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Abstract

The lack of a deep understanding of how proteins interact remains an important roadblock in

advancing efforts to identify binding partners and uncover the corresponding regulatory

mechanisms of the functions they mediate. Understanding protein-protein interactions is

also essential for designing specific chemical modifications to develop new reagents and

therapeutics. We explored the hypothesis of whether protein interaction sites serve as

generic biding sites for non-cognate protein ligands, just as it has been observed for small-

molecule-binding sites in the past. Using extensive computational docking experiments on a

test set of 241 protein complexes, we found that indeed there is a strong preference for non-

cognate ligands to bind to the cognate binding site of a receptor. This observation appears

to be robust to variations in docking programs, types of non-cognate protein probes, sizes of

binding patches, relative sizes of binding patches and full-length proteins, and the explora-

tion of obligate and non-obligate complexes. The accuracy of the docking scoring function

appears to play a role in defining the correct site. The frequency of interaction of unrelated

probes recognizing the binding interface was utilized in a simple prediction algorithm that

showed accuracy competitive with other state of the art methods.

Author summary

Protein–protein interactions are key to understand the molecular level mechanisms of

regulation in the cell. However, there is still a limited understanding of what distinguishes

a protein-protein binding site from the rest of the surface. This lack of knowledge is mani-

fested in the relatively low accuracy of computational methods that try to predict protein

interfaces. In this work we report a new conceptual insight about protein interfaces. Our

results suggest that protein interfaces serve as generic binding sites to any ligand. This also

means that in the absence of the known binding partner it is still possible to define protein

interfaces by extensive docking studies of randomly selected, unrelated ligands, as they

have a strong tendency to bind to the cognate binding site. This insight was leveraged in a

new binding interface prediction algorithm that alone outperforms state of the art

approaches that often combine a variety of features.
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Introduction

Specific protein-protein interactions are essential for maintaining a robust phenotype. A deeper

understanding of these interactions would allow the identification of cognate ligands[1] and

drivers of specificity, opening a pathway to manipulating the corresponding interaction inter-

faces in drug design applications[2]. While it has been estimated that a protein on average inter-

acts with 3–10 other proteins[3], the Protein Data Bank[4] (PDB) contains a disproportionally

small fraction of known protein complexes. For most of the PDB entries neither the ligand pro-

tein nor the protein binding interfaces are known. In response to this important problem, a

number of methods have been developed to predict protein binding interfaces using structural

information, which may be available in the form of known experimental or computational

three dimensional models[5]. The methods to predict protein interfaces can be grouped into

two main approaches: (1) homology-based and (2) ab initio. Homology-based predictions of

interfaces rely on the knowledge of known protein complexes to infer the likely binding sites in

similar proteins. These methods can be very powerful[6, 7], but their applicability is limited by

the amount of known interfaces. Within the category of “ab initio” protein interface predictions

a number of studies have attempted to identify distinctive features of interfaces[8–14] often

employing various machine learning approaches. These features include residue composition

[15], residue conservation[16–18], hydrophobicity[19, 20], planarity[15], predicted secondary

structural features[14, 21], electrostatics[22], accessible surface area, among others.

Some studies found that different subtypes of protein interfaces (e.g. transient interfaces,

interfaces between homo- and heteromers, etc.) have distinct sequence features, which can be

exploited to predict some of the interface residues from sequence[14, 23]. For example, these

features suggest that interfaces for obligate complexes are somewhat more hydrophobic and

larger than other interfaces[15, 24]. Similarly, binding site hot-spots have been predicted using

residue composition, conservation analysis, or other structural features such as desolvation

effects[13]. However, a generic conclusion after many studies and using larger and more

diverse test sets is that protein interfaces do not have a specific composition or other universal

features they share[18, 25, 26]. This is arguably the expected conceptual conclusion as it is diffi-

cult to conceive a universal external evolutionary pressure that would unify interfaces[27].

Current success rates for protein binding interface predictions on a residue level are just barely

statistically significant when compared to random predictions[28].

Relevant to the current study are the works that discuss the possible generality of binding

site locations, both for small molecule and protein ligands. In the case of the former, it has

been observed as early as in the 1980s that small organic molecules, both substrates and non-

substrates tend to bind to similar, energetically favored “sticky” sites irrespective of their rele-

vance to the target. These observations were made by experimental studies that soaked target

proteins in organic solvents and examined the crystal[29] or NMR[30] structure for invariable

small molecules sticking to energetically favorable sites. Computational methods such as the

GRID[31], or the Multicopy Simultaneous Search (MCSS)[32] approach, as well as some of

the most competitive methods currently available[33], are also based broadly on this

observation.

It was observed in the late 1990s that protein superfolds (frequently occurring proteins that

share their overall structural topology but have a range of distinct functions) have “supersites”.

In other words, despite substantial sequence divergence and the evolved distinct functions, the

10–15 superfolds that dominate about half of the structural fold population of the genomes

[34] usually have very similar binding site locations[35]. This observation was subsequently

revisited and expanded to remote homologs with insignificant sequence similarity to the cog-

nate ligands for a range of different fold topologies[36, 37].

Protein—protein binding supersites
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Docking programs have been used successfully to predict partner-specific interface residues

such as the Atomic Contact Frequency (ACF)[38] or the Residue Contact Frequency (RCF)

method[39] and others[40]. These approaches require the prior knowledge of the cognate

ligand from other, indirect sources, such as high throughput screening methods.

In the current work, we explored the generality of the phenomenon of binding supersites.

We report the surprising observation that protein-protein interaction sites serve as generic

protein binding sites. Protein ligands, irrespective of their relevance to the receptor protein,

tend to bind to the cognate protein interface. This behavior does not depend on the docking

program used, the range and type of protein ligand probes employed, or more technical condi-

tions such as the size of the binding sites considered. Based on this new observation we intro-

duce a docking-based, ab initio method for binding site prediction that does not require prior

knowledge of the cognate ligand. Binding interfaces are determined by the frequency of a

receptor residue interacting with a range of unrelated protein ligands in extensive docking

simulations. A conceptual insight brought to light by our work is that protein shapes evolved

to allow a surprisingly small number of suitable surface patches for interactions that are appar-

ently sampled by a wide range of possible ligands. Alternatively, it may be that a variety of

unique residue patterns that evolved for recognizing a specific cognate protein ligand also

present an energetically relatively favorable site for non-cognate proteins.

Results and discussion

Unrelated protein ligands bind preferentially to the same receptor binding

site

We explored the hypothesis of whether protein-protein interaction sites also serve as generic

binding sites for a range of non-cognate ligands, and as such, behave similarly to protein-

small-molecule-binding sites[30, 32, 41, 42]. This would qualitatively generalize the observa-

tions made about supersites in superfolds[35]. We explored the preferred binding sites for a

set of unrelated ligands on a large set of receptor proteins. Surprisingly, we found that unre-

lated ligands have a strong tendency to dock to the same general area of a receptor as its cog-

nate ligand. We illustrate this in Fig 1, where three, topologically different ligands (all beta–

2jjs.C; mixed alpha and beta– 3h33.A; and a small protein fold with few secondary structures–

2v86.A), sharing no detectable structural or sequential similarity to the cognate ligand, all have

a strong tendency to dock to the cognate protein binding site on the receptor protein (1cnz—

3-Isopropylmalate dehydrogenase from Salmonella typhirium).

We explored the overall phenomenon by docking 13 different ligand probes, six immuno-

globulin folds and seven randomly picked small protein folds on a combined target dataset of

241[43, 44] proteins with structurally defined protein binding sites. We ranked the residues in

the receptor protein based on the RIF score (see Methods). The statistical significance of the

agreement of the top ranked residues and the cognate binding site was assessed by using

hypergeometric distribution to model the probability of correctly selecting an interface residue

by chance. Out of the 241 target proteins, in 157 ±2 cases (or 65.2 ± 0.9%) the binding site was

docked by a variety of unrelated ligands in a statistically significant manner. We evaluated the

performance by randomly selecting 2000 models from the total set of 26000 docked models

(13 X 2000 per ligand probe) and calculated the average performance and the standard

deviation.

We further broke down results by complex and database type. Performance on the Docking

Benchmark[44] and NOX[43] databases were 70.3% ± 1.1 and 61.1 ± 1.6, respectively. Further-

more, the NOX database contained a relatively well-balanced set of obligate(73) and non-obli-

gate complexes(60), and the results on these subsets were 68.7 ±1.9 and 51.8 ±2.2, respectively.

Protein—protein binding supersites
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We also evaluated the results using sensitivity/specificity ROC curves (Fig 2.) and obtained an

Area Under the Curve value of AUC = 0.79 for the combined set, while 0.83 and 0.77 for the

Docking Benchmark and NOX databases, respectively.

All these suggest that the observation about protein binding supersites is a generic feature

of proteins, with some fluctuation of specific success rates depending on the choice of test

database.

We also explored how well the cognate ligands bind to and define the annotated functional

site of the receptor proteins in comparison to unrelated ligands. (Fig 3) Interestingly, while the

cognate ligands have a tendency to better recognize the interface, this tendency is statistically

not significantly different from the results obtained for unrelated ligands.

Effects of choice of ligand probes, receptor size and docking programs on

the accuracy of results

We further subdivided our results as a function of different ligand probes and ligand sizes,

while also exploring two alternative docking programs, ZDOCK and GRAMM, to examine the

role that variations in the scoring functions play in detecting supersites. We found little depen-

dence on the type of probe used with either docking program (Fig 3). The differences in results

obtained using individual probes are mostly statistically insignificant. The success rate for the

NOX dataset depending on the ligand probes ranged between 54.1 to 65.4% with an average

success rate of 60.1% ± 3.9% using ZDOCK, while the success rate ranged from 36.8% to

51.9% with an average of 44.7% ± 4.4% using GRAMM. ZDOCK appears to yield slightly

Fig 1. Binding supersite of 1cnz.A. Three non-cognate ligands (lower row, from left to right, PDB codes: 2jjs.C, 2v86.A, 3h33.A) that share no detectable sequence or

structure similarity to the cognate ligand, are docked extensively on the surface of the receptor (upper row, 1cnz.A). In the upper row, ribbon model in transparent blue

shows the receptor structure. The annotated functional site in the receptor is shown using red transparent spheres for the Cα atoms. The predicted functional site

residues, as defined by the corresponding ligand probes underneath, is shown using green spheres for the Cα atoms.

https://doi.org/10.1371/journal.pcbi.1006704.g001
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better results with the immunoglobulin superfamily probes, while GRAMM works better with

the non-immunoglobulin set of ligand probes. If we use a consensus prediction from all 13

ligand probes, the performances in the case of ZDOCK and GRAMM are 60.1% and 44.7%,

respectively. The better performance of ZDOCK suggests that the energy function may play a

role in defining the “stickiness” of protein binding supersites. ZDOCK[45] uses a statistical

pair potential with a limited set of amino acid residue types, while the GRAMM[46] energy

function is arguably more general using a step function that includes a classic repulsion term.

We compared the actual interface residues predicted by the two docking programs,

ZDOCK and GRAMM. Although the entire set of interface residues predicted by the two

docking programs were not identical, for 40% and 79% of the 241 proteins in the data set, the

two docking programs predicted more than 10 or more than 5 interface residues in common

out of 15, respectively. To put these numbers in a statistical context: the expected number of

residues that are common out of 15 residues between any two random draws,—in protein

sizes 100, 150, 200, 250 and 300 are: 2.27, 1.58, 1.16, 0.82, and 0.81 residues, respectively. Con-

sequently, the two programs have a strong tendency to locate binding sites similarly. The cor-

responding p-values of observed common residues between ZDOCK and GRAMM are all

significant at any protein size.

We explored an additional aspect of the potential impact of the employed energy function.

ZDOCK ranks the generated docked poses by their energy score, so we explored if there is a

difference in performance between the top-scoring and bottom-scoring docked poses. Indeed,

this phenomenon can be observed once we plot the performance of the first and last 200

docked poses (Fig 4). There is a weak but persistent tendency that energetically higher ranked

Fig 2. ROC curve for the combined set of 241 test proteins; blue: Docking Benchmark dataset; orange: NOX dataset; green:

combined data set. AUC values: DOCKB = 0.83; NOX = 0.77; Combined = 0.79.

https://doi.org/10.1371/journal.pcbi.1006704.g002
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poses are more useful in identifying binding sites (Fig 4). These small differences disappear as

the number of sampled conformations approach 200 and beyond. The differences between the

accuracy of ZDOCK and GRAMM and between top-ranked and bottom-ranked docked poses

of ZDOCK suggest that a more accurate energy function will identify binding sites more accu-

rately because the relative affinity of non-cognate ligands will be better captured.

When considering the possible reasons for the existence of protein binding supersites,

besides the general energetic preferences of certain “sticky” areas of the protein, one could also

consider receptor-shape-driven causes. For instance, one could speculate that in the case of

small proteins it might be a geometrical artifact that only a confined area is suitable to accept

interactions. However, the distribution of the size of receptors in the current work has a large

range (<100 residues to>700 residues) for which the ability to detect supersites appears to be

uniformly high (Fig 5).

Effect of using different subsets of docked complexes

We further dissected the possible differences in performance between the two docking

approaches. First, we compared the performance of these techniques using 2000 models gener-

ated by the methods, irrespective of the size of the identified binding interface, with the perfor-

mance when using only a subset of the docked complexes that have the most common

interface sizes; in the current work, formed by 9 residues (Table 1). Though the GRAMM

docking method appears to sample a larger fraction of all the residues in the protein (85.9% vs

Fig 3. Performance dependence on probe. Dependence of % Significance on the choice of ligand probes using ZDOCK. The performance of each of

the 13 probes is shown separately on the combined set of 241 query proteins. The overall average of these independent 13 performances is shown in

red X with standard deviation. Orange circle with standard deviation shows the average result of 2000 structures drawn randomly from the 26,000

total docked structures pooled from the 13 probes. Green triangle shows the performance of the 13 single cognate ligands, one for each of the query

proteins. Black square indicates performance if all docked poses from all probes are used together.

https://doi.org/10.1371/journal.pcbi.1006704.g003

Protein—protein binding supersites

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006704 January 7, 2019 6 / 17

https://doi.org/10.1371/journal.pcbi.1006704.g003
https://doi.org/10.1371/journal.pcbi.1006704


72.1%) as well as the interface residues (99.6% vs 97.5%), ZDOCK identifies a larger number

of true interface residues ranking in the top 15 positions (60.1% +/- 3.9 for ZDOCK vs. 44.7%

+/- 4.4 for GRAMM). In case of considering 9–residue patches only, as expected, the total

number of residues sampled (40.7% for ZDOCK and 54.6% for GRAMM) as well as the inter-

face residues sampled (39.6% for ZDOCK and 76.8%) is smaller, which apparently has a strong

influence on the method performance. In particular, the GRAMM docking method performs

significantly worse when a subset of docked complexes, consisting only 9-residues is used in

the analysis with a % significance of 21.6 ±3.4 compared to 48.4 ±4.7 using ZDOCK.

The effect on accuracy of the number of docked conformations and

number of probes

We used 13 different ligand probes and by default 2000 docked conformations to locate the

binding site of a receptor protein. This amounts to 13x2000 = 26,000 docked poses. We gradu-

ally reduced the number of docked poses and found that with 13 ligands as few as 200 docked

conformations are sufficient to establish the same results as before, with 2000 poses (Fig 6).

Another aspect of the binding site exploration is the number and variety of probes

employed. Upon plotting the performance of all the 13 probes independently, it is clear that

these perform in a relatively tight range and that the observed small differences most likely can

be acknowledged to the particular set of test proteins used. As an empirical test, the accuracy

using ZDOCK changes from 65.4 when averaged over a subset of 6 randomly selected different

Fig 4. Effect of % significance on the number of models used (first 200 docked models (red) or the last 200 docked models (blue) as ranked by

the scoring method of ZDOCK.

https://doi.org/10.1371/journal.pcbi.1006704.g004
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probes to 63.2 when averaged over all 13 different probes. We found that randomly selecting

2–3 probes already provides robustly the same performance results as running all 13 probes

(Fig 6).

Effect of using uncomplexed target proteins

It has been shown that docking based methods are less successful to predict the correct binding

pose and binding site when targeting uncomplexed receptors, especially the ones that undergo

substantial conformational change upon binding to their cognate ligand. In our case we do not

restrict our analysis to the cognate ligand and to a few (or one) docked poses with the lowest

energetics, as such an approach is likely to be insensitive to small conformational changes.

Non-cognate ligands bind with much lower affinity, and we are capturing the relative prefer-

ence of any ligand to dock to the cognate binding site. We manually identified 95 target pro-

teins in our combined set for which we could locate a PDB structure in an uncomplexed form.

Fig 5. Number of receptor proteins (blue) in each size range and the number of successful predictions (orange) in each range.

https://doi.org/10.1371/journal.pcbi.1006704.g005

Table 1. Sampling of residues by the different docking methods, within the entire protein and on the interface only, using all docked complexes, and using only a

subset of docked complexes where the interface is made of 9 residues.

Docking

Method

% total residues

sampled

% Interface residues

sampled

% total residues sampled in 9-residue

patches

% Interface residues sampled in 9-residue

patches

ZDOCK 72.1 97.5 40.7 39.6

GRAMM 85.9 99.6 54.6 76.8

https://doi.org/10.1371/journal.pcbi.1006704.t001
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The F-scores of "apo" and "holo" forms for this subset of 95 target proteins is include in the

Supplementary Information (S1 Fig). On this subset, the success rate of capturing binding sites

has an average F-score of 0.27 and 0.26 for the complexed and uncomplexed targets, respec-

tively, a statistically insignificant difference.

Performance within and outside of superfolds

An important aspect of this study is to explore if the observed phenomenon is a function of

fold types, or something more general. The distribution of protein folds is very uneven[34],

with 12 superfolds populating about one third of the human genome. It has been discussed in

the literature that these superfolds have a tendency to preserve their ancient/general binding

interface despite their divergence into a range of distinct functions[35]. We analyzed our data-

set to examine whether the well-performing interface detections using unrelated ligand probes

work disproportionally well for these superfolds. Of the 241 protein chains, 91 belong to one

of the top 12 CATH[47] superfamilies, roughly recapitulating the proportion of superfolds in

biological systems. The success rates for the 91 superfamily and 131 non-superfamily classified

Fig 6. Dependence of % significance as a function of the number of docked models used for each ligand probe. The red dotted line represents the average of

all the 13 probes. All other lines are for the individual probes.

https://doi.org/10.1371/journal.pcbi.1006704.g006

Protein—protein binding supersites

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006704 January 7, 2019 9 / 17

https://doi.org/10.1371/journal.pcbi.1006704.g006
https://doi.org/10.1371/journal.pcbi.1006704


cases are 71.0% and 62.2% using ZDOCK, respectively, and then 30.0 and 40.8 using GRAMM

(Table 2). These small and non-systematic differences suggest that there is no preference for

superfamily proteins, and that supersites are characteristic to all protein folds. Further break-

ing down of the results in a benchmark database dependent fashion shows that the general per-

formance on the Docking Benchmark dataset is significantly better with ZDOCK than with

the GRAMM docking approach, and for the NOX dataset these differences are substantially

reduced (Table 3). However, no systematic preference emerged of supersites in superfolds, in

fact, non-superfold subsets outperform in two out of four subsets (ZDOCK with NOX data-

base, and GRAMM with Docking Benchmark).

In order to understand some of the differences in performances, we examined the specific

superfamily classifications of the proteins represented in the two datasets (Table 4). In the

Docking Benchmark, we found a highly skewed distribution of superfolds, where 66% of the

superfamily classification is “immunoglobulin-like” while 14% are classified as the Rossman

fold. Meanwhile, the NOX dataset is slightly better balanced, with the Rossman, TIM-barrel,

and Immunoglobulin-like folds comprising 48.8%, 19.5%, and 17% of the dataset, respectively.

It is possible that ZDOCK is better tuned to dock immunoglobulin like folds and their over-

representation has shifted the results higher in the Docking Benchmark dataset.

Comparison to other interface prediction methods

Slightly different interface definitions can drastically change the number of residues involved

in the interface. A recent study suggests that even in the case of nearly identical definitions, the

disagreement between different definitions can be substantial, suggesting that a ~0.8 F-score as

a practical upper limit for prediction methods[48]. In addition, residues not involved in direct

contact with a ligand can have a profound effect on binding, as illustrated by a number of stud-

ies[2]. Meanwhile, random predictions are distributed with a peak around 0.1 F-score[28] but

many individual random predictions reach up as high as 0.2 F-score. Current protein interface

prediction methods that provide results on a residue level and with an F-score accuracy, report

statistically significant but generally speaking fairly low accuracies[28, 49, 50]. For instance,

Table 3 in Taherzadeh et al.[49] published this year, reports seven methods, with F-score

performances in the range of 0.18–0.31. These methods typically use different benchmark

datasets therefore a substantial part of the variation among the performance probably can be

Table 2. Performance of identifying binding sites as a function of superfamily classification on the combined set of 241 test proteins.

CATH Superfamily Total # of cases Significance (ZDOCK) (%) Significance (GRAMM) (%)

Yes 91 71.0 30.0

No 131 62.6 40.8

MIixed 17 82.3 43.8

Not Classified 2 50.0 50.0

https://doi.org/10.1371/journal.pcbi.1006704.t002

Table 3. Performance for DOCKB and NOX datasets.

CATH DOCKB Dataset NOX Dataset

Superfold Classification Total # % Success (ZDOCK) % Success (GRAMM) Total # % Success (ZDOCK) % Success (GRAMM)

Yes 50 80.0 16.3 41 61.0 46.3

No 56 60.7 45.4 75 64.0 37.3

Mixed 2 100.0 0.0 15 80.0 46.7

Not Classified 0 2 50.0 50.0

https://doi.org/10.1371/journal.pcbi.1006704.t003
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acknowledged to that fact. To put our results in this general context we converted our perfor-

mance into F-score evaluation and obtained an average F-score of 0.35 using ZDOCK and

0.22 using GRAMM, which compares well with the recent values in the literature using other

methods to identify protein-protein interfaces. The good performance is especially promising

as our approach is based on the direct evaluation of a single feature while all other methods are

using a combination of a number of features in machine learning setting.

Conclusion

In this work, we have shown that protein binding supersites exist in proteins, i.e. the protein

binding interface provides an energetically-preferred binding site for many alternative, non-

cognate proteins as well. There were previous, anecdotal studies that noted that even non-cog-

nate ligand have tendency to accumulate around the cognate site, as it was shown in case of

chymotrypsin when docked with a non-native binder, lysosyme[40]. Other recent studies also

pointed in the direction of our current observation[51, 52]. Employing an energy landscape

based analysis it was observed that binding sites can be identified without the prior knowledge

of the cognate ligand. In that study, in a strict filtering protocol, the few lowest energy binders

were identified for subsequent mapping of their preferred binding poses. Though this

approach delivered an effective prediction method, it left open the following question—are

these low energy binding poses related to the cognate binding partner, and thereby represent-

ing similar binding affinities, and likely, a similar binding interface? Also, the observations

were not generalized, the successful cases were not analyzed in terms of protein topology, to

illustrate if the observations go beyond the original observations made about superfolds, where

binding sites are preserved despite a long evolutionary history of sequence divergence. We

observe that these sites can be effectively detected by employing an extensive docking sampling

with a range of unrelated protein ligand probes. In another study the Hex docking approach

was used in cross docking experiment and suggested the existence of “favored” sites[53]. The

authors have noted a tendency of these sites to be closer to the center of mass of the protein

and explored residue type preferences of binding patches. A wide variety of probes were used

with different topologies but the phenomenon was not generalized in terms of distribution on

folds, to see if these observations are generic over all fold types or work mostly for superfolds

as it was established in 1998[54]. The accuracy of this approach to detect protein binding sites

is comparable to other state-of-the-art techniques. However, it uses a mostly orthogonal input

Table 4. Performance for individual superfold members.

CATH Superfamily DOCKB Dataset NOX Dataset

Total # % Significant Total # % Significant

(ZDOCK) GRAMM ZDOCK GRAMM

Rossman Fold 7 28.6 14.3 20 50.0 50.0

Immunoglobulin Like 33 84.8 6.3 7 85.7 71.4

TIM Barrel 1 100.0 0.0 8 75.0 37.5

Four Helix - - - 2 50.0 50.0

Trefoil, Acidic Fibroblast growth factor 1 100.0 100.0 2 100.0 0.0

alpha-beta plaits 1 100.0 0.0 - - -

OB Fold 3 100.0 33.3 1 0.0 100.0

Jelly roll 3 100.0 33.3 - - -

Globin like 1 100.0 0.0 - - -

Alpha-beta barrel - - - 1 100.0 0

https://doi.org/10.1371/journal.pcbi.1006704.t004
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in comparison to many existing technologies, and as such, a practical outcome of this study is

both a new, standalone binding site prediction algorithm and an opportunity to improve exist-

ing binding site predictions by incorporating this information with other existing techniques

that use residue preferences, conservation, geometrical definitions, among others. On the con-

ceptual level, our observations argue that possibly a combination of geometrical restraints

(shape of the local molecular surface) and energetically preferred residue patterns are responsi-

ble for establishing these supersites. Given past experience and our current results, we believe

that the number of combinations of how an energetically “sticky” patch can be established var-

ies substantially. However, the fact that docking algorithms, which combine shape comple-

mentarity with a scoring function that assesses interactions, are able to capture many of these

sites suggests a path forward in the characterization of protein interfaces. Docking methods

were benchmarked in a number of studies that showed a lack of strong correlation between

calculated and experimental binding affinities[55]. The current study implicitly confirms this

observation when we show that the success of identifying binding interfaces does not depend

in a statistically significant manner on whether one uses cognate or non-cognate ligands, albeit

a small trend favoring cognate ligands can be detected. This suggests that more generic ener-

getic features are captured.

Materials and methods

Datasets and definition of interface

Two different datasets were employed in this study. A set of 108 protein chains from the Dock-

ing Benchmark[44] and another set of 133 protein chains from the NOX database[43], 73 and

60 of which are obligate and non-obligate complexes, respectively. The protein binding inter-

faces were identified from the three dimensional structure of the complexes using the CSU[56]

program. A residue was considered to be at the interface if any of its atoms is within 3.5 Å of

any atom of the interacting protein in the complex and establishes a legitimate contact type

according to the CSU classification.

Interface prediction method

In our approach we use a total of 13 ligand probes, none of which are known partners or share

any detectable sequence similarity to known ligands for the query proteins in our data set. Six

of these ligand probes were immunoglobulin folds (PDB[57] codes: 1i85.D, 2jjs.C, 2wbw.C,

1t0p.B, 2ptt.B, 3udw.C), as we assumed this fold evolved to be particularly suitable and generic

to explore protein surfaces. Seven others were selected randomly. PDB entries were split into

chains and clustered at 25% sequence identity level. All protein solved by NMR and not within

the range of 70–250 residues were removed. From the remaining set we selected 7 proteins

(between 70–120 residues) with different topologies compared to one another (1whz.A, 2eaq.

A, 2v86.A, 2w8x.A, 2y2y.A, 3h33.A, 5cuk.A).

Two different docking programs, ZDOCK[45] and GRAMM[58] were used to generate a

maximum of 2000 docked complexes for each of the protein chains in our dataset with each of

the 13 ligand probes. The 2000 complex structures for each receptor-ligand probe pair were

analyzed using CSU to identify the residues at the interface, Rik, where i is the residue position

number and k is the kth docked complex structure. If a residue is at the interface, then I(Rik) =

1; otherwise, I(Rik) = 0. A Residue Interface Frequency (RIF), Ni was determined for each resi-

due at position i in the receptor protein by summing over all the 2000 docked structures.

Ni ¼
X2000

k¼1
IðRikÞ
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The residues were then ranked based on the Ni values, and the top 15 ranking residues were

considered most likely to be at the interface. The residues were also ranked similarly by using a

subset of the 2000 complex structures all of which contained exactly nine residues at the inter-

face (the most frequent interface patch size during the simulations). This subset generally con-

sisted of between 150 and 300 complex structures.

Performance evaluation

The actual number of interface residues varies with each receptor protein. We considered the

number of true positive predictions of interface residues in the top 15 rankings assigned by our

method. The performance of the current RIF method was evaluated using a statistical significance

test by comparing it with a random prediction. The probability of randomly selecting x interface

residues in the top K predicted residues (K = 15 in our case) for a query protein chain with N is

the total number of residues sampled during the extensive docking simulation and M actual

interface residues is given by the probability mass function of the hypergeometric distribution:

PðX ¼ xÞ ¼
M

x

 !
N � M

K � x

 !,
N

K

 !

An interface prediction is considered significant if P(X = x)< 0.05. The performance is

expressed as

%significance ¼
Number with PðX ¼ xÞ < 0:05

Total number in the dataset
X 100

Theoretically, the hypergeometric distribution can be exposed to some instability when

very small numbers of discrete residues are assessed for significance; therefore, performance

was also evaluated empirically, by randomly sampling 15 residues from the surface exposed

residues sampled during the extensive docking simulation of the query protein 200 times and

finding the average number of interface residues, μ, and the standard deviation, σ. A Z-score

was then calculated, Z = (N–μ)/ σ, where N is the actual number of interface residues in the

top 15 using the RIF method. The prediction was considered significant if Z> 1.97. The % sig-

nificance evaluated using the hypergeometric distribution and the random sampling method

yielded identical results.

Receiver operating characteristic curves ROC were calculated by plotting the true positive

rate (sensitivity) against the false positive rate (1- specificity). Corresponding Area Under the

Curve values were obtained.

Functional residues are a small fraction of the total residues, so true negatives far outnum-

ber true positives. Therefore methods that heavily reward true negatives, such as the “specific-

ity” and the “accuracy”, are less appropriate than ones that do not, such as the “F-Score”[59]

and appropriately F-scores were used in a number of previous studies. Therefore success of a

functional residue prediction was also assessed by the F-score, the harmonic mean of precision

and recall (2�precision�recall / (precision + recall)), where precision is the ratio of true posi-

tives to the sum of true and false positives and recall is the ratio of true positives to the sum of

true positives and false negatives.

Supporting information

S1 Fig. Head-to-head comparison of F-scores of the interface prediction method of apo

and holo proteins for a set of 95 proteins chosen from the Dockb and NOX datasets.

(TIF)
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S1 Text. List of complexed-uncomplexed structures used in Fig 1.

(TIF)
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