.

The proposed clustering algorithm, Multivariate Time
Series Clustering by Phase Synchrony (mCPS), establishes
local relations by means of clusters of highly synchronized
signals in each sample time, allowing exploring these phase
associations through all samples searching for patterns of
cluster formations. Additionally, our proposal also addresses
an across-trials perspective. Thus, it can be said that the PS
measure used in this work is more related to PLF (circular
variance) rather than to phase coherence (consistency of
phase differences), applied channel-wise. Haig et al. proposed
a similar conception of PS, which lacks an automatized
selection of synchronized signals via clustering [30].

Beyond yielding a PS measurement and a TFT portrayal,
the framework also provides contrast maps of Levenshtein
Distance (LD) as a metric for visual analysis and comparison
of differences in PS patterns between different conditions (in
this case, ERP and no-ERP epochs), as well as TF images of
channels, highlighting which clusters of PS can be related
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to the changes of power due to the ERP. While some of
the methods mentioned before use clustering analysis, like
[26], most of them are fuzzy clusters in short time windows
and without topographic representation. The way mCPS
is conceived requires hard clustering, as it will be further
detailed.

2. Materials and Methods

2.1. Simulated EEG and Experimental Data. Several exper-
iments were carried out with both synthetic and real EEG
signals (sEEG and rEEG, resp.) in order to determine the
extent to which our framework is capable of retrieving
reliable and useful information (presented as clusters of
electrodes) that allows establishing relationships between
highly synchronized EEG channels and the brain activity of
interest through time samples and over different bandwidths.
The sEEG was built based on a linear mixing model of 𝑁𝑠
independent sources 𝑆 = (𝑠1, 𝑠2, . . . , 𝑠𝑁𝑠)𝑇, with a sampling
frequency of 256Hz, resulting in 𝑁ch observed signals 𝐶 =(𝑐1, 𝑐2, . . . , 𝑐𝑁ch)𝑇. Contributions of every 𝑠𝑖 (𝑖 = 1, 2, . . . , 𝑁𝑠)
through the 𝑁 discrete-time samples (𝑛 = 1, 2, 3, . . . , 𝑁) are
weighted by the 𝑁ch × 𝑁𝑠 matrix 𝑊, which is determined
by the inverse-square law of distances between 𝐶 and 𝑆
locations:

𝐶 = 𝑊𝑆;
[[[[
[

𝑐1,𝑛
...

𝑐𝑁ch ,𝑛

]]]]
]
= [[[[
[

𝑤1,1 ⋅ ⋅ ⋅ 𝑤1,𝑁𝑠... d
...

𝑤𝑁ch ,1 ⋅ ⋅ ⋅ 𝑤𝑁ch ,𝑁𝑠

]]]]
]

[[[[
[

𝑠1,𝑛
...

𝑠𝑁𝑠 ,𝑛

]]]]
]
. (1)

Spatial location of each electrode 𝑐𝑗 (𝑗 = 1, 2, . . . , 𝑁ch)
corresponds to the basic 10–20 international system [32] over
a unit sphere. The volume conduction of the EEG model
was assumed to be homogeneous and isotropic.The complete
sEEG record is constructed with 30 epochs of 3 seconds,
each of them containing a simulated Visual Evoked Potential
(VEP) centered at 1.5 s from the epoch onset (peak amplitude
at 1500ms and constant across trials). Equation (2) describes
the construction of the VEP:

VEP = 1
√2𝜋𝑒

−((𝑛−𝜇)/𝜎2)2 sin(2𝜋𝑓𝑛𝑁 𝛾) , (2)

where 𝑓 = 10Hz, 𝜇 = 0.5𝑁, 𝜎2 = 0.125𝑁, 𝛾 = (𝑁 − 0.5𝑛)/𝑁,
and 𝑛 = 1, 2, 3, . . . , 𝑁. Besides the VEP, sources 𝑆 comprise
three different types of noise components: (a) harmonics,
which vary in amplitude, frequency of the sinusoidal oscilla-
tions, and initial phase and (b)whiteGaussian and (c) colored
Gaussian 𝑐𝑔𝑛noise. Localization (𝑥, 𝑦, 𝑧) of 𝑆within the brain
area of the model can be either a fixed position or a linear
displacement or with rotational motion.

In order to assess the framework with rEEG, four subjects
(S2, S5, S6, and S7) were selected from a record of P300
evoked potentials [33] using the P300 Speller proposed by
Farwell and Donchin [34] (available at http://bnci-horizon-
2020.eu/database/data-sets). The subjects were patients with

amyotrophic lateral sclerosis and were naive to BCI training.
The authors recorded eight EEG signals according to 10-10
standard (Fz, Cz, Pz, Oz, P3, P4, PO7, and PO8) using active
electrodes, referenced to the right earlobe and grounded to
the leftmastoid. EEG signal was digitized at 256Hz and band-
pass-filtered between 0.1 and 30Hz. Subjects were required
to spell seven predefined words of five characters each by
controlling the P300 matrix speller. It should be mentioned
that no extra preprocessing was performed over the data.The
first three runs (15 trials in total) are described as “calibration
runs” and runs 4–7 are the “testing runs” where participants
were provided with feedback.

2.2. Clustering EEG Channels according to Circular Variance

2.2.1. Extraction of Phase Information. Given𝑁ch (for sEEG,𝑁ch = 19 and, for rEEG, 𝑁ch = 8) signals, a TF decompo-
sition is performed over the continuous EEGwith predefined
bandwidths at center frequencies:

𝑓𝑘 = 𝑒ln(𝑓min)+((ln(𝑓max)−ln(𝑓min))/𝐾)𝑘; 𝑘 = 1, 2, 3, . . . , 𝐾, (3)

where𝑓min = 1,𝑓max = 12Hz, and𝐾 = 12 for both sEEG and
rEEG. Such decomposition is carried out with a Continuous
Wavelet Transform (CWT) at peak frequencies 𝑓𝑘 from (3)
with complex Morlet wavelets:

Ψ (𝑛, 𝑓𝑘) = 𝑒𝑖2𝜋𝑓𝑘𝑡𝑒−𝑛2/2𝜍2 ; 𝑛 = 1, 2, 3, . . . , 𝑁, (4)

where 𝜍 = 󰜚/2𝜋𝑓𝑘 is the standard deviation of the Gaussian
function used to make each Ψ and 󰜚 is the number of
wavelet cycles (in this case, 󰜚 = 4). Then, the instantaneous
phase is obtained from (5), using implementation of the four-
quadrant inverse tangent:

𝜃𝑗 (𝑛, 𝑓𝑘) = arctan( imag (Ψ)real (Ψ) ) ; 𝑗 = 1, 2, . . . , 𝑁ch. (5)

2.2.2. Multivariate Time Series Clustering by Phase Synchrony
(mCPS). Algorithm 1 explains how mCPS works, which is
based on directional statistics to measure the degree of phase
locking and formation of clusters. The circular spread in
angular data can be computed with the magnitude of the so-
called mean resultant vector 𝑅 [35]. Directional data (in this
case, 𝜃𝑗(𝑛, 𝑓𝑘) of the 𝑁ch signals) can be observed as points𝑥𝑗 = (cos 𝜃𝑗, sin 𝜃𝑗) over the unit circle. Then, the Cartesian
coordinates of the center of mass can be expressed as (𝐴, 𝐵),
where

𝐴 = 1
𝑁ch

𝑁ch∑
𝑗=1

cos 𝜃𝑗;

𝐵 = 1
𝑁ch

𝑁ch∑
𝑗=1

sin 𝜃𝑗.
(6)

Therefore, 𝑅 = √𝐴2 + 𝐵2. Magnitude of 𝑅 is close to 1
whenEEG channels are highly phase-locked; it is close to zero
otherwise. Porta-Garcia et al. presented an example using

http://bnci-horizon-2020.eu/database/data-sets
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⊳ 𝐾: total peak frequencies 𝑓𝑘⊳ 𝑁: number of discrete time EEG samples⊳ 𝑁ch: number of EEG channels⊳ 𝑅: magnitude of mean resultant vector 𝑅⊳ 𝑟: threshold value of 𝑅(1) for 𝑘 ← 1 to 𝐾 do(2) for 𝑛 ← 1 to𝑁 do(3) 𝑓𝐶 ← CreateFuzzyClusters (𝜃1:𝑁ch (𝑛, 𝑓𝑘), 𝑟)(4) ℎ𝐶 ← ConvertToHardClusters (𝑓𝐶)(5) end for(6) end for(7) procedure CreateFuzzyClusters (𝜃, 𝑟)(8) for 𝑖 ← 1 to𝑁ch − 1 do(9) Initialize new empty cluster 𝐶(𝑖)(10) Add electrode 𝑐(𝜃𝑖) to 𝐶(𝑖)(11) for 𝑗 ← 𝑖 + 1 to𝑁ch do(12) Compute 𝑅 between 𝑐(𝜃𝑖) and 𝑐(𝜃𝑗)(13) if 𝑅(𝑖, 𝑗) > 𝑟 then(14) Add electrode 𝑐(𝜃𝑗) to 𝐶(𝑖)(15) end if(16) end for(17) end for(18) return 𝐶(19) end procedure(20) procedure ConvertToHardClusters (𝐶)(21) 𝐶intersect ← Find clusters 𝐶 with intersections(22) for all 𝐶intersect do(23) Compute 𝑅(24) 𝐶𝑅max
← 𝐶intersect with maximum value of 𝑅(25) Eliminate intersected elements from all clusters 𝐶intersect ̸= 𝐶𝑅max(26) end for(27) end procedure

Algorithm 1: Multivariate Time Series Clustering by Phase Synchrony (mCPS).

magnitude changes of vector 𝑅 over time in a determined
group of EEG channels comparing two different conditions
[36]. The functioning of mCPS over EEG channels according
to circular variance is as follows.

Once 𝜃𝑗(𝑛, 𝑓𝑘) is retrieved for the entire EEG, the pro-
cedure CreateFuzzyClusters generates 𝑓𝐶 fuzzy clusters
of electrodes for each time sample 𝑛 and for each center
frequency 𝑓𝑘. The threshold 𝑟 (0 < 𝑟 < 1) defines whether
or not an electrode is assigned to a determined 𝑓𝐶, and as
fuzzy clusters consider intersections of cluster elements, the
main task of the procedure ConvertToHardClusters is to
obtain hard clusters ℎ𝐶 by preserving clusters with higher
value of 𝑟 and proceed to eliminate intersections iteratively of
the remaining 𝑓𝐶 in such a way that ℎ𝐶1 ∩ ℎ𝐶2 ∩ ⋅ ⋅ ⋅ ∩ ℎ𝐶𝑖 =0; 𝑖 | 1 <= 𝑖 <= 𝑁ch. Therefore, the result of mCPS is a new𝑁ch × 𝑁matrix cEEG, containing the cluster labels to which
each EEG channel belongs in each time sample 𝑛.
2.2.3. Cluster Labeling. Every run of mCPS is bounded for
each time sample 𝑛, and an arbitrary numeric label is assigned
to each cluster. Then, an example of generated clusters could
be ℎ𝐶1 = {P3,P4,O𝑧} for 𝑛 = 1 and ℎ𝐶2 = {P3,P4,Oz}
for 𝑛 = 2. In this case, numeric labels 1 and 2 do not provide

Cz Pz Oz P3Fz P4 PO7 PO8

01 1 0 1 1 0 0

A C

Figure 1: Example of hexadecimal cluster labeling for an 8-channel
EEG array, where 𝐴𝐶 represents the cluster containing Fz, Pz, P3,
and P4.

any useful information of cluster content. In order to establish
a meaningful relationship that reflects that ℎ𝐶1 and ℎ𝐶2 are
actually the same cluster, a labeling system was developed
based on hexadecimal words that encode which electrode
belongs to the cluster and then assign a specific color in a
one-to-one relationship to represent clusters in a TFT map,
whichwill be described further. In Figure 1, it can be observed
that each hexadecimal digit corresponds to binary bits of
electrode quartets, where digit 1 means that the electrode is
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Stimulus
onset

  

187.5 ms125 ms62.5 ms

f1

f2

f3

Figure 2: Depiction of how a TFT map is generated. Using the
settings for the assessment of cEEG (sampling rate of 256Hz), the
size of each window is 𝜐 = 16. Hence, each scalp map in the TFT
map represents the cluster modes within the cEEG window of size 𝜐
for each electrode.

assigned to a determined cluster if magnitude of 𝑅 is greater
than threshold 𝑟.Therefore, a hexadecimal word of two digits
encodes the cluster membership for eight EEG channels. As a
consequence of this encoding system, a slightly different hue
of color label should depict similarity between clusters, for
example, a blue cluster containing electrodes P3, Pz, and P4
and a lighter blue cluster that only contains P3 and Pz. Hence,
the matrix cEEG now has as elements the cluster labels of
hexadecimal words.

2.2.4. Construction of Time-Frequency-Topography (TFT)
Maps. To be able to condense the large amount of infor-
mation obtained from mCPS and make it suitable for visual
analysis, we used TFT maps for topographic representation
of all ℎ𝐶 yielded in previous steps. Some previous schemes of
Time-Frequency-Topographic visualization can be found in
literature [15, 37]. Then, the cEEG section that corresponds
to the rEEG segment to be analyzed is windowed, displaying
scalp maps with cluster modes of the cEEG windows of size𝜐, which is specified in number of samples (Figure 2). The
cluster modes for each channel are assigned only if the mode
frequency is greater than threshold 𝜌. For both rEEG and
sEEG, 𝜌 = 50%; this way, bimodal or multimodal results are
avoided.

With regard to the rEEG, it should be mentioned that as
the selected runs for analysis with our method were clustered
separately, the color labels in a TFTmap of ERP condition are
the same as a TFTmap of no ERP only if it is the same subject
and same run; otherwise, this condition may not be satisfied,
except for two cases: the color map is bounded between
specific RGB values between dark blue and bright yellow,
which corresponds with cluster with hexadecimal label “01”
(only channel P8 is assigned) and cluster “FF” (all channels
are assigned), respectively. Intermediate variations of label
color depend on the amount of generated clusters along time.

2.2.5. Intertrial TFT (iTFT) Maps. An iTFT depicts ℎ𝐶
modes across epochs. It can be seen as a TFTmap containing
intertrial cluster modes (ITCM) instead of computing cluster
modes over a cEEG segment directly (Figure 3). Regarding
the rEEG, for each run of the experimental protocol, the
instantaneous phase is computed over the complete run and
the clustering is performed before epoch segmentation. After
these steps, ERP and no-ERP epochs are taken separately
and their ITCM is computed in such a way that the most
representative cluster formations over the ERP and no-ERP
epochs are retrieved. For the rEEG case, the resultant iTFT
map illustrates the most prevalent phase clustering patterns
over 1000ms (duration of trials) with a time window of size𝜐 = 16 (62.5ms).
2.2.6. Levenshtein Distance (LD) and Complementary TF
Maps. LD is included to sense relevant differences between
ERP and no-ERP epochs. This measure can be defined as
the minimum cost of transforming one string into another
through a sequence of operations [38]:

LD (Φ1, Φ2) = min {𝜓 (T
Φ1 ,Φ2

)} ;
𝜓 (T
Φ1,Φ2

) = 𝑙∑
𝑖=1

𝜓 (Ti) ,
(7)

where Φ1 and Φ2 are strings constructed with characters𝜙1, 𝜙2, . . . , 𝜙𝑧 of the same alphabet Γ andTΦ1 ,Φ2 = {𝑇1, 𝑇2, . . . ,𝑇𝑙} represents the set of edit operations to make Φ1 = Φ2,
weighted by function 𝜓 ∈ R+. With 𝑝 → 𝑞 being a simple
edit operation and 𝜆 being the null string, there are three
types of transformations: insertions (𝜆 → 𝑝), substitutions(𝑝 → 𝑞), and deletions (𝑞 → 𝜆). Adapted to our case, Γ ={“0”, “1”}, 𝜓 = 1, and Φ1 and Φ2 are binary cluster labels
of same length; thus the only operation to perform is substi-
tutions of characters. Since clusters labels encipher the mem-
bership of electrodes, the maximum LD should be equal to 8
for the extreme case of Φ1 = “00000000” (which means that
no clustermode was assigned to any channel due to threshold𝜌) and a cluster mode with all 8 electrodes within (Φ2 =
“11111111”).

Furthermore, additional TF maps are generated from the
CWT of each channel, which coupled with LDmeasures, and
they help to observe findings in the mCPS information that
could be associated with the changes of power due to the ERP
over the time series. The LD distances are depicted in Time-
Frequency-Levenshtein (TFL) maps.

2.2.7. Framework Pipeline. The complete framework pipeline
is shown in Figure 4. Once the extraction of phase informa-
tion of EEG in block 𝑎 and mCPS is performed in block𝑏, EEG clusters (cEEG) are labeled in block 𝑐 and then
segmented according to the acquisition protocol. For this
particular case, condition 1 and condition 2 in Figure 4 cor-
respond to ERP and no-ERP epochs, respectively. Important
to notice, segmentation of cEEG occurs after the hexadeci-
mal labeling (block c) in order to allow direct comparison
between conditions in the iTFT maps, ensuring a one-to-
one correspondence among color labels in the topographic
scalp layouts of clusters and hexadecimal labels. Finally, the
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Figure 3: Depiction of how an iTFT map (blue background) is constructed. Following the same principle of a grand average for ERP
(computing modes instead), the scalp maps in the green TFTmap contain the ITCM of epochs 1, 2, . . . ,𝑀. For illustration purposes only, let
us consider the final step, that is, computing the modes of every window over the discrete time axis, setting 𝜐 = 2 samples (indicated with the
red rectangles and arrows) with a sampling rate of 1 kHz. Thereby, each topographic map in the iTFT map represents the cluster modes of all
samples of the array containing the ITCM within the window of size 𝜐 for each electrode.

TFL maps (block 𝑒) highlight dissimilarities over time and
frequency of the mCPS outputs for ERP and no ERP.

3. Results

Figure 5 summarizes the most remarkable outcome of the
experiments with sEEG. Figure 5(a) shows the grand average
of each channel, and Figure 5(b) displays the corresponding
spectra of all channels as well as the scalp distribution of
power at center frequency 𝑓 = 1.6Hz. Figure 5(c) shows a
single scalpmap extracted from the correspondent TFTmaps
after applying mCPS over a single trial of sEEG, positioned
at 1500ms (which is where the peak amplitude of the VEP
is found) and centered at 𝑓, with a signal-to-noise ratio
(SNR) of 0.328 dB. Figure 5(d) also shows a single scalp map,
at same latency and center frequency 𝑓, coming from a
TFT map generated after applying mCPS over the grand
average of the 30 epochs, with SNR = 3.16 dB. By visual
inspection, it can be observed in Figure 5(d) that electrodes
in blue cluster correspond to those in Figure 5(a), where
the VEP is more evident (marked with red circles); it also
largely coincides with the scalp areas with highest power at𝑓 (Figure 5(b)). Remarkable to say, despite the lower SNR in
a single trial compared to scalp map of Figure 5(d), mCPS is
able to retrieve some of the electrodes within the blue cluster
(Figure 5(c)).

With respect to rEEG, the main attention was on the
intertrial analysis searching for differences between ERP and
no-ERP conditions, using iTFT maps. Different values of
threshold 𝑟 were tested between 0.90 and 0.99 for cluster
mode assignments, while 𝜌 was fixed at 50% and 𝜐 = 16
samples. In relation to the data, from the seven runs of
each subject, only the testing runs (4–7) were processed with
our framework, each of them individually. For reasons of
space, only some relevant portions of maps per subject are
presented in figures: run 4 for S2 and for S5 (𝑟 = 0.90
and 0.975, resp.), run 7 for S6, and run 6 for S7 (both with𝑟 = 0.96). Figure 6 shows grand averages of all channels
for these runs for each subject, contrasting ERP condition
(blue) versus no-ERP condition (red). Respecting the TFL
and TF maps, only the most illustrating channel is depicted.
For the full maps of the runsmentioned before, please refer to
http://itzamna.uam.mx/lini/mcps.html.

Results of run 4 for S2 are displayed in Figure 7. In the
ERP iTFT map (Figure 7(a)), formations of cluster modes
with label “FF” (bright yellow) containing P3-P4-PO7-Oz-
PO8 can be observed from 312.5ms to 750ms at 2Hz.
The same situation occurs at 2.5Hz with P3-PO7-P4. No
characteristic cluster formation is shown in the no-ERP
iTFTmap (Figure 7(b)). Noteworthy, run 5 portrayed similar
conditions compared to run 4, except that relevant cluster
formations were found in bins centered at 1.3, 1.6, and 2Hz.

http://itzamna.uam.mx/lini/mcps.html
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Figure 4: Block diagram of the framework pipeline. Blocks 𝑎, 𝑏, and 𝑐 are described in Sections 2.2.1, 2.2.2, and 2.2.3, respectively. This is a
general pipeline, and as such another phase extraction technique might be used in block 𝑎 (we opted for CWT). In block 𝑏, other PS criteria
can be introduced (we opted for circular variance) to performmCPS.The blocks contained in𝑑 are described in Section 2.2.5, where condition
1 and condition 2 refer to ERP and no-ERP epochs, obtained after segmentation of the time series of cluster labels cEEG. Additionally, TF
maps of each channel for both conditions (not depicted in this block diagram) can be used together with the TFL maps of block 𝑒 for visual
analysis.

As for runs 6 and 7, neither ERP nor no-ERP iTFTmaps of S2
revealed any characteristic cluster formation. In Figure 7(d),
the TFL map for P4 is displayed. Important to highlight, this
map depicts yellow areas that coincide (at least visually) with
the concentration of power of the P300 wave (Figure 7(e)),
particularly for P3, P4, PO7, and Oz (TFL maps for P3, PO7,
and Oz can be observed in the complete study). It is also
coincidental with the cluster formations described previously
in the ERP iTFT map and with the P300 power time course,
around 312ms and 750ms approximately (Figure 7(e)), which
is not the case if such cluster arrangements are comparedwith
no-ERP TF maps (Figure 7(f)).

3.1. Steady-State Visual Evoked Potential (SSVEP) Artifact. As
depicted in Figure 7(c), it can be observed that cluster “FF”

contains all EEG channels at 7.6Hz over the entire row. This
is highly likely to be related to an SSVEP artifact derived
from a fixed value of the interstimulus duration (125ms).This
pattern appears in all subjects, with some minor variations
of 𝑓𝑘. For example, for S2, this fact can be related to the
concentration of power around 7.6Hz in the entire epoch in
all TF maps of each channel (Figures 7(e) and 7(f)). This can
be verified with almost all TF maps presented for both ERP
and no ERP for all subjects.

Regarding S5, observations within runs are very similar
(𝑟 = 0.975). For ERP condition (Figure 8(a)), cluster forma-
tions of “FF” with parietal channels and Cz clearly coincide
with yellow areas of TFL map of P3 (Figure 8(c)) and power
concentration of P300 in the TF map (Figure 8(d)). This can
be observed over the ERP iTFT cluster formations in bins
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Figure 5: (a) Grand average of each channel; (b) corresponding spectra and scalp distribution of power at 1.6Hz. Both images were generated
with EEGLAB [31]. (c) TFT map at 1500ms, 1.6Hz, and SNR = 0.328 dB. (d) TFT map at same time and frequency of grand average, with
SNR = 3.16 dB.

centered at 1.6, 2, 2.5, and 3.1 Hz (Figure 8(a)). iTFT maps
of no ERP (Figure 8(b)) did not show any relevant cluster
formation.

For S6 (𝑟 = 0.96), Figures 9(a) and 9(b) illustrate a
section of the correspondent iTFT map of ERP and no-ERP
conditions, respectively. The “FF” cluster formations can be
observed in the 3.1 Hz bin, which takes place at different time
windows. There are no relevant cluster formations over no-
ERP map at the same times. The TFL map confirms these
differences with the yellow areas for Pz (Figure 9(c)). In this
case, the relationship with the power in TFmap of P300 wave
(Figures 9(d) and 9(e)) is not so evident.

Concerning S7, in run 6 with a threshold of 𝑟 = 0.96,
parietal electrodes stand out again portraying diverse “FF”
cluster arrangements over the scalp, mainly at 2, 2.5, and

3.1 Hz (Figure 10(a)), concurring with yellow areas in cor-
responding TFL map of P3 (Figure 10(c)) and with the
power of P300 wave in the TF map (Figure 10(d)). In run
7, the appearance of other cluster formations besides “FF”
(perceived in other runs and subjects) was noticeable, with
parietal electrodes between 375 and 625ms.

4. Discussion

The findings over the TFT maps of sEEG served as a starting
point for leading the research to the analysis with real data,
as coincidences of the generated cluster in the single trial
and the one over the grand average reflected the ability of
mCPS to retrieve the PS information of interest. For rEEG,
the iTFT maps exposed several differences between ERP and
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Figure 6: Grand averages of ERP (blue) versus no-ERP (red) condition for each subject (run 4 for S2 and S5, run 7 for S6, and run 6 for S7).

no ERP, and maybe the most notable and consistent feature
was the arrangements of clusters labeled “FF” systematically
appearing in ERP maps (Figures 7(a), 8(a), 9(a), and 10(a))
derived from the ITCM computation, contrasting with the
absence of such patterns in the no-ERP maps (Figures 7(b),
8(b), 9(b), and 10(b)). This fact is evidenced with the TFL
maps (Figures 7(d), 8(c), 9(c), and 10(c)), highlighting the
areas of the TF plane with perceptible differences among ERP
and no ERP. Such differences can be noted by contrasting
Figures 7(e), 7(f), 8(d), 8(e), 9(d), 9(e), 10(d), and 10(e),
respectively. Moreover, most of the “FF” appearances can be
related (at least by visual inspection) to the P300 wave, given
the times and bandwidths where these clusters appear, as
most of them were localized within delta and theta ranges,
which is consistent with frequency content of a P300 ERP
[39–41]. The frequency content of no-ERP epochs observed
in Figures 7(f), 8(e), 9(e), and 10(e) could hardly be explained
by any neurophysiological event of relevance, but rather it
could be due to subharmonics of the SSVEP artifact, as the
power concentration can be perceived as extended “lines”
throughout the time series.

There were cases (like S6) where analysis with TFL and
TFmaps did not yield any clear distinction between ERP and
no ERP, like run 6, where cluster formations were sporadic
and intermittent, making it difficult to establish a relationship
with the P300wave. Noteworthy, samples of ERP and no-ERP
epochs are highly unbalanced (each run per subject contains
100 ERP epochs and 500 no-ERP epochs), which reinforces
our results distinguishing these conditions, considering the
fact that we are usingmode as statistical measure, and despite

a greater amount of samples of no-ERP epochs, no relevant
cluster modes formations were detected.

Another important aspect is related to frequency locking
and tracking of frequency flows [42, 43]. A limitation in some
methods relying on a narrow bandTF decomposition, such as
the frequency bins generated with wavelets, is the assumption
of frequency stationarity of PS, hiding or masking periods of
continuous PS with transient variability of synchronization
frequency through time. However, the TFTmaps can capture
this frequency flow of PS, as it can be observed how the “FF”
cluster patterns appear over different low frequency narrow
bands, such as 𝑓𝑘 = 1.6, 2, 2.5, and 3.1 Hz for S5 (Figure 8(a))
and 𝑓𝑘 = 2, 2.5, and 3.1 Hz for S7 (Figure 10(a)).

With respect to hyperparameters, further analysis should
be made varying threshold values (𝑟 and 𝜐) in order to
evaluate the produced effect in cluster generation and visu-
alization. As mentioned before, several tests were made with
different values of 𝑟, yet the results shown in this work are
only for one 𝑟 per subject, which was heuristically selected by
identifying the TFL maps that yield a better differentiation of
ERP and no-ERP conditions. The method is highly sensitive
to 𝑟 variations, and future work can be directed to automate
selection of optimal values for 𝑟.

Even though in these results our framework serves in
identifying PS dynamics related to the neural activity of
interest organized and structured in clusters of EEG channels,
there is still a lot of room for improvement. At this point, our
method describes near-zero phase lag relationships between
EEG channels (𝑟 > 0.90 in most of the cases). By definition,
volume conduction requires zero phase lag, but a phase
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Figure 7: (a) A portion of iTFTmaps for S2, showing only the row of bins centered at 2Hz and 2.5Hz, from 250ms to 875ms of ERP epochs;
(b) same 𝑓𝑘 depicted for no-ERP epochs. (c) An example of the cluster related with the steady-state artifact. (d) TFL map for P4. (e) TF map
for P4 for ERP and (f) TF map for P4 for no ERP.

difference close to zero is not necessarily due to volume
conduction, as this kind of phase associations can be found
widespread over the cerebral cortex because of corticothala-
mic projections [44]. There are some measures such as Phase
Lag Index (PLI) [45] or imaginary coherence [46] which deal
with volume conduction by discarding zero phase lags, but at
the same time these approaches are insensitive to true near-
zero phase lag interactions [47].

On the other hand, volume conduction can be addressed
by measuring phase reset, which can be detected when a
phase shift takes place between two phase-locked signals
[48]. This idea can be extended in our framework, trying
to find phase resets between EEG channels. Adding other

phase differences or phase-locking measures could retrieve
different clustering patterns, which along with our already
implemented mCPS measure and detection of phase resets
could deliver complementary and relevant information.

5. Conclusions

Our framework provides a feasible way to address both single
and intertrial PS analysis of multivariate neural time series,
characterizing the PS variability through time. The majority
of PS measures so far suggested in literature such as PLV or
PCC are calculated between two signals [6–8] or provide only
a global index of synchronization in the case of multivariate
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Figure 8: (a) A portion of iTFT maps for S5, showing only the row of bins centered at 1.6, 2, 2.5, and 3.1 Hz, from 250ms to 875ms of ERP
epochs; (b) same 𝑓𝑘 depicted for no-ERP epochs. (c) TFL map for P3. (d) TF map for P3 for ERP, and (e) TF map for P3 for no ERP.

measures [19, 20, 23, 27]. Our framework is an alternative for
studying the behavior of phase synchronization between all
EEG channels at once in a given timewindowwithin different
bandwidths of interest. Noticeable to say, the framework
is not limited to any particular phase extraction technique
(further discussion about the selection of these techniques is
beyond the scope of this article) and can also easily be adapted
to other PSmeasures like phase coherence, obtaining clusters

of phase differences consistency from mCPS. It remains to
assess and compare the proposed algorithm to other clus-
tering algorithms in terms of efficiency and computational
complexity.

The insight given by the iTFTmaps provides a qualitative
measure of intertrial cluster consistency, which when com-
bined with the TFL and TF maps becomes helpful to assess
which clusters patterns are related to a specific mental task. It
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Figure 9: (a) A portion of iTFT maps for S6, showing only the row of bin centered at 3.1 Hz, from 62.5ms to 687.5ms of ERP epochs; (b)
same 𝑓𝑘 depicted for no-ERP epochs. (c) TFL map for Pz. (d) TF map for Pz for ERP and (e) TF map for Pz for no ERP.

should be mentioned that some yellow areas depicted in TFL
maps that do not match with the power increase of the P300
wave shown in TF maps could be due to artifacts artificially
derived from LD computation or due to other relevant neural
information not related to ERP. Further analysis should be
made regarding this issue.

Although in this first approach mCPS was applied over
synthetic signals and P300 wave data with relatively few
electrodes, the aim of this work was merely to illustrate the
framework pipeline and how it describes PS patterns. As
mentioned before, our work attempts to encompass a broader
variety of cognitive states. For example, in the context of BCI,
our framework might be useful for the characterization of
mental tasks suitable for endogenous BCI paradigms with
no external stimuli in the system. Then, feature extraction
could be performed from mCPS outcome for asynchronous
(self-paced) BCI classification, distinguishing idle state from
a specific mental task. Additionally, when exploring higher
density EEG (64 channels or more), this framework could
be used as a channel optimization tool finding the clusters
of electrodes that contribute the most to characterization of a
mental state.

Electrical signals from brain sources are volume con-
ducted through nervous tissue, cerebrospinal fluid, skull,
and scalp. Hence, an underlying issue in EEG recordings
regards the single source contamination of multiple sensors
via volume conduction.TheEEG recorded over the scalp does

not necessarily capture the direct activity underneath the
electrode but a weighted mixture of different sources (neural
or artifact). Then, distinction between volume conduction
and true synchrony remains an open issue. Some authors
have reported that methods for improving spatial resolution
of EEG, such as scalp current density profiles (SCD), seem
convenient as preprocessing steps before the estimation of PS
[7, 8]. For future work, it should be interesting to study the
effects of rereferencing. Again, in the BCI field, it could be
assessed if rereferencing enhances performance using phase
clusters as features for classification, bearing in mind the fact
that the original phase delays may be distorted. It should
be pointed out that no additional preprocessing was made,
preserving the data as raw as possible. Further approaches
for addressing volume conduction should be considered in
forthcoming research.

Finally, to summarize the contributions, the proposed
framework incorporates several features useful for PS anal-
ysis, such as iTFT and TFL maps, taking into account
some aspects like frequency nonstationarity and flexibility
of use of other synchronization measures besides PLF. The
LD is applied as a metric for better distinction of differ-
ences between conditions, highlighting synchrony differ-
ences between ERP and no-ERP epochs, mainly at delta
and theta bands. Additional information like the steady-state
artifacts at 7.6Hz is also retrieved and depicted in iTFT
maps. Taking EEG as the view port of cortical activity, our
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Figure 10: (a) A portion of iTFT maps for S7, showing only the row of bin centered at 2, 2.5, and 3.1 Hz, from 62.5ms to 687.5ms of ERP
epochs; (b) same 𝑓𝑘 depicted for no-ERP epochs. (c) TFL map for P3. (d) TF map for P3 for ERP and (e) TF map for P3 for no ERP.

framework provides a new insight into terms of large-scale
integration of emerging synchrony patterns of instantaneous
phase during cognitive tasks, depicted in phase-related clus-
ter arrangements over the time series of EEG signals.
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