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Mortality and mortality rate have become the major issues in insurance industries, for instance, life insurance 
and pension fund. Such industries will, in particular, be concerned with the quantification of risk attached, say 
longevity risk, to insurance products that may receive severe impacts from the fall of mortality rate. In this 
paper, we model the mortality rate by using an Autoregressive (AR) model with a conditional heteroscedasticity 
effect. This effect is accommodated by a stochastic model of Autoregressive Conditional Heteroscedastic (ARCH) 
as well as a Stochastic Volatility Autoregressive (SVAR) model. Furthermore, we do forecasting of what so-called 
Mortality-at-Risk (MaR) by adopting the Value-at-Risk framework and its improvement. The calculation of the 
MaR forecast for those two models is conducted with significantly different approaches.
1. Introduction

For insurance industries, life insurance and pension fund in particu-

lar, mortality and forecasting accurate mortality rate are very important 
subjects to discuss and develop continuously. Their concern is mainly 
on whether or not they are able to provide capital allocation or reserve 
when they are exposed to high longevity risk due to the fall of mortality 
rate.

The nature of longevity risk is long-term forecasting. It is, however, 
still useful and challenging to seek a one-step-ahead forecast as the dy-

namic change in mortality rates may occur over a short-term horizon, 
say in one year; see, e.g., Plat (2011) and Richards et al. (2013). Be-

sides, we may also consider that the short-term forecasting will give 
more benefits to the insurance companies and the policymakers since 
they may keep “flexibility” in adjusting mortality rate models.

The mortality rate has reached its breakthrough since the famous 
model of Lee and Carter (1992). The Lee–Carter model brings us at-

tention of having mortality index and stochastic term assumed to be 
normally distributed. This model aimed to describe the natural loga-

rithm of the mortality rate, rather than the mortality rate directly. In 
fact, the mortality index is basically the mean of the log mortality rate, 
given previous information.

The improvements in modeling the mortality rate have been car-

ried out by several authors. For instance, Giacometti et al. (2012) and 
Lin et al. (2015) proposed to model the log mortality rate by consider-
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ing dynamic conditional mean as well as dynamic conditional variance 
or volatility. The latter consideration is basically adopted from model-

ing asset returns. Specifically, the proposed models incorporated the 
previous log mortality rates in the conditional mean of the current 
log mortality rate via an Autoregressive (AR) model. The conditional 
heteroscedasticity effect was involved through (Generalized) Autore-

gressive Conditional Heteroscedastic or (G)ARCH model.

In this paper, we aim at adopting a stochastic mortality rate model 
of AR-ARCH as in Giacometti et al. (2012) and Lin et al. (2015). As for 
the comparison to ARCH, a Stochastic Volatility Autoregressive (SVAR) 
of Taylor (1986) is also proposed to accommodate the conditional het-

eroscedasticity effect. Due to the stationarity reason, both the AR-ARCH 
and AR-SVAR models are applied to the change in the log mortality rate, 
instead of the log mortality rate itself. We, specifically, utilize the data 
of the log mortality rate changes for the United States population. Note 
that the need for having the above stochastic models with time-varying 
volatility comes from the fact that the data tend to be serially correlated 
and volatile over time. We show this fact by using the serial correlation 
test as well as the ARCH effect test of Engle (1982).

In addition, we introduce a risk measure called Mortality-at-Risk 
(MaR) to determine the greatest risk or fall of mortality rates for a fixed 
period of future years that can be tolerated at a certain level of con-

fidence. Calculating MaR is carried out by adopting the risk measure 
of Value-at-Risk (VaR), well known in quantitative risk management. 
In order to obtain a MaR forecast with a better coverage probability, 
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the forecasting method is improved. This improvement is motivated by 
the works of Vidoni (2004), Kabaila and Syuhada (2008, 2010), and 
Syuhada (2020).

2. Material and methods

2.1. Data

This study utilizes data for both genders of the United States popu-

lation extracted from the Human Mortality Database’s website (mortal-

ity.org). The data we choose consist of the number of deaths and the 
number of individuals exposed to the death risk at age 1 to 90 in the 
calendar year 1933 to 2018.

2.2. Mortality rates

By 𝐷𝑥,𝑡 we denote the number of deaths. As noted by Wilmoth et al. 
(2021), it is basically calculated from the sum of (a) 𝐷𝐿

𝑥,𝑡
: the number 

of individuals of age 𝑥 in year 𝑡 who die before year 𝑡 + 1 and (b) 𝐷𝑈
𝑥,𝑡

: 
the number of individuals aged 𝑥 in the beginning of year 𝑡 but they 
die before reaching age 𝑥 + 1. Meanwhile, the number of individuals 
exposed to the death risk at age 𝑥 in year 𝑡, we denote by 𝐸𝑥,𝑡, is the 
sum of 𝐸𝐿

𝑥,𝑡
and 𝐸𝑈

𝑥,𝑡
. They are formulated by

𝐸𝐿
𝑥,𝑡

= 1
2
𝑃𝑥,𝑡+1 +

1
6
𝐷𝐿
𝑥,𝑡
,

𝐸𝑈
𝑥,𝑡

= 1
2
𝑃𝑥,𝑡 −

1
6
𝐷𝑈
𝑥,𝑡
,

respectively, where 𝑃𝑥,𝑡 (𝑃𝑥,𝑡+1) refers to the number of individuals aged 
𝑥 in the beginning of year 𝑡 (𝑡 + 1).

We then represent by 𝑀𝑥,𝑡 the mortality rate at age 𝑥 in year 𝑡. This 
rate is defined by dividing 𝐷𝑥,𝑡 by 𝐸𝑥,𝑡, that is

𝑀𝑥,𝑡 =
𝐷𝑥,𝑡

𝐸𝑥,𝑡
.

This means that the above mortality rate quantifies the number of 
deaths per certain size of population exposed to the death risk. For ex-

ample, in the US population, the number of males, say at age 𝑥 = 60
in the beginning of year 𝑡 = 2010, who die before year 2011 (source 
(a)) is 𝐷𝐿60,2010 = 9,326. Meanwhile, the number of males of age 60 in 
year 2010 but they die before they reach age 61 is 𝐷𝑈60,2010 = 9,776

(source (b)). Thus, the number of deaths is 19,102. Furthermore, it is 
known that 𝐸60,2010 = 1,724,924. As a result, we obtain a mortality rate 
𝑀60,2010 = 0.011, eleven deaths over population of a thousand. Note 
that the natural logarithm transformation is commonly taken in order to 
avoid working with small mortality rate; for the above case, ln(𝑀60,2010)
is equal to −4.503.

2.3. Stochastic mortality rate models with conditional heteroscedasticity 
effect

At a specified age 𝑥 ∈ {𝑥0, 𝑥0 + 1, ..., 𝑋} for given positive integers 𝑥0
and 𝑋 with 𝑥0 < 𝑋, the yearly log mortality rate data {ln(𝑀𝑥,𝑡)}𝑡=𝑡0 ,...,𝑇
may be modeled as a linear function of mortality index. This has been 
provided in the famous mortality rate model of Lee and Carter (1992) 
by

E
[
ln(𝑀𝑥,𝑡)

|||𝑥,𝑡−1]+ 𝜀𝑥,𝑡, (1)

for 𝑡 ∈ {𝑡0, 𝑡0 + 1, ..., 𝑇 }, where 𝑡0 and 𝑇 are fixed positive integers with 
𝑡0 < 𝑇 . The first term in Eq. (1), the conditional mean of the log mor-

tality rate in year 𝑡 given previous information 𝑥,𝑡−1, is 𝑎𝑥 + 𝑏𝑥 𝑘𝑡, 
where 𝑎𝑥 denotes the average mortality at age 𝑥, 𝑘𝑡 represents the time-

varying mortality level, and 𝑏𝑥 describes the response at age 𝑥 to the 
time-varying factor. Meanwhile, 𝜀𝑥,𝑡 is a stochastic term assumed to be 
normally distributed with a mean of zero and a constant variance, say 
𝜎2 .

𝜀𝑥

2

The above model, however, may be unsuitable. The reason is that 
it only models the conditional mean of the log mortality rate. Also, the 
constant conditional variance (volatility) assumption does not meet the 
empirical behavior of volatility. As demonstrated by Chai et al. (2013), 
the mortality data for most ages significantly exhibit a conditional het-

eroscedasticity effect, also known as Engle’s ARCH effect. This feature 
indicates that the squared mortality data not only vary over time but 
also are serially correlated. Consequently, an alternative model is re-

quired to describe the conditional heteroscedastic mortality rate by 
incorporating the previous squared observation in the current volatil-

ity equation.

Giacometti et al. (2012) and Lin et al. (2015), for instance, first 
proposed to model the conditional mean of ln(𝑀𝑥,𝑡) as

𝑎𝑥 + 𝑏𝑥 ln(𝑀𝑥,𝑡−1), (2)

where 𝑎𝑥, 𝑏𝑥 ∈ ℝ, so that we can observe the mortality level 𝑘𝑡, that is 
modeled as a random walk in the Lee–Carter model. Note that a model 
whose conditional mean is given in Eq. (2) is a first-order Autoregres-

sive or AR(1) model of {ln(𝑀𝑥,𝑡)}𝑡=𝑡0 ,...,𝑇 . Giacometti et al. (2012) further 
set up the error process {𝜀𝑥,𝑡}𝑡=𝑡0 ,...,𝑇 for this model to follow a condi-

tional heteroscedastic time series model of ARCH type with conditional 
mean and variance as below:

E
(
𝜀𝑥,𝑡

|||𝑥,𝑡−1) = 0,

Var
(
𝜀𝑥,𝑡

|||𝑥,𝑡−1) = 𝛾𝑥 + 𝛿𝑥 𝜀2𝑥,𝑡−1,

respectively, where 𝛾𝑥 ∈ (0, ∞) and 𝛿𝑥 ∈ [0, ∞). The vector (𝑎𝑥, 𝑏𝑥, 𝛾𝑥, 𝛿𝑥)⊤
of parameters needs to be restricted such that the stationarity condition 
applies to the above process. However, it is important to note that the 
stationarity condition for the time series data {ln(𝑀𝑥,𝑡)}𝑡=𝑡0 ,...,𝑇 is not 
achieved. This may be unfortunate for time series modeling.

We instead work with the change in the log mortality rates. For each 
fixed age 𝑥 ∈ {𝑥0, 𝑥0 +1, ..., 𝑋}, it refers to the difference between the log 
of the current mortality rate and the log of the previous one, that is

𝑌𝑥,𝑡 = ln(𝑀𝑥,𝑡) − ln(𝑀𝑥,𝑡−1) = ln
(
𝑀𝑥,𝑡

𝑀𝑥,𝑡−1

)
, (3)

where 𝑡 ∈ {𝑡0 + 1, 𝑡0 + 2, ..., 𝑇 }. An AR(1) model is employed to de-

scribe the conditional mean of 𝑌𝑥,𝑡, given 𝑥,𝑡−1 = {𝑌𝑥,𝑠}𝑠=𝑡0+1,...,𝑡−1. We 
keep the conditional heteroscedasticity effect for the error term accom-

modated by two different models: ARCH(1) and first-order Stochas-

tic Volatility Autoregressive, SVAR(1). The former assumes observable 
volatility whilst, in contrast, the latter takes unobserved (latent) volatil-

ity into consideration.

2.3.1. AR(1)-ARCH(1) model

The first assumption is that, for each age 𝑥 ∈ {𝑥0, 𝑥0 + 1, ..., 𝑋}, the 
process {𝑌𝑥,𝑡}𝑡=𝑡0+1,...,𝑇 of the changes in the log mortality rates follows 
an AR(1)-ARCH(1) model given by

𝑌𝑥,𝑡 = 𝑎𝑥 + 𝑏𝑥 𝑌𝑥,𝑡−1 + 𝜀𝑥,𝑡, (4a)

𝜀𝑥,𝑡 = 𝜎𝑥,𝑡 𝜉𝑥,𝑡, (4b)

𝜎2
𝑥,𝑡

= 𝛾𝑥 + 𝛿𝑥 𝜀2𝑥,𝑡−1. (4c)

The parameter vector 𝜃𝑥 = (𝑎𝑥, 𝑏𝑥, 𝛾𝑥, 𝛿𝑥)⊤ of the above model is as-

sumed to belong to ℝ × (−1, 1) × (0, ∞) × [0, 1) in order to ensure that 
the process is stationary. The term 𝜉𝑥,𝑡 is an innovation following a 
standard normal distribution, 𝑁(0, 1). As the stochastic term, the inno-

vation 𝜉𝑥,𝑡 determines the statistical properties of {𝜀𝑥,𝑡}𝑡=𝑡0+1,...,𝑇 as well 
as {𝑌𝑥,𝑡}𝑡=𝑡0+1,...,𝑇 . Specifically, the error process has a conditional distri-

bution as below:

𝜀𝑥,𝑡
||𝑥,𝑡−1 ∼𝑁 (

0, 𝜎2
)
, (5)
| 𝑥,𝑡
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where 𝜎2
𝑥,𝑡

= 𝛾𝑥 + 𝛿𝑥(𝑌𝑥,𝑡−1 − 𝑎𝑥 − 𝑏𝑥 𝑌𝑥,𝑡−2)2 that varies over years but re-

mains observable. Meanwhile, 𝑌𝑥,𝑡, given 𝑥,𝑡−1, is normally distributed 
with a conditional mean of E 

(
𝑌𝑥,𝑡

|||𝑥,𝑡−1) = 𝑎𝑥 + 𝑏𝑥 𝑌𝑥,𝑡−1 and a condi-

tional variance of Var
(
𝑌𝑥,𝑡

|||𝑥,𝑡−1) = 𝜎2
𝑥,𝑡

.

2.3.2. AR(1)-SVAR(1) model

We further assume to have a latent volatility 𝑉𝑥,𝑡 = ln(𝜎2
𝑥,𝑡
) that non-

linearly enters our model formulated by

𝑌𝑥,𝑡 = 𝑎𝑥 + 𝑏𝑥 𝑌𝑥,𝑡−1 + 𝜀𝑥,𝑡, (6a)

𝜀𝑥,𝑡 = exp(𝑉𝑥,𝑡∕2) 𝜉𝑥,𝑡, (6b)

𝑉𝑥,𝑡 = 𝛾𝑥 + 𝛿𝑥 𝑉𝑥,𝑡−1 + 𝜂𝑥,𝑡, (6c)

with (𝑎𝑥, 𝛾𝑥, 𝑏𝑥, 𝛿𝑥)⊤ ∈ ℝ2 × (−1, 1)2. The latent volatility process

{𝑉𝑥,𝑡}𝑡=𝑡0+1,...,𝑇 follows a stochastic model of AR(1) with an innova-

tion term 𝜂𝑥,𝑡. The process {𝑌𝑥,𝑡}𝑡=𝑡0+1,...,𝑇 of the log mortality rate 
changes is, therefore, said to follow a stationary AR(1)-SVAR(1) model. 
We assume the innovations 𝜉𝑥,𝑡 and 𝜂𝑥,𝑡 to be independent and nor-

mally distributed with a parameter (0, 1)⊤ and 
(
0, 𝜎2

𝜂𝑥

)⊤
, respectively, 

where 𝜎2
𝜂𝑥

∈ (0, ∞). This assumption implies that 𝑌𝑥,𝑡, conditional on 
(𝑉𝑥,𝑡, 𝑥,𝑡−1)⊤, is normally distributed with a conditional mean and vari-

ance equal to 𝑎𝑥 + 𝑏𝑥 𝑌𝑥,𝑡−1 and exp(𝑉𝑥,𝑡), respectively. Meanwhile, the 
latent volatility 𝑉𝑥,𝑡, given (𝑥,𝑡−1, 𝑥,𝑡−1)⊤, has a conditional distribu-

tion of normal with a mean of 𝛾𝑥 + 𝛿𝑥𝑉𝑥,𝑡−1 and a variance of 𝜎2
𝜂𝑥

, where 
𝑥,𝑡−1 = {𝑉𝑥,𝑠}𝑠=𝑡0+1,...,𝑡−1. This means that 𝜎2

𝜂𝑥
measures the volatility 

of the volatility shocks. Furthermore, its unconditional distribution is 
derived as below:

𝑉𝑥,𝑡 ∼𝑁

(
𝛾𝑥

1 − 𝛿𝑥
,
𝜎2
𝜂𝑥

1 − 𝛿2
𝑥

)
. (7)

2.4. Mortality-at-Risk (MaR) forecasts

We now aim to forecast a risk measure that quantifies a risk aris-

ing from the mortality rate process {𝑀𝑥,𝑡}𝑡=𝑡0 ,...,𝑇 for a fixed age 𝑥 ∈
{𝑥0, 𝑥0 + 1, ..., 𝑋}. The risk refers to the fall of mortality rates for a given 
time horizon and the risk measure is called Mortality-at-Risk (MaR). We 
define MaR as the greatest fall of mortality rates for a time horizon of 𝜏
years at a given confidence level of 1 − 𝛼:

P𝜃𝑥
(
𝑀𝑥,𝑇 −𝑀𝑥,𝑇+𝜏 ≤MaR1−𝛼

𝑥,𝑇+𝜏 (𝜃𝑥)
|||𝑥,𝑇) = 1 − 𝛼, (8)

for all 𝜃𝑥, where 𝜏 is a fixed positive integer and 𝛼 ∈ (0, 1). Specifically, 
we are interested in forecasting a one-year MaR. Thus, we take 𝜏 = 1
and aim to determine a one-step-ahead forecast of MaR1−𝛼

𝑥,𝑇+1(𝜃𝑥).
From Eq. (3), we see that 𝑌𝑥,𝑇+1 = ln(𝑀𝑥,𝑇+1∕𝑀𝑥,𝑇 ). We further 

suppose 𝑄𝛼
𝑥,𝑇+1(𝜃𝑥) to be the 𝛼-quantile of the conditional distribu-

tion of the future error 𝜀𝑥,𝑇+1, given 𝑥,𝑇 . This means that it satisfies 
P𝜃𝑥

(
𝜀𝑥,𝑇+1 ≤𝑄𝛼𝑥,𝑇+1(𝜃𝑥)|||𝑥,𝑇) = 𝛼. By manipulating 𝑌𝑥,𝑇+1, we obtain

MaR1−𝛼
𝑥,𝑇+1(𝜃𝑥) =

[
1 − exp

(
𝑎𝑥 + 𝑏𝑥 𝑌𝑥,𝑇 +𝑄𝛼

𝑥,𝑇+1(𝜃𝑥)
)]
𝑀𝑥,𝑇 . (9)

Since the parameter 𝜃𝑥 is unknown, it needs to be estimated from 
the available data. Let �̂�𝑥 denote its estimator obtained through a cer-

tain method. We then have an “estimative” one-year MaR forecast, 
MaR1−𝛼

𝑥,𝑇+1(�̂�𝑥), by replacing 𝜃𝑥 by �̂�𝑥. The coverage probability of this 
estimative MaR forecast may be computed to assess its accuracy. We 
observe that

P𝜃𝑥
(
𝑀𝑥,𝑇 −𝑀𝑥,𝑇+1 ≤MaR1−𝛼

𝑥,𝑇+1(�̂�𝑥)
|||𝑥,𝑇)

= P𝜃𝑥

[
1 −

𝑀𝑥,𝑇+1

𝑀𝑥,𝑇

≤ 1 − exp
(
�̂�𝑥 + �̂�𝑥 𝑌𝑥,𝑇 +𝑄𝛼

𝑥,𝑇+1(�̂�𝑥)
) ||||𝑥,𝑇

]
= 1 − P𝜃𝑥

[
𝑀𝑥,𝑇+1

𝑀
≤ exp

(
�̂�𝑥 + �̂�𝑥 𝑌𝑥,𝑇 +𝑄𝛼

𝑥,𝑇+1(�̂�𝑥)
) |||𝑥,𝑇 ]
𝑥,𝑇 |
3

= 1 − P𝜃𝑥
(
𝑌𝑥,𝑇+1 ≤ �̂�𝑥 + �̂�𝑥 𝑌𝑥,𝑇 +𝑄𝛼

𝑥,𝑇+1(�̂�𝑥)
|||𝑥,𝑇 )

= 1 − P𝜃𝑥
(
𝜀𝑥,𝑇+1 ≤𝑄𝛼𝑥,𝑇+1(�̂�𝑥)|||𝑥,𝑇 )

that is equal to

1 − E𝜃𝑥
[
𝐹𝜀𝑥,𝑇+1|𝑥,𝑇

(
𝑄𝛼
𝑥,𝑇+1(�̂�𝑥);𝜃𝑥

) |||𝑥,𝑇 ] , (10)

where 𝐹𝜀𝑥,𝑇+1|𝑥,𝑇 (⋅; 𝜃𝑥) is the conditional distribution function of 𝜀𝑥,𝑇+1, 
given 𝑥,𝑇 . The expectation term in Eq. (10), computed with respect to 
the distribution of 𝜀𝑥,𝑇+1

|||𝑥,𝑇 , may be shown to be equal to 𝛼 +𝑂(𝑛−1), 
where 𝑛 = 𝑇 − 𝑡0 refers to the size of the data. This implies that the 
above conditional coverage probability differs from the 1 − 𝛼 level of 
confidence by 𝑂(𝑛−1).

Vidoni (2004) and Kabaila and Syuhada (2008, 2010) have sug-

gested so-called “improved” forecasting limits with better coverage 
properties. Their approach is basically to correct the 𝑂(𝑛−1) term to 
become 𝑂(𝑛−3∕2). We aim to adopt this approach to derive an improved 
MaR forecast in addition to the estimative MaR forecast.

2.4.1. MaR forecast for AR(1)-ARCH(1) model

When the AR(1)-ARCH(1) model with a normal innovation is as-

sumed for the changes in the log mortality rates, we may employ the 
conditional normal distribution of the error term previously stated in 
Eq. (5) to obtain the MaR forecast. We first forecast the estimative quan-

tile 𝑄𝛼
𝑥,𝑇+1(�̂�𝑥) as below:

𝑄𝛼
𝑥,𝑇+1(�̂�𝑥) = Φ−1(𝛼)

√
�̂�𝑥 + 𝛿𝑥(𝑌𝑥,𝑇 − �̂�𝑥 − �̂�𝑥 𝑌𝑥,𝑇−1)2,

where 𝜃𝑥 = (𝑎𝑥, 𝑏𝑥, 𝛾𝑥, 𝛿𝑥)⊤ is a conditional maximum likelihood estima-

tor for the parameter �̂�𝑥 = (�̂�𝑥, ̂𝑏𝑥, ̂𝛾𝑥, 𝛿𝑥)⊤ whilst Φ(⋅) and Φ−1(⋅) denote 
the standard normal distribution function and its inverse, respectively. 
The estimative MaR1−𝛼

𝑥,𝑇+1(�̂�𝑥) forecast is then equal to[
1 − exp

(
�̂�𝑥 + �̂�𝑥 𝑌𝑥,𝑇 +Φ−1(𝛼)

√
�̂�𝑥 + 𝛿𝑥(𝑌𝑥,𝑇 − �̂�𝑥 − �̂�𝑥 𝑌𝑥,𝑇−1)2

)]
𝑀𝑥,𝑇 .

(11)

In order to determine the forecast of the improved one-year MaR 
denoted by +MaR1−𝛼

𝑥,𝑇+1(�̂�𝑥), we need to find the improved version of 
the 𝑄𝛼

𝑥,𝑇+1(�̂�𝑥) forecast represented by +𝑄𝛼
𝑥,𝑇+1(�̂�𝑥). Firstly, we observe 

that the conditional coverage probability P𝜃𝑥
(
𝜀𝑥,𝑇+1 ≤𝑄𝛼𝑥,𝑇+1(�̂�𝑥)|||𝑥,𝑇)

of the estimative 𝑄𝛼
𝑥,𝑇+1(�̂�𝑥) forecast may be expressed as

E𝜃𝑥
⎡⎢⎢⎣Φ

⎛⎜⎜⎝Φ−1(𝛼)

√√√√ �̂�𝑥 + 𝛿𝑥(𝑌𝑥,𝑇 − �̂�𝑥 − �̂�𝑥 𝑌𝑥,𝑇−1)2

𝛾𝑥 + 𝛿𝑥(𝑌𝑥,𝑇 − 𝑎𝑥 − 𝑏𝑥 𝑌𝑥,𝑇−1)2

⎞⎟⎟⎠
|||||𝑥,𝑇

⎤⎥⎥⎦
that differs from 𝛼 by 𝑂(𝑛−1). Then, the improved +𝑄𝛼

𝑥,𝑇+1(�̂�𝑥) forecast 
defined by

+𝑄𝛼
𝑥,𝑇+1(�̂�𝑥) =𝑄

𝛼
𝑥,𝑇+1(�̂�𝑥) −

P𝜃𝑥
(
𝜀𝑥,𝑇+1 ≤𝑄𝛼𝑥,𝑇+1(�̂�𝑥)|||𝑥,𝑇 )− 𝛼

𝑓𝜀𝑥,𝑇+1|𝑥,𝑇
(
𝑄𝛼
𝑥,𝑇+1(�̂�𝑥);𝜃𝑥

) (12)

has a conditional coverage probability equal to 𝛼 + 𝑂(𝑛−3∕2), where 
𝑓𝜀𝑥,𝑇+1|𝑥,𝑇 (⋅; 𝜃𝑥) denotes the probability function of the conditional dis-

tribution of 𝜀𝑥,𝑇+1, given 𝑥,𝑇 . We, finally, define the improved MaR 
forecast as follows:

+MaR1−𝛼
𝑥,𝑇+1(�̂�𝑥) =

[
1 − exp

(
�̂�𝑥 + �̂�𝑥 𝑌𝑥,𝑇 + +𝑄𝛼

𝑥,𝑇+1(�̂�𝑥)
)]
𝑀𝑥,𝑇 . (13)

2.4.2. MaR forecast for AR(1)-SVAR(1) model

For the case of the AR(1)-SVAR(1) model, we need to forecast the 
unconditional 𝛼-quantile of the error 𝜀𝑥,𝑇+1 rather than its conditional 
one. The forecasting is carried out by using the unconditional distribu-

tion of the latent volatility 𝑉𝑥,𝑇+1. We have already stated in Eq. (7) that 
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Fig. 1. The log mortality rates for (a) males and (b) females.
𝑉𝑥,𝑇+1 has a normal distribution with a mean of 𝜇𝑉𝑥 = 𝛾𝑥∕(1 − 𝛿𝑥) and a 
variance of 𝜎2

𝑉𝑥
= 𝜎2

𝜂𝑥

/(
1 − 𝛿2

𝑥

)
. For all 𝑧 ∈ℝ, we observe

P𝜃𝑥 (𝜀𝑥,𝑇+1 ≤ 𝑧) = P𝜃𝑥

(
𝜉𝑥,𝑡 ≤ 𝑧

exp(𝑉𝑥,𝑇+1∕2)

)
= E𝜃𝑥

[
Φ
(

𝑧

exp(𝑉𝑥,𝑇+1∕2)

)]
that is equal to the following integral:

∞

∫
−∞

Φ
(

𝑧

exp(𝑣∕2)

)
𝜙

(
𝑣− 𝜇𝑉𝑥
𝜎𝑉𝑥

)
d𝑣, (14)

where Φ(⋅) and 𝜙(⋅), respectively, denote the distribution function and 
the probability function of the standard normal distribution. We then 
suppose 𝑄𝛼

𝑥,𝑇+1(𝜃𝑥) to be a solution for 𝑧 in the equality P𝜃𝑥 (𝜀𝑥,𝑇+1 ≤ 𝑧)
= 𝛼.

The integral in Eq. (14), however, can not be evaluated analytically. 
To overcome the difficulty, we conduct a numerical method by firstly 
truncating this integral as in Syuhada (2020). For a given positive con-

stant 𝑐, we consider 𝜇𝑉𝑥 − 𝑐 𝜎𝑉𝑥 and 𝜇𝑉𝑥 + 𝑐 𝜎𝑉𝑥 as its lower and upper 
bounds, respectively. Thus, the truncation produces an error bounded 
above by

𝜇𝑉𝑥
−𝑐 𝜎𝑉𝑥

∫
−∞

Φ
(

𝑧

exp(𝑣∕2)

)
𝜙

(
𝑣− 𝜇𝑉𝑥
𝜎𝑉𝑥

)
d𝑣

+

∞

∫
𝜇𝑉𝑥

+𝑐 𝜎𝑉𝑥

Φ
(

𝑧

exp(𝑣∕2)

)
𝜙

(
𝑣− 𝜇𝑉𝑥
𝜎𝑉𝑥

)
d𝑣

≤ 2

∞

∫
𝜇𝑉𝑥

+𝑐 𝜎𝑉𝑥

𝜙

(
𝑣− 𝜇𝑉𝑥
𝜎𝑉𝑥

)
d𝑣 = 2

[
1 −Φ(𝑐)

]
.

In this study, we set 𝑐 = 8, so that the truncation error obtained is 
bounded above by 1.33 × 10−15. This truncation is then taken into ac-

count in finding a solution 𝑄𝛼
𝑥,𝑇+1(𝜃𝑥), where 𝜃𝑥 = (�̃�𝑥, ̃𝑏𝑥, ̃𝛾𝑥, 𝛿𝑥, ̃𝜎2𝜂𝑥 )

⊤

denotes an estimator for 𝜃𝑥 = (𝑎𝑥, 𝑏𝑥, 𝛾𝑥, 𝛿𝑥, 𝜎2𝜂𝑥 )
⊤. Once such 𝑄𝛼

𝑥,𝑇+1(𝜃𝑥)
is derived, we compute the estimative MaR forecast as below:

MaR1−𝛼
𝑥,𝑇+1(𝜃𝑥) =

[
1 − exp

(
�̃�𝑥 + �̃�𝑥 𝑌𝑥,𝑇 +𝑄𝛼

𝑥,𝑇+1(𝜃𝑥)
)]
𝑀𝑥,𝑇 . (15)

Now, the improved one-year MaR forecast, +MaR1−𝛼
𝑥,𝑇+1(𝜃𝑥), for the 

AR(1)-SVAR(1) model is defined by

+MaR1−𝛼
𝑥,𝑇+1(𝜃𝑥) =

[
1 − exp

(
�̃�𝑥 + �̃�𝑥 𝑌𝑥,𝑇 + +𝑄𝛼

𝑥,𝑇+1(𝜃𝑥)
)]
𝑀𝑥,𝑇 (16)

having an unconditional coverage probability of 1 −𝛼+𝑂(𝑛−3∕2), where
4

+𝑄𝛼
𝑥,𝑇+1(𝜃𝑥) =𝑄

𝛼
𝑥,𝑇+1(𝜃𝑥) −

P𝜃𝑥
(
𝜀𝑥,𝑇+1 ≤𝑄𝛼𝑥,𝑇+1(𝜃𝑥)

)
− 𝛼

𝑓𝜀𝑥,𝑇+1

(
𝑄𝛼
𝑥,𝑇+1(𝜃𝑥);𝜃𝑥

) . (17)

The unconditional probability function 𝑓𝜀𝑥,𝑇+1 (⋅; 𝜃𝑥) of 𝜀𝑥,𝑇+1 in Eq. (17)

evaluated at 𝑄𝛼
𝑥,𝑇+1(𝜃𝑥) is given by

𝑓𝜀𝑥,𝑇+1

(
𝑄𝛼
𝑥,𝑇+1(𝜃𝑥);𝜃𝑥

)
=

∞

∫
−∞

𝜙

(
𝑄𝛼
𝑥,𝑇+1(𝜃𝑥)

exp(𝑣∕2)

)
𝜙

(
𝑣− 𝜇𝑉𝑥
𝜎𝑉𝑥

)
d𝑣.

3. Result and discussion

An empirical study is conducted on the log mortality rate data for 
the United States population. The data spanning from the year 1933 to 
2018 include both males and females aged 1–90. Fig. 1 displays their 
three-dimensional surface plots that show a common “hump” achieving 
the lowest level for around the age of 10. In Fig. 2, we further report 
the summary of statistics for the yearly log mortality rates at each age. 
This figure also summarizes the resulting p-values of several statistical 
tests. The first one is the Jarque–Bera test rejecting the null hypothesis 
of normality at a 5% level of significance for several ages. The ADF test 
provides evidence that the data of the yearly log mortality rates are not 
stationary for all ages since the p-values are all above the significance 
level under consideration. This result leads us to note that we may not 
carry out time series modeling of the log mortality rates although both 
the data and their volatility appear to be time-varying and serially cor-

related based on the Ljung–Box and Engle’s ARCH tests, respectively.

We now move forward to the data of the changes in the log mortal-

ity rates whose surfaces are plotted in Fig. 3. It may be observed that 
these data are more volatile than the previous data of the log mortality 
rates, but their stationarity condition is achieved for all ages. This is be-

cause both the Engle’s ARCH and ADF tests produce low p-values (see 
Fig. 4). Hence, a conditional heteroscedastic time series model is ap-

propriately applied to these data. The use of an autoregressive term is 
important since the data have a negative mean and exhibit a serial cor-

relation. Note that this negative mean of the yearly log mortality rate 
changes indicates that the fall of the log mortality rate, as well as that 
of the mortality rate, occurs almost every year. Furthermore, a normal-

ity assumption also seems suitable due to a low value of kurtosis and a 
high p-value of the Jarque–Bera test for almost all ages.

Time series modeling is then conducted to the data of the yearly 
log mortality rate changes. For each fixed age, we first apply the AR(1) 
model for the conditional mean. After employing the conditional max-

imum likelihood method to estimate its parameters, we compute an 
error as the difference between the actual value of the observation and 
the fitted value in the same year for each age.

The ARCH(1) and SVAR(1) models are then fitted to the resulting 
error data to capture the conditional heteroscedasticity effect. To find 
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Fig. 2. The summary of (a) statistics and (b) p-values of hypothesis tests for the yearly log mortality rates. The statistics include mean, variance, skewness, and 
kurtosis. Meanwhile, the tests are the Jarque–Bera (JB) test of normality, the augmented Dickey–Fuller (ADF) test of stationarity, the Ljung–Box (LB) test of serial 
correlation, and the Engle’s ARCH test of conditional heteroscedasticity effect. The dashed line on the right column represents the 5% level of significance.

Fig. 3. The changes in the log mortality rates for (a) males and (b) females. Their values are computed according to Eq. (3).
an estimator for the model parameter vector, the maximum likelihood 
method is also taken into consideration. For the former model, we, 
specifically, carry out maximization of the conditional log-likelihood 
function. Meanwhile, the log-likelihood function of each error pro-

cess assumed to follow the SVAR(1) model is estimated through the 
Importance Sampling procedure before being maximized. To compare 
the performance between those two models and to determine the one 
having a better fit, we adopt the most common tool, namely Akaike 
5

Information Criterion (AIC), whose values are demonstrated in Fig. 5. 
From Table 1, we find that the AIC of the ARCH(1) model attains a 
lower value than that of the SVAR(1) model on 66 of 90 datasets for 
males and on 67.78% datasets for females. This result implies that, in 
terms of AIC, the ARCH(1) model is superior to the SVAR(1) model 
in accommodating the conditional heteroscedasticity effect in the error 
processes. The latter performs worse with an extremely high value of 
AIC for several datasets.
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Fig. 4. The summary of (a) statistics and (b) p-values of hypothesis tests for the yearly log mortality rate changes. The statistics include mean, variance, skewness, 
and kurtosis. Meanwhile, the tests are the Jarque–Bera (JB) test of normality, the augmented Dickey–Fuller (ADF) test of stationarity, the Ljung–Box (LB) test of 
serial correlation, and the Engle’s ARCH test of conditional heteroscedasticity effect. The dashed line on the right column represents the 5% level of significance.

Fig. 5. The values of AIC of the ARCH(1) and SVAR(1) models for the error processes for (a) males and (b) females. The AIC value of each model is computed as 
follows: AIC = −2𝓁(�̂�𝑥) + 2𝑝, where 𝓁(�̂�𝑥) denotes the maximized (conditional) log-likelihood function evaluated at the estimated parameter �̂�𝑥 and 𝑝 is the number 
of the components of such �̂�𝑥 .
Table 1. The number and the percentage (in 
parentheses) of lower values of AIC between the 
ARCH(1) and SVAR(1) models. The higher per-

centage is in boldface.

Model Male Female

ARCH(1) 66 (73.33%) 61 (67.78%)

SVAR(1) 24 (26.67%) 29 (32.22%)

The above proposed models of AR(1)-ARCH(1) and AR(1)-SVAR(1) 
are then employed to forecast the one-year MaR. The former produces 
the conditional MaR forecast whilst the latter accounts for its uncondi-

tional distribution. The MaR forecast for each model is found through 
two approaches. The first is substituting the estimated parameter vec-
6

tor to the MaR formula, so that we have an estimative MaR forecast. 
Meanwhile, through the second approach, an improved MaR forecast is 
obtained by modifying the resulting estimative MaR forecast. The com-

putation is conducted for each fixed age at a 99.50% level of confidence.

The resulting estimative and improved MaR forecasts for both gen-

ders are transformed through the natural logarithm, as shown in Fig. 6. 
It is found that the log of the estimative MaR forecast does not obvi-

ously differ from the log of the improved one computed based on the 
AR(1)-ARCH(1) model. Meanwhile, when the AR(1)-SVAR(1) model is 
considered, the estimative and improved MaR forecasts exhibit signif-

icantly different values at the same age. The log of the MaR forecast 
is low for younger males and females at the age around 10 and below 
20. As the age increases, the log of the MaR forecast goes up, suggest-
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Fig. 6. The log of the estimative and improved MaR forecasts at a 99.50% level of confidence based on the AR(1) model plus the ARCH(1) and SVAR(1) terms for (a) 
males and (b) females. The estimative and improved MaR forecasts for the former heteroscedastic model are computed according to Eqs. (11) and (13). Meanwhile, 
for the latter, we compute such forecasts based on Eqs. (15) and (16).
ing that a greater fall of mortality rates is experienced by older people. 
This result is in line with the behavior of the (log) mortality rates them-

selves.

4. Concluding remark

Stochastic models for the changes in the log mortality rates have 
been constructed by accounting for the conditional heteroscedasticity 
effect in the conditional variance or volatility. Other stylized facts in 
the mortality rate data may be interesting and important to investi-

gate and, hence, available models may also be extended to capture such 
facts. Furthermore, the (vine) copula method perhaps will provide a 
better goodness-of-fit of the models to the data by involving mortal-

ity rate dependence. The dependence may be analyzed between male 
and female individuals, among different years, among different ages, or 
among different states/countries in a certain region; see, e.g., Zhou and 
Ji (2021).

Mortality-at-Risk (MaR) we propose is basically a probability-based 
risk measure since it is determined by using the quantile of the fall 
of mortality rates at a certain level of confidence. This risk measure 
may be modified by employing (i) the expected-based framework, that 
accounts for the potential fall of mortality rates beyond the MaR, or (ii) 
an expectile, that may be more sensitive to the magnitude of extreme 
falls; see, e.g., Syuhada et al. (2021).
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