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SUMMARY

Molecular subtypes, such as defined by The Cancer Genome Atlas (TCGA), delineate a cancer’s 

underlying biology, bringing hope to inform a patient’s prognosis and treatment plan. However, 

most approaches used in the discovery of subtypes are not suitable for assigning subtype labels 
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to new cancer specimens from other studies or clinical trials. Here, we address this barrier by 

applying five different machine learning approaches to multi-omic data from 8,791 TCGA tumor 

samples comprising 106 subtypes from 26 different cancer cohorts to build models based upon 

small numbers of features that can classify new samples into previously defined TCGA molecular 

subtypes—a step toward molecular subtype application in the clinic. We validate select classifiers 

using external datasets. Predictive performance and classifier-selected features yield insight into 

the different machine-learning approaches and genomic data platforms. For each cancer and data 

type we provide containerized versions of the top-performing models as a public resource.

Graphical Abstract

In brief

Ellrott et al. provide a means to assign patient samples from clinical trials and other cancer 

genome studies to published TCGA molecular subtypes. Applying machine learning to data 

from five different molecular platforms for 8,791 TCGA tumor samples, they contribute a 

public resource of 737 top classifier models, which can form the foundation for clinical assay 

development.

INTRODUCTION

Cancers have traditionally been classified by their originating organ or anatomic site, 

and within a cancer type by histological features, morphologic grade, and AJCC/UICC 
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TNM stage.1–3 Such cancer subtyping informs prognosis, guiding therapeutic approaches 

or surgical interventions. The separation of cancers by site of origin is substantiated by 

cancer genome studies, which find distinct genomic and transcriptomic biology associated 

with the main cancer types, reflective of their different tissue origins.4–9 Large-scale cancer 

genome projects, such as The Cancer Genome Atlas (TCGA), also reveal previously 

unrecognized molecular heterogeneity and discrete subgroups within cancer types, providing 

an opportunity to enhance cancer classification by defining molecular subtypes within 

cancer types.

Molecular subtypes may eventually complement and even supersede traditional 

histopathological classifications.10–16 However, clinical use of molecular subtyping for 

most cancers remains in its infancy. Clinical implementation of molecularly defined 

subtypes requires straightforward, accurate, and reproducible clinical assays that can place 

a new tumor into a previously defined molecular subtype classification scheme. Molecular 

subtypes are often initially identified using unsupervised or integrative clustering methods 

that produce results intrinsic to that specific dataset, and which do not carry over to patients 

from a different dataset. Gene expression signatures generated during subtype discovery 

may inform on the underlying differences in biology among the subtypes, but they have 

substantial feature redundancy, have not been tested by cross-validation or validation on 

other sample sets, are overfit for the subtype discovery dataset, and usually have low 

predictive power for samples from other studies.

In the work reported here, we start to bridge the gap between the discovery of molecular 

subtypes in an existing cancer cohort, and the application of these subtype labels for a 

newly diagnosed patient in the clinic. Using five different machine-learning (ML) methods, 

we trained classifier models that reduce feature redundancy and constrain or minimize 

feature numbers, while using cross-validation strategies to reduce overfitting, and to assess 

prediction performance. We produced 412,585 distinct classifier models, incorporating five 

different data types for 8,791 TCGA samples, comprising 26 different cancer cohorts 

and 106 subtypes. We created an online resource of 737 publicly available, containerized 

predictive models, representing the top models for each of the 26 cancer cohorts, five 

training algorithms, and data types. Our collection of classification models provides a rich 

resource of gene-based feature sets for the creation of compact cancer testing panels and kits 

to clinically subtype non-TCGA patient tumor samples.

RESULTS

TCGA tumor subtype definitions and classification model development

Tumor classification in the patient care setting generally starts with a known cancer type, 

informed by histopathology and anatomic location. We therefore took a cancer-type-centric 

approach to subtype classification. We retrieved the molecular subtypes reported by TCGA, 

which had defined cancer subtypes using appropriate data types and methods for each cohort 

(Figure 1; Table S1). For cancer cohorts with partially overlapping and related subtypes, we 

merged TCGA cohorts, resulting in 26 distinct cancer cohorts.
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We assembled all genomic data for five data platforms (mutation, copy number, mRNA, 

DNA methylation, and miRNA) from PanCancer Atlas resources (gdc.cancer.gov/node/977). 

We used a gene-centric approach to facilitate the analysis of the biological significance 

of the selected features. To simplify future clinical assay development, we emphasized the 

selection of fewer features while retaining predictive performance.

We constructed subtype-balanced repeated cross-validation folds for all cohorts, and set 

these as training and test sets (Figure 2A). We applied five ML approaches: AKLIMATE,17 

CloudForest,18 SK Grid,19 JADBio,20 and subSCOPE8 (Figure 2B; Table S2). SK Grid 

and JADBio each employed a collection of embedded approaches, thus the true number 

of approaches implicitly tested in our study is far more than five. For AKLIMATE, 

CloudForest, SK Grid and JADBio, each cancer cohort was trained separately. In contrast, 

we trained sub-SCOPE’s Neural Nets (NNs) on subtype data from all cancer cohorts 

simultaneously. We trained and tested all classifiers using the same cross-folds, and 

aggregated results into a single matrix. We generated performance statistics from the test 

cross-folds, and retained the classifier-selected features for further analysis. Because the 

word “accuracy” has a specific statistical meaning in the predictive model literature,21 we 

avoided the colloquial usage of the term “accuracy,” and preferred the term “performance,” 

as defined by the overall weighted F1 score.22

Data types used to define subtypes influence prediction performance and classifier-
selected features

The top models from each method demonstrated similar cohort-level performance (Figure 

S1). Differences in performance among subtypes within a cohort varied from 0.00 in ESCC 

and TGCT to 0.37 in COADREAD (Figure 3A). Four striking observations emerged from 

a comparison of prediction performances and selected features across cancer types. First, 

cancer cohorts with subtypes defined in the original TCGA publications by multiomics 

or by histology often yielded highly accurate classifiers (Figure 3A). Second, for most 

cancer types, mRNAs predominated among features selected in the top models (Figure 

3B; Tables S3, S4, and S5). Third, classifiers for cancer cohorts originally subtyped 

using mutation (SKCM) or DNA methylation (LGGGBM) often selected features from the 

corresponding data types for the top models (Figure 3B). Fourth, subtypes that were defined 

using summary statistics of genome-wide features such as mutational load, chromosomal 

instability, and CpG island methylator phenotype (CIMP) (e.g., GEA and COADREAD) are 

difficult to capture using individual gene-centric features, as used in our training, and thus 

the resulting classifiers achieved relatively low performance.

Models recapitulate PAM50 assignments in external validation tests

We investigated whether our BRCA subtype mRNA classifiers could accurately predict 

PAM50 label assignments23 in two independent breast cancer cohorts. We used the 

METABRIC24 and AURORA25 breast cancer cohorts datasets, which offered challenges that 

we anticipate may be encountered in applying our models to other studies: METABRIC data 

were produced on a different mRNA platform—expression microarrays, while AURORA 

represents a small cohort with formalin-fixed, paraffin-embedded (FFPE) samples. We 

applied the SK Grid and AKLIMATE mRNA models to transformed METABRIC data, 
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and obtained predictions of the PAM50 subtypes highly concordant with the PAM50 

assignments in the original METABRIC publication (Figures 3C and 3D).24 Samples with 

discordant classifier calls between METABRIC’s PAM50 assignments and either SK Grid or 

AKLIMATE model predictions were more likely to have negative silhouette scores26 (p = 

5.6 × 10−15, one-sided Mann-Whitney Wilcoxon Test), representing samples with less robust 

PAM50 classification assignments (Figure 3C). The silhouette score represents a metric for 

how similar that sample is to its assigned class, relative to the next-best class.26

The AKLIMATE model outputs a prediction probability for each subtype assignment for 

each tested sample. We used the difference in prediction probabilities for the top two 

subtype calls for each sample to estimate the AKLIMATE subtype prediction confidence 

for that sample. The difference would be expected to be small in cases where the sample 

subtype is not confidently predicted, because the top two predicted subtypes would have 

similar probabilities. We found that this estimate of subtype prediction confidence correlated 

very well with the silhouette scores obtained for the original METABRIC assignments, 

particularly for the luminal A (Spearman Rho = 0.69, p = 5 × 10−67) and basal-like 

(Spearman Rho = 0.60, p = 10−12) subtypes (Figure 3E).

To assess the degree to which technical differences in the data production platform in 

other datasets may lower classifier performance, we investigated the performance of a 

rank-based machine-learning approach called multiclassPairs,27 a multi-class version of the 

binary (two-class) k-top scoring pairs (kTSP) classifier,28 which would be expected to be 

more tolerant of platform technology differences. This approach performed comparably 

to the other methods we tested with gene expression data (Figures S2A–S2D). While the 

rank-based multiclassPairs was never the top-performing method, its relative insensitivity to 

data platform may prove to be a benefit in some applications.

We investigated whether training classifiers on the subset of samples with high silhouette 

score subtype calls would produce higher-ranked models, or whether focusing on the subset 

of samples with low silhouette scores would instead yield better performance. We compared 

equally sized data subsets, enriching for either high silhouette scores, which we refer 

to as the “typical set,” or enriching for low silhouette scores “atypical set,” versus no 

enrichment for silhouette scores “full set” (Figure S2E). Remarkably, we found that building 

models using samples from the “full set,” which includes both typical subtype core samples 

and ambiguously assigned samples, produced models with the highest concordance to the 

original METABRIC subtype assignments.

We investigated whether our models would perform well on a small cohort of FFPE-

processed primary breast tumor samples from the AURORA study,25 since FFPE processing 

is known to affect gene expression data characteristics.29 We achieved a model performance 

similar to that obtained for METABRIC (Figures S2F–S2G).

More input data types or numerous features do not drive model performance

To assess whether single data types can be used to efficiently categorize samples into 

subtypes, we compared classifier performance using all platforms jointly as data inputs with 

the performance obtained using each individual platform alone (Figures S3A and S3B). For 
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half of the cancer cohorts, the best model built using a single data type as input achieved 

performance as good as models constructed using all data types jointly (Figure 4A; indicated 

by asterisks).

The five ML methods selected very different numbers of features, with some methods 

(e.g., CloudForest) constrained a priori, and others (e.g., JADBio) purposefully designed 

to select few features. To estimate which methods could achieve better performance per 

allowed feature, we determined the performance of each method, while constraining the 

number of features in the model outputs at varying feature set sizes, and calculated areas 

under the curve (AUC) for individual tumor types (Figure 4B). We refer to this aggregate 

measure across a range of feature set sizes as the “cohort AUC.” We found that this metric, 

which adjusts for the number of features, yielded similar results for the three methods 

analyzed (AKLIMATE, CloudForest, and JADBio), with JADBio often displaying slightly 

higher cohort AUC than the other two methods, reflecting a more efficient selection of 

features (Figure 4B). The shape of these curves revealed that performance rapidly plateaus 

at approximately 10 classifier features, suggesting parsimonious classifiers with very few 

features are sufficient to recapitulate the subtypes for most cohorts.

mRNA features predominate in top models for most cancer types

Models using mRNA feature inputs performed well on cancer cohorts with subtypes defined 

by multi-omics (Figures 4A and 4B). This suggests that subtypes defined by multiple data 

types or histology may represent distinct biologies that are relatively easy to capture at the 

transcriptome level. Classifiers developed using gene expression feature inputs significantly 

outperformed models derived using the next best single data types in 10 out of 26 cancer 

cohorts (Table S4). In the few tumor types for which features from data types other than 

mRNA were significantly more predictive, the best classifier-selected data type generally 

matched the one originally used to define the subtypes. For example, for LGGGBM and 

GEA, DNA methylation input features yielded significantly more accurate models than 

those that used gene expression features (Figures 4A and 4B; Table S4). SKCM subtypes 

were originally defined by mutation features, and models built with mutation input features 

significantly outperformed models using mRNA features (Figure 4B; Table S4).

Features shared across methods reflect known tumor biology

The ML literature suggests that for high-dimensional datasets it can be difficult for the 

same method to find a reproducible feature set.30–32 Highly correlated features such as 

co-regulated genes can exacerbate this issue. Nonetheless, when two or more ML methods 

select the same feature, this feature likely provides a particularly strong signal on which 

to base subtype classification. When we compared the overlap in features selected by the 

best-performing models for each method, we found that models with fewer features tended 

to display a much stronger degree of feature overlap with other models. For example, we 

noted that SK Grid selected the smallest number of features (n = 9) for BRCA (Figure 

5A), and all nine of these features were shared with at least one other BRCA model. Most 

features were selected by a single method, and some of these unique features may represent 

distinct members of a larger correlated set that captures the same biology. When the number 

of selected features is constrained, methods may be forced to choose arbitrarily among 
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sets of equally good predictors. Newer feature-selection methods,33 some of which are 

incorporated into JADBio, try to identify multiple, equally and optimally predictive subsets 

of features to address this issue.20

For each cohort’s subtypes, we defined features that were selected by two or more methods 

as the core set of features. We found that core sets were enriched in biological themes. 

For example, for BRCA subtypes, all five methods selected the two mRNA features, ESR1 
and FOXC1 (Figure 5A). Both are important in breast development and in breast cancer.39–

41 ESR1 encodes the estrogen receptor alpha, an important biomarker in breast cancer 

classification, prognosis, and predicting treatment response. FOXC1 encodes a chromatin 

remodeling factor that drives cell plasticity and partial EMT,41 with expression strongly 

anti-correlated to the pioneer transcription factor FOXA1 (selected by two methods), which 

interacts with ESR1 to promote luminal cell fates.42 Of the 38 mRNA features in the BRCA 

core set, 17 were genes represented in the original PAM50 breast cancer panel.23

For COADREAD subtypes, DNA methylation features dominated most ML approaches 

(Figure 5B), consistent with a strong influence of DNA methylation in the original subtype 

definitions. Many of the DNA methylation features have previously been reported to be 

hypermethylated in colorectal adenocarcinomas with a CpG island methylator phenotype 

(CIMP-high), or were identified as epigenetically silenced in previous studies (genes 

indicated in red font).35,36 Notably, promoter methylation of MLH1, which is responsible 

for most sporadic cases of microsatellite instability (MSI), was selected by four out of five 

methods; similarly, SFRP5, a negative regulator of Wnt signaling, and frequently silenced by 

promoter methylation in CIMP-high colorectal cancer,43 was selected by four methods.

For SKCM subtypes, the core feature set matched the somatic mutations (NRAS, BRAF, 

and NF1) used in the original subtype definitions (Figure 5C).44 LGGGBM subtypes 

were originally defined by first splitting cases into IDH1/IDH2 mutant versus wildtype 

cases, and then by further defining subtypes within each of these groups using DNA 

methylation profiles and histology, resulting in three IDH1/IDH2-mutant subtypes and four 

IDH1/IDH2-wildtype subtypes.14,37 Interestingly, for LGGGBM, the classification methods 

overwhelmingly selected DNA methylation features (Figure 5D), and did not identify IDH1/

IDH2 mutations, perhaps because IDH mutation status spans multiple subtypes. Feature 

overlap among top models is shown for all cancer cohorts in Figure S4.

Classifier feature sets converge on common pathways

We investigated whether the core set of shared features selected by two or more models 

represent genes enriched for biological processes. We plotted the location of known 

cancer-associated genes from the COSMIC database on a two-dimensional projection of a 

comprehensive collection of pathways found in PathwayCommons45 to serve as a reference 

landscape against which we could compare the features selected by classifiers (Figure 

6A, left panel). Gene features selected by multiple classifiers for BRCA, LGGGBM, and 

COADREAD formed clusters within the projection, suggesting involvement in the same 

pathways (Figure 6A, right three panels). The features pooled from all TCGA cancer cohort 

subtype predictors also showed evidence of clustering (Figure S5A, center panel).
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To both visualize and quantify the degree of pathway enrichment, we displayed genes 

and their pathway relationships as density clouds, such that functionally related genes 

form dense areas, which we refer to as “summits” (Figure 6B). We numbered summits 

from most to least dense and used gene set enrichment analysis to assign labels to the 

major landscape summits (Table S6). The COSMIC summits (Figure 6B, left panel, white 

outlines) revealed areas with known mutation associations to cancer biology. We mapped 

gene features selected in our classifier models onto the same two-dimensional pathway 

projection and identified summits representing classifier features for BRCA, LGGGBM, and 

COADREAD (Figure 6B, right three panels). Selected feature summits that coincided with 

COSMIC summits represent clusters of features chosen from pathways that have established 

roles in cancer biology (Table S7).

An analysis of the pooled set of features selected by subtype classifiers for all TCGA cancer 

cohorts revealed overlap with many known COSMIC cancer driver pathways (Figure S5B). 

For example, the densest aggregate TCGA-subtype classifier summit (T1) was enriched for 

genes from the TP53 pathway, and this summit strongly overlapped a COSMIC summit 

(C7) that was also enriched for TP53 (Figure S5B, right panel). On the other hand, feature 

summits that were far from any COSMIC summit represented cases in which genes were 

selected from pathways with less-established roles in cancer biology, but nevertheless 

contain genes that help distinguish TCGA cancer subtypes. For example, the T4 summit 

was enriched for biological oxidation, and T15 was enriched for organ-elle assembly, neither 

of which is represented in COSMIC (Figure S5B).

For BRCA, the second-densest summit (BR2, Figure 6B) included genes from the estrogen 

receptor (ER) signaling pathway, which overlaps with the COSMIC ER signaling summit 

(C2), representing a pathway that is well known for distinguishing luminal from basal breast 

cancers. In contrast, the major summit for BRCA subtyping (BR1) involved Rho/CDC42, 

which showed no overlap with any major COSMIC cluster, but nevertheless represents a set 

of cell proliferation features that distinguish aggressive basal-like from luminal tumors.

Cell-cycle-related summits were present in other tumor types that were either distinct 

from COSMIC (LG8 and LG12) or in close proximity to COSMIC summits but still 

non-overlapping (CR1). LGGGBM’s major summits (LG1 and LG2) had clear enrichment 

for TP53-related signaling and overlapped the COSMIC TP53 summit (C7), illustrating 

the differential TP53 involvement in LGGGBM tumors, where tumors that were more 

GBM-like showed a lower frequency of TP53 alterations than other LGG subtypes. Features 

distinguishing COADREAD subtypes represented pathways involving Wnt signaling (CR4, 

Figure 6B), which partially overlapped with the COSMIC Wnt-signaling C4 and C19 

summits. Wnt signaling is a key driver of most colorectal tumors, but the mechanisms 

by which this is achieved differ among COADREAD subtypes. For example, CIMP-high 

tumors display a reduced frequency of APC mutations,36 but instead rely on epigenetic 

silencing of SFRP genes, which encode negative regulators of Wnt signaling.43

We hypothesized that if gene features selected by different models reflected related biology, 

they would be located closer to each other in network topology space than would be 

expected by chance. Using the same PathwayCommons compendium, we measured the 
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pathway distance between the nearest neighbors of each method’s gene feature lists to 

the gene feature lists of the other methods (Figure 6C). To control for overlapping genes 

that would have zero distances, we also compared the distances between second-nearest 

neighbors (Figure S5C). We found that the gene features selected by most methods for 

BRCA, LGGGBM, and COADREAD models were closer to one another than expected 

by chance (Figure 6C). Taken together, these findings suggest that equivalently predictive 

features for subtyping may result from the gene co-membership structure present in 

biological pathway space.

The subtype-specific expression signal for each gene can be represented by a scaled signal-

to-noise ratio (SNR). Ranking the genes in each summit by decreasing SNR produces a 

“sail” shape (see Figure 6D). Commonly selected core features tended to cluster on the 

left side of the sails, indicating classifier features that had high SNRs, representing strong 

individual predictors. Some features with lower SNR were also selected, and these likely 

provide orthogonal classification information when used in conjunction with other features. 

We analyzed enrichment of pathway hallmark gene sets with selected feature lists for 

BRCA, LGGGBM, and COADREAD subtype classifiers, again noting the clustering of 

selected core features toward the left side of the sails, indicating features with a high SNR 

(Figure S5D). Taken together, these results indicate that multiple independent ML subtype 

classifier methods tend to select features that have high SNR, and equivalently predictive 

features tend to reside close together in biological pathway space.

Determinants of classification performance identified by meta-analysis

We undertook a comprehensive meta-analysis to identify specific characteristics of the data 

and ML classifiers that lead to better or worse cancer subtype classification performance. 

We collected 55 meta-features (Table S8) that describe the data and subtyping tasks for 

the 26 tumor types. We distinguished between meta-features representing sample or feature 

characteristics supplied as training inputs, versus those identified during classifier training.

We investigated the similarities among the meta-features and their relationships to subtyping 

performance by comparing the 55 meta-features to each other, calculating correlations 

across the 26 tumor types, and clustering the meta-features based on their correlation 

coefficients (Figures S6A and S6B). We identified seven clusters of meta-features that were 

mutually correlated to each other, three of which had significant influence on classifier 

performance (Figures 7A and S6; Table S8). We assigned descriptive labels to each of these 

meta-feature groups (MFGs) inferred from their meta-feature composition.

The largest group of meta-features was MFG1 (subtype cohesiveness), which includes 

features that reflect the separation of the subtype classes in the data used for classification, 

such as the silhouette scores for all platforms. MFG2 has distinct meta-features with high 

positive association with overall weighted F1 score, including a meta-feature representing 

the percent of the cohort falling into the rarest class, and another reflecting the percent of 

continuous features used in the input.

The strongest anticorrelation with overall weighted F1 scores was observed for MFG7 

(cohort and trained model complexity), which includes meta-features such as the number 
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of principal components that captured 70% of the gene expression variance, the entropy of 

the subtype class variable (used here as a measure for uniformity of the subtype sizes), the 

number of samples in the rarest subtype class, the number of features selected by a model, 

and the overall number of subtype classes.

Finally, four meta-feature groups lacked meta-features with strong correlations (or anti-

correlations) to overall weighted F1 score; the features in these groups included the number 

of input features, the variance of the features in gene expression space, and the balance in 

the number of input features per data type.

How many samples are needed to train classifiers?

We used our large resource of trained models for 26 different cancer cohorts of various size 

and complexity to estimate the number of training samples necessary to accurately classify 

subtypes in a given tumor type. The extrapolated prediction performance as a function 

of training set size can be affected by the classifier model used, the dataset provided as 

features, and the classification label fidelity. This issue has been addressed in statistics 

and ML communities46 and, more recently, in genomics settings.47,48 We approached this 

problem by fitting a power-law function, the “learning curve,”49 to extrapolate the behavior 

of a model to larger sample sizes. We sub-sampled the original input data and repeated 

the training of classifiers to determine the classification performance with fewer samples as 

inputs. We found that the same general trend held across all of the cancer cohorts (Figure 

7B).

At the cohort level, providing approximately 150 samples for training appears to be adequate 

to approach maximum model performance. For most cancers, a larger cohort than this 

did not appreciably improve the subtype classifier accuracy. For example, if a low overall 

weighted F1 score of 0.70 is obtained with only 50 samples, it is highly likely that collecting 

two to three times more samples will fail to obtain an overall weighted F1 score exceeding 

0.80, only marginally improving performance. Thus, in these situations, different data types 

(e.g., proteomics) or different subtype definitions should be considered, rather than simply 

adding more samples of the same data type.

Remarkably, the curves of performance versus sample size for all cohorts fit roughly the 

same shape (Figure 7B), suggesting that a non-linear regression fit to the curves could 

predict future subtyping performance. We considered 87 different possible fitting functions 

and found that a Burr Type XII distribution yielded the closest approximation of the curves 

in Figure 7B for the 15 cohorts with at least 250 samples (Figure 7C). For a prospectively 

accruing cancer cohort, we found that 70 samples were sufficient to extrapolate a reliable 

curve and derive an estimate of classification performance. To illustrate how performance 

can be extrapolated, we applied the function to estimate subtype classification performance 

on the adrenocortical carcinoma (ACC) cohort, for which only 76 samples were available, 

(Figure 7D). We estimate that doubling the sample size for ACC would result in an increase 

of performance from the current 0.88 range (similar to LGGGBM performance) up to 0.92 

(similar to BRCA).
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DISCUSSION

The discovery of molecular subtypes for all major cancer types has been one of the 

most influential outcomes of TCGA, contributing to the high impact of the landmark 

TCGA publications.50–55 However, the complex methods and high-dimensional data used to 

identify these subtypes produced results specific to the TCGA datasets, and did not result in 

classifiers that could be implemented for other samples in clinical trials or research studies. 

To expand the utility of TCGA subtypes, we used ML approaches to train subtype classifiers 

that require only small sets of gene-centric features. ML algorithms have proven effective 

for classification problems using large-scale and heterogeneous datasets,30–32 including the 

prediction of cancer types and clinical outcomes, as well as for the identification of the 

tumor tissue-of-origin using genomic, epigenomic or transcriptomic data.5–9,56,57–63 We 

used five different ML approaches to produce 412,585 distinct subtype classifier models 

incorporating five different data types, and 100 stratified 5-fold train-test partitions of 8,791 

TCGA samples, comprising 26 different cancer cohorts and 106 subtypes.

Our analysis delivered important resources, useful tools and insights into biology. First, 

we created an online resource of 737 publicly available, containerized predictive models 

with top-ranked performance, representing the top models for each of the 26 cancer 

cohorts, data types, and training algorithms. We provide an easy-to-run Docker container 

for each of these models, along with their selected features, mean overall weighted F1, 

and the lowest prediction score that provides 95% prediction accuracy for a new sample 

(https://github.com/NCICCGPO/gdan-tmp-models). These models provide a foundation for 

clinical assay development. Second, we trained classifiers based upon each of the five 

individual data types from TCGA. These single-platform predictors expand the application 

of TCGA subtyping to studies that employ different data types than used for the original 

TCGA subtype discovery. Third, we showed that external cancer datasets that use different 

molecular assay platforms or include FFPE samples can be readily transformed to provide 

accurate subtype prediction using our classifier models. Fourth, we gained insight into the 

relative strengths of different data platforms across cancer types, both for original subtype 

discovery and prospective subtype prediction. Fifth, even when different models and data 

types didn’t select identical features, they tended to select genes from similar or related 

pathways, underscoring the redundancy of informative features chosen by different models, 

and revealing biological distinctions between molecular subtypes. Sixth, we demonstrated 

that 70 samples are generally sufficient to estimate the ultimate classification accuracy for a 

prospectively accruing cancer cohort.

For most research applications, the classifier models can be applied directly to samples 

from other studies, even when only one data type is available, after appropriate data 

transformation to match the range and distribution in the TCGA cohort. We provide a simple 

flow diagram to guide the user to select the best appropriate model to classify a new sample 

(Figure 8). The derived feature sets and trained models also provide a valuable starting point 

for clinical assay development. These clinical assays may rely on platforms using different 

technology than TCGA, such as real-time PCR or bead-based hybridization assays, which 

will require further adjustment of features or model weights.
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We anticipate that these tumor subtype classifiers will be useful in prospective clinical 

cancer research and practice, possibly helping to realize the as-yet unfulfilled promise of 

translating genomic findings to the clinic. By providing a set of classifiers that are amenable 

to practical implementations, our work unlocks the biology of TCGA cancer subtypes for 

research and clinical applications.

Cancer subtype-specific biological differences were frequently best defined by their mRNA 

features. Regardless of whether the training input included all data types or just mRNA 

features, the most-accurate models were often dominated by mRNA features. This may 

reflect, in part, the gene-centric nature of mRNA features. The copy number, DNA 

methylation, and miRNA features are more indirectly linked to individual gene function.

For mRNA-based predictors in ESCC, MESO, and ACC, JADBio achieved higher 

classification accuracy than the two methods that include random forest approaches 

(CloudForest and SK Grid). This suggests that non-redundant feature selection, not 

just ranking features by importance, can improve classification performance using more-

parsimonious feature sets. For example, when a set of collinear, correlated features carry the 

same predictive component for a classifier, this may force a model to distribute importance 

among the features. Selection of features that offer some additional orthogonal information, 

on the other hand, might choose only one feature from a strongly correlated group and filter 

out the rest as redundant, resulting in more-accurate models with more-parsimonious feature 

sets.45

We expected the robustness of cluster-based subtypes to influence our ability to train 

models. We assessed this with the METABRIC breast cancer dataset. We found that the 

silhouette score was correlated with the difference in classification confidence between the 

best and second-best subtype call. Given this finding, one might hypothesize that training 

models with poorly clustered samples would increase classification error. We investigated 

the effect of using equally sized subsets of samples in training, enriched for well-clustered, 

subtype-prototypical TCGA samples, or enriched for poorly clustered samples. We found 

that enriching for either prototypical samples, or for poorly clustered samples did not 

improve classification performance. Models trained using the same number of samples 

representing the full range of silhouette scores appeared to yield the best-performing 

classifiers. An important conclusion from this analysis is that a full and diverse set of 

samples should be used in training to maximize sample size, even if the dataset contains 

samples that are ambiguously assigned to a subtype.

Limitations of the study

Even the most accurate classifier will be limited by the validity of the original subtype 

definitions. When we trained our classifiers, we assumed that all major subtypes for a 

particular cancer cohort were represented in the TCGA dataset. In practice, new and 

undocumented subtypes may be encountered in non-TCGA datasets. Thus, it may be 

beneficial to assign an “unknown” label to a new sample in a situation where no existing 

subtype has a strong-enough class prediction score.
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Genome-wide features such as chromosomal instability and microsatellite instability are not 

captured well by the genecentric feature sets that we used to train our classifiers. This may 

explain the poorer performance of all of our classifier methods with cancers like GEA and 

COADREAD that are characterized by such genome-wide disturbances.

We did not integrate the predictions of our various ML methods to create an “ensemble” 

method that might achieve higher classification accuracy. Combining the predictions of 

individual methods would increase the number of features needed to assign a subtype. To 

assess the tradeoff between parsimony and accuracy, we assessed a simple ensemble that 

took as input the class prediction scores of all of the methods and calculated a subtype 

assignment by averaging these scores for four cancer types. We found that the ensemble 

predictions outperformed the best individual methods in two of these cohorts, albeit by 

narrow margins. Thus, if one could relax the requirement of using a small feature set for 

clinical application, improved subtype predictions may be possible for some cancer cohorts 

using model ensembles.

The recent explosion in deep-learning techniques popularized in large language models 

(LLMs) raises the possibility of improving biological classification tasks. For example, 

a recently published approach called Geneformer uses an attention-aware transformer 

pretrained on millions of single-cell transcriptomes to improve several molecular biology 

prediction tasks.62 The common theme of transformer-based models is their capacity to 

continue to improve performance as more data are added to the training set. Modern LLMs 

have billions of parameters that can be used to model the intricate relationships within 

complex datasets, but usually require over a petabyte of data to train. Currently, our dataset 

of 8,791 samples does not provide enough power to benefit those more complex machine 

learning methods and we sought parsimonious feature sets, which are a poor fit for an LLM. 

Nevertheless, our results may inform approaches to fine-tuning of large models.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by 

the lead contact, Peter W. Laird (peter.laird@vai.org).

Materials availability

This study did not generate new unique reagents.

Data and code availability

• Gene expression, microRNA, DNA methylation, somatic mutations, and copy 

number data have been deposited at the National Cancer Institute Genomic 

Data Commons (GDC) Publication Page and are publicly available as of 

the date of publication (see: https://gdc.cancer.gov/about-data/publications/CCG-

TMP-2022). Files are listed in the key resources table and can be found on the 

paper’s publication page at the GDC. All other data reported in this paper will be 

shared by the lead contact upon request.
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• All original code and containerized pre-trained ML models have been deposited 

at GitHub and are publicly available as of the date of publication (see https://

github.com/NCICCGPO/gdan-tmp-models). Also included are publicly available 

tutorials on applying these models on new datasets. Repositories are listed in the 

key resources table. All other original code reported in this paper will be shared 

by the lead contact upon request.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

STAR★METHODS

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

In this study, conducted by the Tumor Molecular Pathology (TMP) Analysis Working 

Group of the Genomic Data Analysis Network (GDAN), we used the Cancer Genome Atlas 

(TCGA) Research Network tumor and matched normal samples with informed consent 

under their local Institutional Review Boards.

METHOD DETAILS

Cohort and cancer subtype definition—For most cohorts, we adopted the cancer 

cohort abbreviations and subtype classifications reported by TCGA cancer landmark 

studies (Table S1; Figure 1). The approaches used in these studies for subtype discovery 

included unsupervised clustering or expert-defined decision trees, or a combination of 

both. Clustering-based subtypes were inferred from individual data types, merged single-

platform cluster assignments or multi-platform integrative clustering (iCluster).64 Decision 

tree groupings were based on specific somatic alterations (e.g., mutations or fusions) or 

other tumor characteristics (e.g., MSI or viral infection).

For gliomas, IDH1/2 mutational status has been shown to be a better indication of molecular 

similarity than tumor grade,14,65 and so we merged Glioblastomas and Low-Grade Gliomas 

into LGGGBM.

In the TCGA Hepatocellular Carcinoma and Cholangiocarcinoma cohorts, some tumors 

were shown to molecularly cluster with the other tumor type.66 Given that precise 

anatomical boundaries can be ambiguous for large tumors in these cancer types, we merged 

these two into a single cohort: LIHCCHOL.

Gastrointestinal tumors were regrouped into tumor types that had shared or dissimilar 

molecular characteristics.36,67 For ESCA we separated the molecularly distinct squamous 

tumors as an ESCC cohort, and we merged the remaining ESCA esophageal 

adenocarcinomas (EAC) with all STAD tumors to form a GEA cohort (gastroesophageal 

adenocarcinomas), consistent with the TCGA interpretation of GI cancer subtype 

relationships.36,67 The COAD and READ tumors were merged into a COADREAD group 

(Colon and Rectal adenocarcinomas).
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We were not able to identify molecular subtypes for TCGA Kidney Clear Cell (KIRC) and 

Chromophobe (KICH) tumors, and so merged these into a single KIRCKICH cohort for the 

purposes of constructing a two-class classifier of histological subtype.

For four cohorts (HNSC, ESCC, UCEC, GEA), subtypes were based on a combination 

of clustering and decision tree analysis. We used histological classifications for two 

tumor types (TGCT, SARC), given that molecular classification for TGCT did not differ 

meaningfully from histologic classification,68 and, for SARC, no molecular subtypes 

sufficiently covered all histological subtypes.

Before classifier training we removed subtypes that had too few samples for cross-fold 

validation (Table S1). For the BRCA cohort, we eliminated the Normal-like subtype, as it is 

not included in the St. Gallen Guidelines for Intrinsic Subtype,69 and is not included in the 

PROSIGNA clinical assay.70 As well, a study of micro-dissected breast cancers with more 

than 90% tumor cellularity had no samples classified as Normal-like.71

With the exceptions noted above, for each cancer cohort we retrieved molecular subtypes 

from prior TCGA publications, which had defined them using varying approaches and 

data types (summarized in Table S1). For LUAD, we used recent molecular subtype 

definitions.72 For BLCA we used consensus MIBC subtypes.73 The methods that had been 

used for subtyping included unsupervised clustering, or expert-defined decision trees, or 

a combination of both. Where appropriate, clustering-based subtypes were inferred from 

single platforms (gene expression, mutation, or DNA methylation); other subtypes were 

based on multi-platform integrative clustering (iCluster) or on methods that merged single-

platform cluster assignments (Clustering of Cluster Assignments, COCA, or Similarity 

Network Fusion, SNF). Decision tree groupings were based on specific somatic alterations 

(e.g., mutations or fusions) or other tumor characteristics (e.g., MSI or viral infection). 

For four cohorts (HNSC, ESCC, UCEC, GEA), subtypes were based on a combination of 

clustering and decision tree analysis.

Altogether, we worked with data from 8,791 TCGA samples from 26 cancer cohorts. Each 

TCGA sample had five genomic data types available. Each sample had been assigned to one 

of 106 molecular subtypes. Subtypes were ordered and numbered within cancer cohort by 

declining sample size prior to data filtering. Cohort and subtype labels were considered as 

the ‘ground truth’ for our classifier model development.

Classifier model development—Given the molecular subtypes in each cohort, we then 

generated subtype-balanced repeated cross-validation folds, and set these as training and test 

sets. To develop classifier models capable of assigning a new sample to a previously defined 

subtype, we tested five ML approaches: AKLIMATE, CloudForest, SK Grid, JADBio, and 

subSCOPE (Figure 2). We note that SK Grid and JADBio each employed a collection 

of embedded approaches (see STAR Methods). Therefore, the true number of approaches 

implicitly tested in our study is far more than five. For AKLIMATE, CloudForest, SK Grid 

and JADBio, each cohort was trained separately. In contrast, we trained subSCOPE’s Neural 

Nets (NNs) on subtype data from all cancer cohorts simultaneously. For all cohorts, we 

assembled multi-platform genomic data from PanCancer Atlas resources (gdc.cancer.gov/
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node/977) (see STAR Methods). We trained and tested all classifiers using the same cross-

folds, and aggregated results into a single matrix. We generated performance statistics from 

the test cross-folds, and retained the classifier-selected features for further analysis.

Dataset creation—The data for this study was created by aggregating molecular profiles 

found in the NCI’s Genomic Data Commons data system. In that system, all results are 

separated by sample and data type. We organized the data by creating files that combine 

all samples and data types into a single matrix, with one for each of the 26 tumor type 

cohorts included in the study (Figure 2A). Since machine-learning methods can generate 

complex models with poor interpretability, we used a gene-centric approach, emphasizing 

the selection of fewer features, while retaining predictive performance, to facilitate the 

analysis of the biological significance of the selected features. We divided each cohort’s 

samples into training and test sets, using a 5-fold cross-validation, stratified across the 

retained subtype labels. For each tumor type, we generated 100 repeats, i.e., 100 ways in 

which the samples were divided over 5-folds. The header of each cross-validation column is 

of the format Rx:Fy, where x denotes the repeat (from 1 to 100) and y denotes the fold (from 

1 to 5). In this column, values of 0 indicate training samples, while values of 1 indicate test 

samples.

Constructing single-feature matrices

mRNA gene expression feature matrix—Batch-corrected mRNA matrices were 

obtained from the TCGA PanCancer Atlas Projects (https://gdc.cancer.gov/about-data/

publications/pancanatlas).4 The batch-correction adjusted for sequencer type, sequencing 

centers (the University of North Carolina [UNC] and the British Columbia Cancer Agency 

[BCCA]), and a plate effect observed in PRAD. Briefly, genes were adjusted using a novel 

algorithm called EB++; a variant of the Empirical Bayes/ComBat algorithm. Genes with 

mostly zero reads or with residual batch effects (~10% of genes) were removed from the 

adjusted samples and replaced with NAs. First, PRAD batches 312 and 320 were adjusted to 

the rest of the PRAD batches, then UNC Illumina GAII sequenced samples (UCEC, COAD, 

READ) were adjusted to the UNC Illumina HiSeq data. BCCA Illumina GAII-sequenced 

samples (LAML, STAD, ESCA) were also adjusted to Illumina HiSeq generated data. 

Most of the GBM gene expression data were generated using older microarray technology, 

which sometimes yielded values between 0 and 1. The log2 transformation of those values 

and further batch effects adjustment resulted in some negative numbers in the LGGGBM 

expression data.

miRNA expression feature matrix—To generate miRNA-seq data for ~11 

thousand samples across TCGA projects we had used two library construction 

protocols: poly(A) selection (‘MultiMACS’) and total RNA (‘Direct’),74 taking 

care to use only one protocol per project (see https://gdc.cancer.gov/node/977, 

PanCanAtlas_miRNA_sample_information_list.txt). Initially we used Illumina GAII 

sequencers, and then HiSeq sequencers. We annotated aligned miRNA reads with miRBase 

v16, which contained 1212 mature strands.
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Batch correction of miRNAseq mature strand RPM data addressed library protocols and 

sequencers. We batch-corrected normalized abundance (i.e., reads per million, RPM) 

data for 743 expressed mature strands (https://gdc.cancer.gov/node/977). These included 

approximately 650 mature strands that were sufficiently highly expressed to behave well 

in batch correction; we removed weakly abundant mature strands, because such strands are 

unlikely to be biologically influential.75,76 We then added non-batch-corrected RPM profiles 

for approximately ~100 mature strands that were known to be important in some cancers but 

which we had removed following batch correction. For three classifier projects we combined 

two TCGA cohorts: KIRCKICH, LIHCCHOL, and LGGGBM. No miRNAs were available 

for GBM, so we excluded miRNAs from work with the combined LGGGBM cohort. For 

the LIHCCHOL and KIRCKICH combined cohorts, we anticipated that, despite batch 

correction, there could be residual batch effects in the miRNA-seq data due to the different 

library protocols, so we used no miRNA data in generating classifiers for LIHCCHOL and 

KIRCKICH cancer cohorts.

DNA methylation feature matrix—We used the pre-processed DNA methylation β 
value matrices generated for the TCGA PanCancer Atlas analysis projects,4 obtained 

from the PanCanAtlas Publications page (https://gdc.cancer.gov/about-data/publications/

pancanatlas). Data for ten cancer types, including BRCA, COADREAD, GEA, 

KIRCKICH, KIRP, LGGGBM, LUAD, LUSC, OV, and UCEC, were generated using two 

generations of Infinium arrays, the older HumanMethylation27 (HM27) and the newer 

HumanMethylation450 (HM450: 396,065 features). Therefore, we used the merged HM27-

HM450 data matrix containing 22,601 features shared between the HM27 and HM450 

platforms. For the other sixteen cancer types, we analyzed the HM450 data matrix, which 

included 396,065 features.

For DNA hypermethylation features, we selected CpG sites that acquired cancer-associated 

hypermethylation. We first examined the DNA methylation profiles from histologically 

normal tissues to identify features that lacked tissue-specific DNA methylation. For the 

merged HM27-HM450 data, we used 1,064 normal tissue samples from 22 different tissue 

types, which included BLCA (n = 19), BRCA (n = 112), CESC (n = 3), COADREAD (n 
= 81), ESCC (n = 2), GEA (n = 38), LGGGBM (n = 2), HNSC (n = 50), KIRCKICH (n = 

344), KIRP (n = 48), LIHCCHOL (n = 59), LUAD (n = 52), LUSC (n = 67), OV (n = 12), 

PAAD (n = 10), PCPG (n = 3), PRAD (n = 50), SARC (n = 4), SKCM (n = 2), THCA (n 
= 56), THYM (n = 2), and UCEC (n = 46). The HM450 data included 720 normal tissue 

samples from 21 different tissue types consisting of BLCA (n = 19), BRCA (n = 86), CESC 

(n = 3), COADREAD (n = 41), ESCC (n = 2), GEA (n = 13), LGGGBM (n = 2), HNSC 

(n = 50), KIRCKICH (n = 157), KIRP (n = 43), LIHCCHOL (n = 59), LUAD (n = 30), 

LUSC (n = 41), PAAD (n = 10), PCPG (n = 3), PRAD (n = 50), SARC (n = 4), SKCM 

(n = 2), THCA (n = 56), THYM (n = 2), and UCEC (n = 45). We also analyzed HM450 

data from three whole blood samples from the sesameData R/Bioconductor package.77 We 

then selected 10,114 and 100,405 features methylated at < 10% frequency in any tissue type 

using a β value of >0.2 to define positive DNA methylation in the merged HM27-HM450 

and HM450 datasets, respectively. Finally, in each tumor type, we identified features that 
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were methylated at a β value of ≥0.3 in more than 2% of tumors, yielding DNA methylation 

feature metrics that vary in the numbers of features across tumor types.

For Loss-of-function (LOF) features, we started with the DNA hypermethylation matrices 

generated above that we binarized using a β value of ≥0.3 to define positive DNA 

methylation and <0.3 to specify lack of methylation. We identified 889 and 8,797 features 

in the merged HM27-HM450 and HM450 platforms, respectively, located within CpG island 

promoter regions (1,500-bp flanking regions upstream and downstream of Transcription 

Start Sites) associated with 587 genes covered in the mutation feature matrix. We created 

LOF features for DNA hypermethylation by extracting features overlapping these promoter 

features on the mutated genes from the binarized feature matrices. If there were multiple 

features associated with the same gene, a sample identified as methylated at more than half 

the features for the corresponding gene was also labeled as methylated at the gene level.

Copy number feature matrix—Copy number features were derived from TCGA 

PanCancer Atlas gene-level thresholded copy number data from GISTIC 2.0.78 All gene 

level deletions (−1 or −2) were all set to −1, and all gene-level amplifications (1 or 2) 

were set to +1. Then, in each tumor type, genes within a cytoband were compressed so that 

those with identical copy number profiles across all tumors were represented by one gene. If 

possible, known oncogenes or tumor suppressors were chosen as the representative genes.

Mutation feature matrix—Mutation features were derived from the PanCanAtlas 

MC3 publication mc3.v0.2.8.PUBLIC.LAML_PATCH.maf.oncokb.txt.79 We generated 

four types of mutation features, which covered 587 genes and 470 hotspots. 

These included non-silent mutations, hotspot mutations, loss-of-function mutations, 

and composites. Non-silent mutation features were created from somatic variants 

and coded with the prefix B:MUTA:nons. A variant was considered non-silent if 

the “variant classification” field was “Missense_Mutation”, “Non-sense_Mutation”, 

“Frame_Shift_Del”, “Splice_Site”, “Frame_Shift_Ins”, “In_Frame_Del”, “In_Frame_Ins”, 

“Translation_Start_Site”, “Nonstop_Mutation”, or “Splice_Region”. We collected the list of 

genes from the driver mutations published by the TCGA PanCanAtlas group80 and from the 

non-silent catalog.81 Hotspot mutation features were coded with the prefix B:MUTA:HOTS 

and represent the presence of variants resulting in amino acid changes that occur in 

protein mutation hotspots.82 Loss-of-function mutation features were coded with the prefix 

B:MUTA:LOF, and represent events in which either 1) a non-silent mutation occurred 

alongside a deletion in the same gene in the same sample or 2) a promoter hypermethylation 

event was observed in the gene. For these calls, we used the binarized versions for both 

the methylation and copy number data. Finally, we created composite mutation features to 

indicate an event in which any impactful variant occurred in a sample; we encoded these 

with the prefix B:MUTA:COMP. These features represent cases in which any of the 3 

previous types, non-silent or hotspot or loss-of-function were recorded.

Filtering out missing values

We applied a two-step approach to identify and remove samples and features containing 

missing values, performing this separately for each tumor type’s single data type tables. 
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These single data-type feature matrices contained measurement data from the five major 

genomic platforms.

1. mRNA gene expression [continuous values]

2. miRNA mature strand expression [continuous values] (as noted, for KIRCKICH, 

LIHCCHOL and LGGGBM cohorts we used no miRNA data)

3. DNA methylation beta values [continuous values between 0 and 1]

4. Copy number data [ternary; −1, 0, 1]

5. Non-silent Mutations [binarized]

6. Hotspot Mutations [binarized]

7. “Loss-of-function” Mutations [binarized]

8. Composite Mutations [binarized]

In a first step, we iteratively removed samples and features with more than 20% missing 

data until no such samples, nor such features remained. Specifically, we first removed all 

samples with more than 20% missing data. Then, we removed all features with more than 

20% missing data across samples. We continued this process until all remaining samples and 

features had less than 20% missing data. We tried two versions of this: one in which we 

first removed samples, and one in which we first removed features. In the end, we chose 

the approach that minimized the product of the number of removed samples and features for 

each cancer cohort. Finally, in a second step, we removed all features with missing values, 

leading to data tables that had no missing values.

Merging of single data type matrices

We combined the eight data tables after filtering out missing values, as described above, 

and excluding samples that we had removed in one or more of the eight filtered data tables. 

In other words, the samples in the resulting combined matrix were the intersection of the 

samples in the eight filtered data tables. Automated diagnostic plots as well as automated 

and manual spot-checking ensured that these large numerical tables were correctly merged. 

The samples (i.e., the rows in the final tables) were TCGA samples, identified by 12-

character TCGA case ID barcodes (e.g., TCGA-02-0001). The columns were the features. 

Each feature name was structured to contain the 1) variable type, i.e., binary/categorical/

numerical; 2) molecular platform i.e., MUTA for mutation, METH for methylation, MIR for 

microRNA mature strands, GEXP for messenger RNA, CNVR for copy number variation; 3) 

additional molecular annotations, such as HOTS for mutational hotspots; 4) gene name; and 

5) additional molecular label.

An example feature ID is “B:MUTA:HOTS:PIK3R1:pR348:”. This is a binary mutation 

hotspot call for a mutation at AA position 348 in PIK3R1. In the combined data table, the 

first column contains the samples, and the second column contains the subtypes, which were 

used as labels for classification. Subsequent columns contain the features.
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Building a cohort of machine learning methods

We employed five distinct feature selection and/or model fitting pipelines. These pipelines 

include 1) CloudForest, led by ISB; 2) AKLIMATE, led by UCSC; 3) subSCOPE, led by 

the BC Cancer’s Genome Sciences Center; 4) SK Grid, led by OHSU; and 5) JADBio, led 

by JADBio Gnosis DA S.A. These algorithms were built upon different machine-learning 

classification philosophies and employed diverse feature selection approaches (including 

filtering, wrapping, embedding, and/or prior knowledge) either before or during their model 

fitting. Some of these methods searched for sparse sets of classifier features (e.g., JADBio, 

SK Grid) while others attempted to capture discriminating features rich in established 

biology and pathway knowledge (e.g., AKLIMATE, sub-SCOPE) — all aiming to maximize 

cancer subtype prediction performance. This report considers, in depth, performance metrics 

of these different classification algorithms. For the translational setting of classifying a new 

patient sample into a previously defined TCGA subtype, our results provide guidance for 

matching methods with feature sets to predict subtypes of a particular cancer type.

Applying the CloudForest method

CloudForest is a Random Forest (RF) package written in Go, which is particularly well 

suited for large, heterogeneous, genomics and biomedical datasets.18 CloudForest was run 

as a standard RF classification model with 50,000 trees, a minimum leaf size of 5, balanced 

bagging, and default parameters for other options. The pipeline is implemented as an RF 

workflow with feature reduction steps. Specifically, first an RF is trained using all features. 

Then the 1,000 best features are selected and a second RF model is trained on the same 

samples using only the best 1,000 best features. This process is repeated for the best 100, 

50, 10, 5 and 1 features. This leads to 7 trained RF models (all features, 1000, 100, 50, 

10, 5 features, and 1 best feature). The model training was done using the training folds; 

classification performance was reported on the held-out test sets. Feature importance was 

measured using Gini impurity. Summarized feature importance scores were averaged over 

the folds and repeats. CloudForest experiments were performed for each of the 26 tumor 

types separately, and within each tumor type, using six different feature sets separately: 1) 

binary mutation calls, 2) ternary copy number data, 3) continuous gene expression data, 

4) continuous DNA methylation data, 5) continuous miRNA expression data, and 6) the 

previous five datasets combined.

Applying the AKLIMATE method—Algorithm for Kernel Learning with Integrative 

Modules of Approximating Tree Ensembles (AKLIMATE) is a kernel-based stacked learner 

that is informed by biological pathway gene memberships.17 Based on a Multiple Kernel 

Learning (MKL) approach, AKLIMATE utilizes a set of combined kernels, each of which 

represents a different aspect of sample-sample similarities. First, samples are evaluated 

using random forest models. The outputs of these predictions are translated into distance 

matrices, which are then passed into an Elastic Net MKL system. The component random 

forest models used by the MKL are trained on feature sets derived from prior biological 

knowledge. The prior knowledge used for these elements includes biological pathway 

information. Using this biological information-based modeling, the AKLIMATE model has 

been previously used to predict microsatellite instability in endometrial and colon cancers, 

survival in breast cancer, and shRNA knockdown viability in cancer cell lines.17
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In the work reported here, we used AKLIMATE as a feature-scoring tool. The pipeline 

begins by training an AKLIMATE model. AKLIMATE is given the sample data for the 

training set as well as input “feature sets”. The feature importance scores are extracted from 

the trained AKLIMATE model. Many thousands of features may be assigned a non-zero 

importance score in the AKLIMATE model. To get a smaller model with n input features, 

the n most important features are used to subset the training data. This subset of training 

data is used to train a random forest classifier (using the Ranger R package). Finally, the test 

set of sample data that was held out at the beginning is used to assess the sample subtype 

prediction performance of the random forest classification model.

The AKLIMATE pipeline used a compendium consisting of ~17,000 feature sets 

collected from several sources including: MSigDB, genesigDB, PathwayCommons, KEGG, 

Reactome, PID, and genomic position neighborhood.

In the work described here, AKLIMATE used 4 feature s: GEXP, CNVR, METH, 

and MUTA. In pilot experiments, the AKLIMATE pipeline found that miRNA features 

introduced noise in to the data, resulting in reduced classification performance. 

Consequently, miRNA features were used in no AKLIMATE models in this study.

The copy number features in the common, combined dataset were a “compressed” 

representation of the original, full copy number data of the TCGA samples. The full 

copy number data have many correlated features that can be attributed to copy number 

changes for genes that are located on the same physical region of the chromosome. In 

an effort to reduce the redundancy in the data, the copy number features were organized 

into highly correlated groups and a representative of the group was chosen to be included 

in the “compressed” copy number data. Since AKLIMATE leverages the biological prior 

knowledge contained with sample features, the compression likely had a negative effect 

on the ability of AKLIMATE to take full advantage of the copy number data. The CNVR 

compression causes reduction of copy number representation in pathway space, since the 

selected feature within a correlated copy number group is randomly selected (from a 

pathway point of view).

Applying the subSCOPE method—subSCOPE is a deep neural network-based system. 

Its training was markedly different than the other ML approaches used, on two major points: 

its training set and how important features were identified. Unlike other systems that worked 

on one tumor cohort at a time, subSCOPE was trained on the entire cancer cohort set jointly, 

learning how to identify all subtypes across all cancers at the same time. Traditionally, 

deep neural networks continue to improve as more data are added to the training set, while 

other methods tend to converge.83 We took this approach to expand the total training set 

size, so trained for a problem with 8,791 samples, rather than a series of problems with 

approximately 100–500 samples each. Also, by training all problems at the same time, the 

neural network would have the opportunity to identify common patterns across multiple 

cancer types. Unlike other methods, subSCOPE was first trained on all input features. 

Once the model was trained, a second system, we used DeepLift84 for feature importance 

calculations.
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Applying the SK grid method—The SK Grid system is designed as an ‘off the shelf’ 

machine-learning pipeline that utilizes methods available in the popular Python package 

‘Scikit-Learn’.19 Feature selection is done with Recursive Feature Elimination (RFE) and 

Forward-Backward Early Dropping (FBED)85 to generate feature sets of mixed and single 

TCGA data types. Feature selection for each cancer cohort was 1) run independently 

across all molecular features (gene expression, copy number variation, miRNA, methylation, 

mutation status), 2) run independently for each of the five molecular feature types to produce 

separate feature sets, and 3) a concatenated set of the second step of independent runs.

Each of these selected feature sets was input to a set of 14 SK Grid classifiers to identify 

the most accurate combination of feature set and classifier. Default hyperparameter settings 

were used for each classifier. The classifiers utilized were: Adaboost, Bernoulli Naive 

Bayes, Decision Tree, Extra Trees, Gaussian Naive Bayes, Gaussian Process, K Nearest 

Neighbors, Logistic Regression, Multi-layer Perceptron, Multinomial Naive Bayes, Passive 

Aggressive, Random Forest, Stochastic Gradient Descent, and Support Vector Machine.

Applying the JADBio method—JADBio is an AutoML system developed by JADBio 

Gnosis DA S.A.,20 operating as a Software as a Service through a web interface (http://

jadbio.com), as well as an API. Once the user starts an analysis, a knowledge-based 

decision support system (namely, the Algorithm and Hyper-Parameter Space selection, 

AHPS, system) selects the appropriate algorithms and hyper-parameter value combinations 

to try with the specific data, depending on the dataset characteristics (most importantly, 

sample size and number of features), as the preferences specified by the user. Among the 

user inputs is the desired level of tuning effort, which trades off between computational 

time and thoroughness in exploring the hyper-parameter space. Notably, the AHPS selects 

the analysis protocol as well, i.e., whether to use a hold-out approach or (repeated) cross 

validation, along with the number of folds and repetitions.

Machine learning modeling methods include Random Forest, other Decision Trees, Support 

Vector Machines, and Generalized Linear Models. Feature selection methods include the 

Statistical Equivalent Signatures (SES)33 and Lasso86 algorithms.

Once the space of possible configurations (i.e., machine-learning pipelines) is defined, the 

best configuration of pre-processing methods, feature selection/modeling algorithms, and 

respective hyper-parameters is selected through a grid search. As part of the performance 

analysis, JADBio calculates conservative, unbiased estimates of best model’s performance 

on unseen data, using a specialized bootstrapping algorithm on the training data.87 

In the context of the analyses presented in this work, the pipeline used the JADBio 

default settings, with a few modifications. First, the system utilized the same protocol 

(repeated cross validation) and folds employed by the other groups, for the sake of 

comparability. While executing the repeated cross validation procedure, JADBio employed 

several techniques for speeding up computations while preserving the quality of the 

results; for example, the system can automatically decide to avoid further cross-validation 

repetitions if improvements in performance are deemed improbable. The tuning effort was 

set to “extensive” for all analyses, except for BLCA, COADREAD, LGGGBM, LUSC 

(“preliminary”), and GEA, HNSC, LUAD, OV, SKCM, THCA, and UCEC (“normal”). In 
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each analysis, the best configuration was identified from a balanced accuracy metric. Finally, 

predictive performances were computed as described in the section below, for ensuring the 

comparability of our results with the those from the other machine-learning systems.

Evaluation of prediction performance

Project researchers developing the ML pipelines submitted prediction result files in a pre-

defined format (see Publication Page: https://gdc.cancer.gov/about-data/publications/CCG-

TMP-2022). One set of files described the individual sample subtype predictions for each 

repeat-fold. Another set of files described the feature list used for each model. Some models 

generated features; and those were recorded in the form of a tab-separated file.

The sample prediction files were used to estimate the performance of each model. The 

following performance metrics were computed on the cohort and/or subtype levels with the 

scikit-learn Python module19: accuracy, balanced accuracy, weighted F1 score, precision, 

and recall. These results are available on the Publication Page (See: https://gdc.cancer.gov/

about-data/publications/CCG-TMP-2022).

At the cancer cohort level, we defined ‘cohort performance’ as the overall weighted F1 score 

for all samples within a cohort. This metric balances precision (positive predictive value) 

and recall (sensitivity).22 We separately defined ‘subtype performance’ as the within-subtype 

weighted F1 score.

The top-performing model was determined by both a model’s cohort-level weighted F1 

score and the number of model features. For the work reported here, the evaluation 

considered only models that used at most 100 features (JADBio intentionally limited its 

feature set to a maximum of 25). In the case of ties, the model with the lower standard 

deviation in cohort-level weighted F1 was considered superior. The top models for each 

method/cohort pair and the single top model for each cohort are provided on the Publication 

Page.

Table S5 lists 737 models, representing the best-performing models for each of the 26 

cancer cohorts, data types, and model training algorithms. The Table can be sorted to 

select the best model for the appropriate cancer and data type. Each model lists the 

selected features, the mean overall weighted F1 obtained from cross-validation, and the 

bash command to run the model. A Docker container for these 737 models can be 

found on GitHub at https://github.com/NCICCGPO/gdan-tmp-models. Each model outputs a 

prediction score, reflecting the classification confidence for the model. The lowest prediction 

score that provided 95% accuracy in cross-validation testing is listed for comparison 

to the score obtained for a newly classified sample. The 95% accuracy threshold was 

computed over the test predictions in all cross validation repeats except for the CloudForest 

models. CloudForest uses resubstitution predictions. Some models had low prediction 

performance, with the prediction accuracy never reaching the 95% correct threshold at 

even the highest prediction score. Such models have a value of “#N/A” for this threshold. 

Some subSCOPEmodels have a value of “#N/A” for the mean overall weighted F1. This is 

attributable to subSCOPE models being trained as pancancer predictors, in contrast with all 

other methods being trained on single cancer cohorts.
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Containerization of the top models

Ready-to-run prediction algorithms were created for every top model. These included 

parameter files and runner code that would open configuration and input files, and then 

execute the prediction algorithm. For each cancer type and data modality a top model 

container was generated that included both ‘all feature’ and ‘single feature’ options; for 

example, ‘gene expression only’ models.

The runner code and model configuration files were compiled into Docker images, so that all 

runtime dependencies would be containerized. This containerization allows models to run on 

a variety of target systems and to be incorporated easily into cloud-based prediction systems. 

In addition, tool wrappers were written in the Common Workflow Language (CWL), to 

allow consistent invocation patterns. Finally, a unified workflow was created that tied all of 

the tools into a single invocation.

The docker images were uploaded to the Synapse Docker Image Registry, and were also 

compiled into an archived tar-ball that was uploaded to the GDC (tool wrappers and the full 

integrated pipeline were published to https://github.com/NCICCGPO/gdan-tmp-models). 

The repository also includes utility code and example documentation.

Applying models to external datasets

The pre-trained models were validated independently with two external datasets: 

METABRIC24,51 and AURORA.25 To evaluate the models, we used 939 fresh-frozen 

METABRIC primary tumor samples and 28 formalin-fixed paraffin-embedded (FFPE) 

AURORA primary tumor samples. Both external data contained PAM50 annotations and 

underwent the same analysis pipeline as outlined below.

A gene-by-gene numerical transformation was used to convert the expression values 

to the RNA-seq-based quantification that we had used for TCGA samples. Each gene 

was transformed independently with a quantile rescaling procedure, using the array of 

values across the two cohorts as the source (METABRIC or AURORA) and destination 

(TCGA BRCA) distributions. The quantile transform code is made available as part of the 

containerized model toolkit on GitHub.

The quantile rescaling method was applied to external data for each trained model 

separately, since each model used a different subset of the full TCGA BRCA sample cohort. 

The Normal-like samples were retained in this step; all samples were used in the rescaling. 

The trained models were applied to their corresponding rescaled external data, resulting in 

BRCA subtype predictions for each sample. The collective subtype calls from all models 

for a sample was consolidated into a single subtype call per sample using a majority vote 

approach, where ties were broken based on highest mean model confidence (consensus 

method). The percent prediction concordance for a set of predictions was calculated as 

the proportion of samples in which the predicted subtype matches the PAM50 annotation. 

Samples annotated with the Claudin and Normal-like subtype were present in the AURORA 

and/or METABRIC cohorts. Since the Normal-like and Claudin samples were excluded 

from all BRCA model training, these samples were excluded from this analysis.
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Subtype calling patterns in external datasets—This set of experiments was intended 

to measure the correlation of subtype silhouette scores of the training sample set with 

the prediction performance of ML models. The distribution of silhouette scores in the 

training set as well as the sample set size within each subtype was preserved. The models 

were trained on TCGA BRCA samples and tested on the METABRIC discovery sample 

set.24,51 The TCGA BRCA sample set (n = 995) consists of 535 BRCA_1 (LumA), 

205 BRCA_2 (LumB), 175 BRCA_3 (Basal), and 80 BRCA_4 (Her2) samples. The 

METABRIC discovery sample set (n = 997) contained 466 LumA, 268 LumB, 118 Basal, 

87 Her2, and 58 Normal-like samples. The inference of PAM50 subtypes for the TCGA 

expression-based clusters was established in previous work.51 The METABRIC expression 

data were assayed using the Illumina HumanHT12v3 microarray platform. To ensure 

compatibility with the models trained on TCGA’s RNA-seq data, the Illumina probe ID’s 

were mapped to TCGA Feature IDs using the updated probe-to-gene annotation available 

from the IlluminaHumanv3.db package.88 In cases where multiple Illumina probes mapped 

to the same TCGA Feature ID, we used the median expression value. 19,215 TCGA feature 

IDs were present in both the TCGA BRCA dataset and the METABRIC dataset. The 

classifier model training was performed using TCGA BRCA training data in the overlapping 

feature set.

Sample silhouette scores were calculated separately for the TCGA BRCA sample set and the 

METABRIC sample set. Both expression matrices were reduced to represent the 50-gene 

PAM50 gene set.23 The silhouette score26 was computed for each sample in the two 

matrices, based on the subtype assignment. The TCGA subtype assignment was used for 

the TCGA BRCA samples (BRCA_1, BRCA_2, BRCA_3, BRCA_4). The METABRIC 

PAM50 assignment was used for the METABRIC samples (LumA, LumB, Basal, Her2, 

Normal-like). A percentile rank was computed for each sample within its subtype. The 

samples with the highest silhouette width value in their subtypes were given the highest 

percentile ranks (i.e., 100%).

The silhouette score was calculated by generating an expression matrix constructed using 

a subset of ENTREZ ID mapped probes that covered the genes used in the PAM50 

signature, resulting in an expression matrix of 50 genes. This matrix was then passed to 

the sklearn.metrics.silhouette_score function to compute the silhouette width.

Generating model training sample sets—To assess whether discordant model 

predictions were attributable, at least in part, to ambiguity in the assignment of the PAM50 

subtype labels in that cohort, we investigated whether training classifiers on the subset of 

samples with high silhouette score subtype calls would produce higher-ranked models, or 

whether focusing on the subset of samples with low silhouette scores would instead yield 

better performance. Since this approach would reduce sample size, we compared equally 
sized data subsets, enriching for either high silhouette scores, which we refer to as the 

“typical set”, or enriching for low silhouette scores “atypical set”, versus no enrichment 

for silhouette scores “full set”. Random sampling was used to generate 30 ML model 

training sets from each of three subsets of the TCGA-BRCA cohort based on the sample 

silhouette width ranking (see Figure S1B). The “full set” represents 30 equally sized random 

samplings of the full cohort. The “typical set” represents the half of the cohort with the 
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highest per-sample silhouette width scores. The “atypical set” represents the half of the 

cohort with the lowest silhouette width scores. Each training set was created to have 

an identical number of samples of each subtype, which were: BRCA_1 (215), BRCA_2 

(83), BRCA_3 (71), and BRCA_4 (33). Each training set was used to train a separate 

AKLIMATE model that used 100 gene expression features. The models from the “full 

set” had marginally higher prediction performance than both the “typical set” (p = 0.046, 

one-sided Mann-Whitney Wilcoxon test with Bonferroni multiple test correction) and the 

“atypical set” (p = 0.053).

Performance and feature set size relationship

Three of the five methods (AKLIMATE, CloudForest, JADBio) provided mixed and single-

data type models with increasing numbers of features selected. Selected feature set sizes 

ranged from 5 to 100 for AKLIMATE models, 1 to 100 for CloudForest models, and 1 

to 25 for JADBio models. For each set of models within a given cancer cohort built on a 

given data type, the cohort performance was plotted (i.e., mean overall weighted F1) against 

feature set size up to 100 features. For JADBio, the performance was extrapolated to 100 

features as the cohort performance of JADBio models with the largest number of features. 

Assuming cohort performance of 0 at 0 features, the area under the F1 curve (AUF1C) was 

calculated using the composite trapezoid rule. The AUF1C has a maximum possible value of 

99.5 (which is achieved if all models with ≥ 1 features have cohort performance of 1). The 

AUF1C values for mixed and single-data type models from each method within each cancer 

cohort were visualized using the heatmap.plus R package.

Training set power analysis—To quantify the effect of cohort size on classifier 

predictive performance, we selected the SK Grid model and feature set with the greatest 

performance for each cohort. Within each cohort, we repeated 100 samplings without 

replacement at sample-size steps of five to 100 in increments of five, then from 100 to 

250 total samples in increments of ten. For each sampling, the cohort’s top SK Grid model 

was trained and tested with 10-fold cross-validation, using overall weighted F1 scoring. At 

each sampling size, the 100 predictions were averaged to generate a sample size/accuracy 

‘learning curve’.

We fit a three-parameter inverse power-law to each learning curve. For making predictions, 

we fit the inverse power-law function to the 100 individual (unaveraged) cohort performance 

score-sets in the sample-size range of 35–70. We then projected 100 discrete predictions 

of overall weighted F1 score to a sample size of 250. For each of the 15 cohorts with at 

least 250 samples, we compared this projected distribution to the actual observed score. 

A systematic search of the SciPy library of statistical distributions and their characteristics 

yielded the Burr Type XII curve as the best-fit predictor. For each of the 11 cohorts with less 

than 250 total samples, we used this curve and approach to project a prediction of cohort 

performance at a cohort size of 250 samples.

Aggregating TCGA subtype features

The TCGA subtype features were aggregated by cohort and gene symbol. For each feature 

(n = 3706) that mapped to a gene symbol (n = 3241), Table S3 shows the number of ML 
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methods that detected that feature in a given cohort. This could be from 0 to 5 methods. For 

the pathway analyses assessing single cohorts, all features that mapped to the pathway space 

were depicted in Figure 6 (BRCA genes n = 113; LGGGBM genes n = 144; COADREAD 

genes n = 122). For the pathway analyses assessing all cohorts, we used a core feature set of 

n = 742 genes that were detected by at least two ML methods in at least one cohort; from 

these 742 ‘core’ features, 533 were annotated in the pathway space depicted in Figure S4. 

Because CNVR could include large chromosome segments that contained multiple genes, 

CNVR features were excluded from the gene aggregation provided in Table S3.

Generating pathway maps

Analysis showed that the ML methods selected large sets features that did not overlap with 

each other. Given this pattern, we asked whether such distinct features shared an underlying 

common biology. The redundancy of biological networks can create equivalencies in the 

data (e.g., high gene expression correlation) between genes in the same pathway. Thus, it 

is possible that the features selected by methods shared more commonality than a direct 

comparison of feature sets might suggest. For this analysis, we created a comprehensive 

pathway map to both visualize and quantify the degree to which selected features were 

related to one another (both within and across methods). To this end, gene-gene interactions 

were collected from expert-curated data sources (PathwayCommons)45 using the following 

pathway sources: Reactome, NCI-PID, HPRD, PANTHER, CORUM, KEGG, INOH, 

NetPath, Pathbank, and InnateDB. This resulted in 13,589 genes interconnected by 434,371 

interactions, which is available for download from the GDC Publication Page (See: https://

gdc.cancer.gov/about-data/publications/CCG-TMP-2022).

Visualizing cancer pathways

A single visual overview of these pathways was created using a geodesic projection onto 

the plane (Figure S4A), using edge betweenness centrality to guide the layout process. 

The layout attempts to arrange communities around hub vertices on the resulting two-

dimensional pathway space. The final map is formed by the main connected component, 

represented by 12,990 vertices (genes) and 359,540 edges (interactions), and is available at 

the GDC Publication Page. In order to generate a compact image, edges of low betweenness 

were pruned using forward selection and backward elimination, and retaining edges of 

high centrality in the main connected component. The pruned graph is available at the 

GDC Publication Page. To serve as a guideline for understanding the major organizational 

patterns on the map, we indicated the location of 540 genes from COSMIC-CGC database 

(release v95, tier 1 collection89 onto the map. This revealed clusters of genes at several 

dozen subregions (Figure S4A, left panel). To quantify and further aid the visualization 

of subregion that contained related genes, we used a heat diffusion strategy based on a 

Weibull decay function, which projected a binary signal around selected genes (read “hot 

spots” in high density areas). Watershed segmentation90 was used to map ridges and valleys 

in the landscape topography, and we refer to the major visible areas as “summits”. We 

numbered summits, starting with the summit with the highest heat density. A gene set 

enrichment analysis was used to identify pathways with overrepresented gene membership 

in summits, and a thematic name was assigned to each summit (Tables S6 and S7). The 

COSMIC summits represented many major cancer-associated pathways, of which the top 30 
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were annotated (Figure S4B, left panel) to allow assessing the pathway implications of the 

feature lists selected by the ML methods. For example, for the TCGA-subtype classification 

analysis, 533 core features were plotted on the pathway map (Figure S4A, center panel) 

and subsequently used for heat diffusion analysis to reveal TCGA-subtype specific summits 

(Figure S4B, right panel, indicates the top 30 densest TCGA subtype summits).

Assessing pathway distance

Features that were selected by one classifier method were compared to features from another 

method by measuring the distance between genes represented in their feature sets within the 

pathway map. If the genes of a method were close in pathway space to genes of another 

method, this would support the idea that a method chose features that were equivalently 

predictive to those chosen by another method, and that shared underlying biology gives 

rise to the predictive equivalence of features. The genes for a particular method were 

collected from its predictive features. Some of these features were distinct, while others 

were shared between methods. We calculated the shortest-path distance to the 1st nearest 
neighbors (DNN1) between gene lists (inter-method distances) (Figure 6C). In order to avoid 

including 0-length pathway distances for genes shared between methods, we also calculated 

the shortest-path distance to the 2nd nearest neighbors (DNN2) (Figure S4C). The distances 

of nearest neighbors were compared to random controls in which the same number of genes 

were randomly selected for a method.

Summit enrichment analysis

To compare the important features selected by the five ML methods, we implemented a gene 

set enrichment visualization that annotates sparse classifier feature lists with gene sets. For 

each set of genes in a summit, we assigned to each gene a scaled |SNR| score, as follows. Let 

A and B be two disjoint sample sets in a cohort C, such that A represents a given subtype 

and B all the other subtypes. Let x1, s1 and x2, s2 denote the mean and standard deviation of 

the expression levels of a gene g i n sets A and B, respectively. The SNR of gene g is given 

by pg = (x1 − x2)/(s2 − s2), and is represented by a vector vg = (p1, p2, ., pn), where pi denotes 

the SNR in ith subtype. A scaled |SNR| was calculated by ug = Σ|vg|, and then scaled by 

ug = ug/max(u). Sorting a summit’s genes by descending scaled |SNR| gave each summit a 

sail-like profile. Given a sparse list of classifier features, we assessed the enrichment of the 

features in a gene set using a Kolmogorov-Smirnov (KS) test, which indicated whether the 

distribution of these features was aligned with the sorted distribution of the genes in that 

summit.

Hallmark enrichment analysis

We used the same gene set enrichment visualization approach as was described in ‘summit 

enrichment analysis’ (above) to assess whether MSigDB Hallmark gene sets91 were 

enriched with classifier features. For this analysis, we noted that some machine-learning 

methods returned feature sets that were very sparse in the Hallmark gene set collection. 

Our first goal was to associate as many classifier features as practical with Hallmarks. Our 

second goal was to ensure that the gene set represented the “feature space” assessed by the 

machine-learning methods. To address both issues, we used nearest neighbor classification 
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(NNC) to assign to gene sets the classifier features that had not been annotated in Hallmarks. 

The NNC classifier was trained on the expression data of the genes annotated in Hallmarks, 

with genes representing data points and gene sets representing class labels. The NNC 

classifier then assigned a class label to each classifier feature not annotated in Hallmarks, 

using the Euclidean distance to the nearest neighbor points in the training data. If there was 

more than one nearest neighbor, a majority vote was used; ties were broken at random.

Subtype level gene set enrichment analysis

We assessed the enrichment of gene sets in a cohort’s subtype using the Gene Set 

Enrichment Analysis (GSEA).92 Briefly, GSEA assigns a normalized enrichment score 

(NES) to the distribution of a gene set across a rank-ordered list of genes (called a 

‘phenotype’). For each subtype, the phenotype was defined by ranking genes by a signal-to-

noise ratio (SNR) metric, comparing samples in that subtype to all other samples in the 

cohort. We assessed the enrichment of the Hallmark gene set collection,91 assigning to each 

Hallmark a NES score and a p-value. Because each cohort has multiple subtypes, more than 

one NES score and p-value were assigned to a given gene set in a cohort. In order to identify 

Hallmark gene sets that were highly ranked in a cohort, we aggregated the NES scores and 

p-values for each Hallmark in a cohort as follows. We aggregated the NES scores by the sum 

of the |NES| scores. The p-values were aggregated by the harmonic mean p-value (HMP)93 

and then adjusted by the Benjamini-Hochberg (BH) method from the p.adjust() function in R 
4.1.0.

Meta-feature analysis—We collected 55 different meta-features (Table S8) that described 

aspects of the data and subtyping tasks for each of the 26 tumor types that either were 

supplied as inputs or were identified during training by the classifiers. These included 

input-related meta-features such as the number of samples within each cancer cohort, the 

size of the rarest subtype and the silhouette scores for each data platform. They also 

included meta-features identified during training, such as the number of features selected for 

classification by the best method and percent of DNA methylation features among selected 

features of the top model. We compared all the meta-features to each other as well as 

to the classifier performance in subtyping (overall weighted F1 score), and clustered the 

meta-features based on the similarities across the 26 tumor types.

QUANTIFICATION AND STATISTICAL ANALYSIS

The enrichment analysis was executed in R 4.1.0 and RStudio 1.4.1106. We used nearest 

neighbor classification (NNC) from the R class package version 7.3–1994 for associating 

Hallmark features and ensuring that the gene sets were in the appropriate feature space. 

For GSEA we used the fgsea R/Bioconductor package version 1.18.0.95 The PathwaySpace 

software to produce the “landscape summits” can be found at https://github.com/sysbiolab/

PathwaySpace. Power analysis and performance scoring was performed with Python3 and 

Scikit-learn.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Five machine learning methods used to train classifiers for 106 TCGA cancer 

subtypes

• Classifier models based upon small numbers of features from five omic data 

types

• Insights into methods, data types, and cohort size for effective classification

• Public resource for classifying non-TCGA patient samples to TCGA cancer 

subtypes
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Figure 1. Cancer types and subtyping
An overview of the cancer cohorts and subtypes studied as part of this project, color-

coordinated by the genomic data type(s) used to define the subtypes. For a given cancer 

type, subtypes are indicated with a ring around the corresponding inset organ view. Breaks 

in each ring distinguish the subtypes. In cases where the subtype is informed by more than 

one data type, concentric arcs are shown. Only subtypes with two or more samples are 

shown; “x”s mark small subtypes that were excluded from classifier development. See also 

Table S1.
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Figure 2. Process workflow
(A) Analysis workflow for classifier training and testing for an example cohort, using 

somatic mutations, copy number alterations, DNA methylation, and expression data for 

mRNAs and for miRNA mature strands. The (approximate) number of features for each data 

type in the original genomic data are provided, followed by the number in the filtered feature 

matrix (medians across all 26 cohorts).

(B) The five ML approaches used in this study. MUT, mutation; CN, copy number; METH, 

DNA methylation. See also Table S2.
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Figure 3. Overview of classifier performance metrics
(A) Classifier performance for each subtype in the 26 tumor type cohorts, representing 

the mean of the overall weighted F1 score of the most accurate model for predicting the 

subtypes within each tumor type (horizontal red bars). Subtype performance is plotted as 

round markers, numbered by subtype and colored by the data type used originally to define 

that subtype.

(B) Proportion of model-selected feature-set data types for the top model in each cohort. 

At the base of each stacked bar is the number of gene-based features utilized by a cohort’s 

subtype classifier.

(C) Concordance of the original METABRIC PAM50 calls to SK Grid (left) and 

AKLIMATE (right) classifications. The central horizontal bars depict the silhouette scores 

for each sample.
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(D) Venn diagram summarizing the union and intersection counts of samples across the 

METABRIC validation experiment.

(E) Comparison of sample silhouette scores vs. the difference in confidence score between 

the best and second-best sample prediction confidence calls for AKLIMATE; colored by 

subtype. Circles indicate samples with concordant calls and triangles indicate samples with 

discordant calls. The linear regression trend lines for each subtype, with associated 95% 

confidence intervals, are shown. See also Figures S1, S2, and Tables S3, S4, and S5.
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Figure 4. Performance of models using single data types vs. multi-omics
(A) The best-performing model for each data type is indicated by colored dot for each 

cohort, with vertical bars representing the range across subtypes. Asterisks denote cohorts 

where the top single data type model achieved performance equivalent to or better than the 

top multi-omics model performance, which is indicated by a horizontal black bar. The upper 

annotation track indicates the data type(s) originally used to define the subtypes. The bottom 

annotation bar indicates the method that produced the top models.

(B) Influence of feature set size on performance. For each cancer cohort, for each method 

and data type, a plot of cohort performance as a function of a priori defined feature set size 

produces an area under the curve (AUF1C). As an example, the curves for the ESCC cohort 

for CloudForest multi-omics and single data type models are shown on the left. A heatmap 

of the AUF1C values for multi-omics and single data type models is shown on the right. 
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Above the heatmap, the upper annotation track indicates how the subtypes were originally 

defined. See also Figure S3 and Table S4.
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Figure 5. Feature sets of top performing models
(A–D) Analysis of the overlap in feature sets among top models for each of four cancer 

cohorts. (A) BRCA (expression clustering-based subtyping), (B) COADREAD (DNA 

methylation clustering-based subtyping), (C) SKCM (mutation clustering-based subtyping), 

and (D) LGGGBM (DNA methylation clustering-based subtyping). For each cancer cohort, 

we identified the top model for each method. Models were allowed to select up to 100 

features, except JADBio, which limited its feature set to a maximum of 25. Overlap among 

the selected feature sets is represented in Upset plots.34 A bar chart of model overlap 

indicates feature membership in the top models of the five methods. The set of features 

selected in two or more models for each cancer cohort is designated as the “core” feature 

set for that cancer cohort. The heatmaps represent a hierarchical clustering analysis of 

the core feature measurements for the main selected data type for all cohort samples. 

Sample rows in heatmaps are organized by subtype. The method annotation panels indicate 
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min-max normalized feature importance values, with 1 indicating the most important 

feature (the entire model feature set was normalized regardless of platform). Gene symbols 

(heatmap columns) are colored red to indicate membership in the corresponding annotation 

list; PAM50 membership (BRCA), DNA methylation literature support (COADREAD and 

LGGGBM cohorts).35,36–38 See also Figure S4.
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Figure 6. Pathways and biology of classifier features
(A) Pathway space representation of PathwayCommons V12 (gray background graph).45 

Left panel: pathway space location of cancer-associated genes from the COSMIC-CGC 

database (release v95, tier 1 collection) (red circles). Labels represent the top 30 “hub” 

genes in the graph. Right panels: pathway space locations of BRCA, LGGGBM, and 

COADREAD classifier feature lists (colored circles). Dark diamonds indicate intersections 

in ≥2 ML methods; text labels indicate intersections in ≥3 machine-learning methods.

(B) Density of selected genes in the pathway space depicted in (A). Summits represent 

dense collections of genes, and are numbered from the most to the least dense. Left panel: 

COSMIC-CGC summits. Right panels: single cohort summits. White outlines indicate the 

locations of COSMIC-CGC summits in the left panel.

(C) Distances between classifier feature lists in pathway space. The x axis shows the average 

shortest-path distance to nearest neighbors between gene lists. Top panel: Distance from 

TCGA-subtype classifier features to COSMIC-CGC genes. Lower panels: Distance from the 

classifier feature list of one method to the gene lists of the other methods, expressed as 

z-scores, using the distribution of random gene list distances.

(D) Enrichment analysis of BRCA, LGGGBM, and COADREAD summits. Genes in each 

summit were ranked by a signal-to-noise ratio (SNR) metric. Tracks below the summits 
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show the distribution of feature lists from the top-performing models. Feature lists enriched 

in summits are indicated in red. See also Figure S5 and Tables S6 and S7.
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Figure 7. Factors influencing accurate subtype classification
(A) Correlation between meta-features and subtype classifier performance in 26 TCGA 

cohorts. Meta-features are grouped into seven meta-feature groups (MFG1–7) by 

hierarchical clustering. Two horizontal dashed lines mark significance thresholds (FDR-

corrected Spearman correlation p values ≤0.05). PCs, principal components.

(B) Learning curves for 26 TCGA cohorts. Cohort performance as a function of sample size; 

each cohort was randomly sampled 100 times at each sample size-increment, and predictive 

accuracy was averaged across the sub-samplings.

(C) Predicted vs. actual cohort performance for the 15 cohorts with at least 250 tumor 

samples. The predicted performance at a sample size of 250 was estimated from the power-

law curve fit to the sample-size range of 35 through 70 for each cohort.

(D) Representative extension of power-law accuracy prediction for a smaller TCGA cohort 

(adrenocortical carcinoma, 76 total samples). See also Figure S6 and Table S8.
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Figure 8. Guide to selection of the best model for a new sample
Decision chart to guide the selection of data and model to assign a TCGA subtype label to a 

non-TCGA patient sample. If genomic data exists for a new sample as indicated in the upper 

branch, then the best-performing model can be selected from Table S5 for the existing data 

type. In the lower branch the best overall model in Table S5 will dictate the type of data 

required for that model.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Sample data and CV folds This paper TMP_20230209.tar.gz

Model prediction performance 
metrics

This paper big_results_matrix.tsv.gz

Feature lists as model-by-feature 
matrix

This paper collected_features_matrix.tsv.gz

Feature importance scores This paper Feature importance scores

Feature lists This paper feature_lists.tsv.gz

Model-by-feature matrix for 
top models per method/cohort 
combination

This paper collected_features_matrix_top_models_lte_100.tsv.gz

Model-by-gene matrix for top 
model per cohort (excluding genes 
from CNVR features)

This paper collected_genes_matrix_top_models_lte_100_exclude_CNVR_cohort_level.tsv.gz

Model-by-gene matrix for top 
models per method/cohort 
combination (excluding genes 
from CNVR features)

This paper collected_genes_matrix_top_models_lte_100_exclude_CNVR.tsv.gz

Model prediction performance 
metrics for top models per 
method/cohort combination

This paper top_performing_models_lte_100_features.tsv.gz

Model prediction performance 
metrics for top model per cohort

This paper very_top_performing_models.tsv.gz

Pathway data This paper pathway_commons_filtered_by_source_no_chem_edges.sif.gz

Sample prediction and feature list 
reporting file format

This paper tmp_model_output_files_format.md

Model scoring script This paper tmp_prediction_file_to_performance_metrics.py

Pathway for generating pruned 
version (line below)

This paper pathway_commons_v12_main_component_20211122.RData

Pathway for Figure 6 This paper pathway_commons_v12_pruned_for_landscape_analysis_20211122.RData

Quantile rescaling script, for 
Figure 3D

This paper quantile_rescale.py

METABRIC subtype silhouette 
scores, for Figure 3D

This paper METABRIC_PAM50_silhouettes_no_Normal-Like_2022-03-15.tsv

AKLIMATE subtype predictions 
on rescaled METABRIC samples, 
for Figures 3C and 3D

This paper aklimate_predict_metabric_brca.tsv

SK Grid subtype predictions on 
rescaled METABRIC samples, for 
Figure 3C

This paper metabric_adaboost.tsv

JADBio model data associated 
with Docker Image

This paper models_jadbio.tar.gz

CloudForest model data associated 
with Docker image

This paper models_cf..tar.gz

AKLIMATE importance scores 
for Figure 5

This paper aklimate_feature_importance_scores_20200807.tar.gz

Figure 5 input data; COADREAD 
methylation analysis

This paper 20220425_TMP_DNA_methylation_features_analysis_COAD.tsv

Figure 5 input data: LGGGBM 
methylation analysis

This paper 20220425_TMP_DNA_methylation_features_analysis_LGGGBM.tsv
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REAGENT or RESOURCE SOURCE IDENTIFIER

Figure 5 input data; BRCA 
PAM50 membership

This paper brca_pam50_hits.tsv

Figure 5 input data; JADBIO 
feature importance

This paper jadbio_ft_importances_f1.tar.gz

Figure 5 input data; top models 
mapping of classifier name to 
feature set name

This paper modelID_performance2importance.json

Figure 5 input data; all models 
mapping of classifier name to 
feature set name

This paper modelID_performance2importance_ALLCOHORTS.json

Sub-sampling experiment raw 
results, 100 predictions at each 
sampling size for each cohort

This paper TMP_sub-sampling_experiment.tgz

Result files from SK Grid This paper skgrid_results_20210708.tar.gz

Result files from AKLIMATE This paper aklimate_predictions_and_features_20200630.tar.gz

Result files from subSCOPE This paper subSCOPE_results.tar.gz

Result files from the Gnosis 
platform

This paper gnosis-results.tar.gz

Result files from CloudForest This paper Cloud_Forest_v12_sample_predictions.zip

User renaming of features to TMP 
nomenclature

This paper ft_name_convert.tar.gz

Top model info (name, 
parameters, ft list) - Docker

This paper Model_info.json

METABRIC expression data Curtis et al.24 https://ega-archive.org/studies/EGAS00000000083

AURORA expression data Gene Expression 
Omnibus

Gene expression GSE212375; PAM50 - PMC9886551 Table S2

Software and algorithms

subSCOPE docker Image This paper syn30993770; subscope.tar.gz

AKLIMATE docker Image Uzunangelov et 
al.17

syn29659459; aklimate.tar.gz

JADBio docker Image Tsamardinos et al.20 syn31114207; jadbio.tar.gz

SK Grid docker Image This paper syn29658355; sk_grid.tar.gz

CloudForest docker Image Bressler et al.18 syn30267068; cloudforest.tar.gz

subSCOPE Workflow This paper https://github.com/NCICCGPO/gdan-tmp-models

AKLIMATE Workflow This paper https://github.com/NCICCGPO/gdan-tmp-models

JADBio Workflow This paper https://github.com/NCICCGPO/gdan-tmp-models

SK Grid Workflow This paper https://github.com/NCICCGPO/gdan-tmp-models

CloudForest Workflow This paper https://github.com/NCICCGPO/gdan-tmp-models

Consensus prediction calling This paper https://github.com/NCICCGPO/gdan-tmp-models

PathwaySpace This paper https://github.com/sysbiolab/PathwaySpace

Other

Public data files at the NCI 
Publication page

This paper https://gdc.cancer.gov/about-data/publications/CCG-TMP-2022
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