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Abstract

Collaborative networks and data sharing initiatives are broadening the opportunities

for the advancement of science. These initiatives offer greater transparency in sci-

ence, with the opportunity for external research groups to reproduce, replicate, and

extend research findings. Further, larger datasets offer the opportunity to identify

homogeneous patterns within subgroups of individuals, where these patterns may be

obscured by the heterogeneity of the neurobiological measure in smaller samples.

However, data sharing and data pooling initiatives are not without their challenges,

especially with new laws that may at first glance appear quite restrictive for open

science initiatives. Interestingly, what is key to some of these new laws (i.e, the

European Union's general data protection regulation) is that they provide greater

control of data to those who “give” their data for research purposes. Thus, the most

important element in data sharing is allowing the participants to make informed deci-

sions about how they want their data to be used, and, within the law of the specific

country, to follow the participants' wishes. This framework encompasses obtaining

thorough informed consent and allowing the participant to determine the extent that

they want their data shared, many of the ethical and legal obstacles are reduced to

just monsters under the bed. In this manuscript we discuss the many options and

obstacles for data sharing, from fully open, to federated learning, to fully closed.

Importantly, we highlight the intersection of data sharing, privacy, and data owner-

ship and highlight specific examples that we believe are informative to the neuroim-

aging community.
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1 | INTRODUCTION

The word “data” is the plural form of the Latin word datum, meaning

“a thing given.” This definition is very appropriate in human subjects

research, as participants are giving (actually entrusting) researchers

something of themselves, which researchers in turn collect and

store (as data) to be used to address important questions in science.

In many cases, these “things given” by the participants result in
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no direct benefit to the individual themselves, but there lies the hope

that it may help others. Indeed, within the larger scope of medical

research, the use of these “things given” (data) has resulted in

immense progress over the past century in preventions, cures, and in

the treatments of a myriad of conditions. Just two widely known

examples include the links between smoking and cardiovascular dis-

ease (Ambrose & Barua, 2004) and cancer (O'Keeffe et al., 2018); and

the links between low folate during pregnancy and the increased risk

of neural tube defects (Blom, Shaw, Den Heijer, & Finnell, 2006).

However, these are just a drop in the bucket of how medical research

has resulted in improving the health and well-being of the population.

Translating research for the benefit of the population would be

very challenging without participants entrusting researchers with

their data.

In addition to the dramatic progress over past century in the man-

ner in which data has been used, there have also been considerable

advances in the methods of study design, data collection, and data ana-

lyses and importantly, dramatic changes in the ethics of human subject

data (Leonelli, 2016; Nichols et al., 2017). Recent advances have not

only involved the creation and improvement of treatments and preven-

tive care, but also the cessation of treatments or programs that either

do not work, or worse, are harmful to patients. Thus, these “things

given” have resulted in much that is good and very beneficial for others.

At the same time that study participants are providing their data for

research, there has also been dramatic progress over the last decade

with researchers beginning to “share” these “things given” (data) with

other researchers. Within human subjects research, large data sharing

or data pooling initiatives have been especially prominent in the fields

of genetics, neuroimaging, and the combination of the two (Poldrack &

Gorgolewski, 2014; Poline et al., 2012; Thompson et al., 2014). These

data sharing initiatives help advance the process of scientific discovery

through increasing sample sizes, which allows for greater precision and

the ability to measure smaller effects, although smaller effects can also

be associated with either smaller biological effects or potentially con-

founding factors (Smith & Nichols, 2018). Larger sample sizes also offer

the ability to parse the considerable heterogeneity of the population

into more homogeneous groups. This may be beneficial in increasing

the specificity of the underlying neurobiology of specific characteristics

or illnesses or to develop more individualized reference models (Manrai,

Patel, & Ioannidis, 2018). Larger sample sizes will offer the opportunity

to apply more sophisticated statistical models to the data (Bzdok &

Yeo, 2017), since most biological processes have non-linear and sto-

chastic mechanisms (White, 2019). In addition, data sharing initiatives

open the door for reproducibility, replication, and increased transpar-

ency (Milham et al., 2018).

Typically when you give something away, that which was given is

no longer yours, but rather belongs now to the person who received

the gift. Researchers and universities often hold the view that the data

“belongs” to them, they have received the gift and are now the true

owners of the data. Funding agencies in the United States consider

institutions to be the owners of the data. However, the question

regarding ownership of data is quite complex and, as discussed below,

recent laws such as the European Union (EU)'s general data protection

regulation (GDPR) are giving more rights to the individuals who are

participating in studies (GDPR, 2016).

The GDPR went into effect on May 25, 2018 and involves data

privacy laws involving the storage, transfer, and sharing of data, both

within and outside the EU and extending to the European Economic

Area. The GDPR places greater responsibility on institutions to safe-

guard the privacy of personal data, such as assuring that there is

a data controller to monitor data security. In addition, the GDPR's

“Privacy by Design” requires that the safeguarding of data should be

discussed and implemented during the design phase of the study.

Contrasting the GDPR with laws in the United States, the GDPR pro-

vides regulations that extend broadly to all personal information,

whereas personal information in the United States falls either under

the Common Rule or the Health Insurance Portability and Account-

ability Act (HIPAA). These are described in more detail later.

There has been a paradigm shift over the last decade with respect

to data ownership, partially driven by recent events in which personal

data was used without consent of the individuals for monetary or

political motives. These events that received considerable media cov-

erage highlight the importance of big data (Rosenberg, Confessore, &

Cadwalladr, 2018). However, these recent events also highlight the

importance of the conscientious and ethical use of human subjects

data, fostering a culture of data sharing for the benefit of the popula-

tion, while also protecting the privacy of the individuals who are par-

ticipating in the studies. Different institutions and countries have

differences in their approach to balancing data protection and data

sharing and researchers need to work within the borders of the laws

of the countries where they reside. Within this context, it is the goal

of this manuscript to provide information on the opportunities, obsta-

cles, and challenges related to sharing human subjects data. While we

focus specifically on the sharing of neuroimaging data, many of the

points discussed can extend to other types of data elements. One key

element present in privacy laws, including the GDPR and the HIPAA,

involves the right of the individual to make decisions regarding their

own data. Within the context of obtaining thorough and transparent

informed consent/assent from our participants, we discuss whether

certain regulations, such as the GDPR and HIPAA are truly monsters,

or merely monsters under the bed.

2 | FULLY ANONYMIZED VERSUS
DE-IDENTIFIED DATA

Within the framework of privacy protection, the degree of

anonymization of the data is an important consideration and thus is

an aspect incorporated in privacy regulations. Different rules apply to

data, which are dependent on whether the data is considered per-

sonal data, fully anonymized or de-identified. Fully anonymized data

has all personalized data removed, is given a separate identification

code, and the key between the fully anonymized dataset and any

path back to the original data is deleted such that it would be

extremely difficult to trace the data back to an individual. However,

depending on the type and amount of data, machine learning
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algorithms could, within a specific probability distribution, trace back

to a specific individual.

Typically, fully anonymized data can be shared without the con-

sent of an individual. However, there are a set number of criteria that

need to be met before data can be considered fully anonymized.

These include taking actions to prevent the possibility of tracing,

linking or deducing individuals from the data. Each variable or combi-

nation of variables that could reasonably be used to identify an indi-

vidual should be taken into account. For example, low rates of specific

ethnic minorities in combination with other variables, such as age and

gender, could be used to re-identify individuals. Also, more rare medi-

cal conditions coupled with other demographic features could be used

to re-identify individuals. Within this context, there has been recent

concern that large datasets with multiple variables cannot truly be

anonymized. By merging with other large databases, algorithms can

predict within a certain error margin, whether a specific dataset

belongs to a certain individual. Thus, for some large datasets it may be

best consider the dataset in the de-identified category when large

numbers of variables will be shared.

Within the GDPR a clear distinction is made between personal

data, de-identified data, and fully anonymized data. Personal data

refers to data that can directly define the identity of an individual,

such as the name, date of birth, or the address of the individual.

Within the HIPAA protected health information (PHI) is defined as

“individually identifiable health information.” This includes demo-

graphic and data related to: (a), the individual's past, present or future

physical or mental health or condition; (b), the provision of health care

to an individual; or (c), the past, present, or future payment for the

provision of health care to an individual and that identifies the individ-

ual or for which there is a reasonable basis to believe can be used to

identify the individual (45 C.F.R. § 160.103). Examples of PHI are indi-

vidual's names, birth dates, and genetic information.

De-identified data means that the personal data is stripped from

the dataset and the individuals are given a unique identification num-

ber, that is, the age of an individual is provided without the date of

birth. However, for de-identified data a key remains which can be

used to link the de-identified data back to the personalized data.

The data can be considered de-identified when identifiers are

replaced by artificial identifiers, so that the data cannot be linked to

individuals by third parties. The possibility of encryption remains, the

host researchers/data managers are allowed to have the key, which

serves as the link between data and individuals. Importantly, the

receivers of the data being shared also play a key role here, because

they should agree to not attempt to re-identify individuals, and, as

such, terminology along these lines should be included in the data use

agreement.

3 | PRIVACY

Privacy concerns have only increased since the initial cautionary

tales of the Netflix competition in which competitors inadvertently

re-identified individuals from anonymous datasets (Netflix Prize

Privacy Concerns—https://en.wikipedia.org/wiki/Netflix_Prize#Privacy_

concerns) and the example of genetic reidentification from datasets

anonymized per NIH guidelines (Cassa, Wieland, & Mandl, 2008;

El Emam, 2011; Homer et al., 2008). Privacy regulations are rapidly

changing, including the GDPR, the California Consumer Privacy Act

(CCPA), and policy restrictions across Asian countries. Projects such as

the decentralized internet (Simonite, 2018) and differential privacy, such

as used by Apple (Bhowmick, Duchi, Freudiger, Kapoor, & Rogers, 2018)

and the 2020 U.S. Census (Census, 2020: Data Protection and Privacy

Program) have entered public discourse. Differential privacy involves

adding characteristic noise, often noise fitting a Laplacian distribution,

in order to prevent the re-identification of individuals (Dwork &

Roth, 2013; Dwork & Smith, 2010). However, for group analyses with

large sample sizes, the noise will be filtered out as the residuals.

Examples of re-identification, such as highly accurate identifica-

tion via facial reconstruction (Schwarz et al., 2019) and machine learn-

ing identification from generative models (Rocher, Hendrickx, &

de Montjoye, 2019) challenge the technical and legal adequacy

of the de-identification release-and-forget model, spurring calls for

additional privacy guidance (Morris, 2019). Other issues specific

to neuroimaging data, such as personal identifiers in the DICOM

header, should be removed prior to data sharing. Generally shared

de-identified or anonymized data is downloaded from a hosted site,

whether the servers are located at a specific university or in the cloud.

It is possible for researchers to obtain some study data, that is, Human

Connectome Project data, via an encrypted hard drive that is mailed.

However, given the sheer quantity of data available, image processing

for large studies will require supercomputing facilities, which may

include commercial cloud-based facilities. With the proper safeguards

and data agreements, cloud-based computing will be equally as safe

as an encrypted hard drive with a strong password that is behind

locked doors.

In light of the possibility to re-identify individuals based on the

facial reconstruction from high-resolution structural MRI data, there

have been a number of software packages that are able to “de-face”

MR images (Bischoff-Grethe et al., 2007; Milchenko & Marcus, 2013).

Thus, for data sharing of high-resolution structural MRI images it

is important to first remove or blur the surface-based features in

the images. While programs that remove the possibility of re-identify

individuals based on their surface anatomy, they may reduce the

image quality for downstream pre-processing algorithms (de Sitter

et al., 2020).

Separate from structural neuroimaging data, other neuroimaging

modalities (EEG, magnetic resonance spectroscopy, magnetoencepha-

lography (MEG) do not lend themselves to easily identifying individuals.

The exception would be in the case of artifacts, such as a specific

seizure disorder in EEG data which could be then coupled with other

data to potentially identify an individual. The spatial resolution of

both diffusion tensor imaging and functional MRI is continuously

increasing, which many allow for facial characteristics to be identified

and thus these high-resolution DTI and fMRI images should also

undergo defacing. While there is support that individuals have charac-

teristic patterns of functional brain connectivity, known as functional
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connectome fingerprinting, these have not been used to identify individ-

uals (Finn et al., 2015). Finally, in our longitudinal study of child develop-

ment (White et al., 2017), we give children several photos of their brains

(i.e., sagittal midline slice from the structural MRI) following their session,

of which we have learned that some of the children have placed on

social media. Thus, even removal of facial features from an MRI scan

may not completely ensure privacy.

4 | MISSED OPPORTUNITIES

Within neuroimaging there are considerable missed opportunities for

data sharing: thousands of studies with data collected from valuable

populations did not include data sharing language within their consent

forms and some IRB and medical ethics committees are refusing to

allow these data to be shared. In general, and across most countries,

consent from the participants is necessary prior to the sharing of

de-identified data. While it may be possible for researchers to design

their study and inclusion criteria to include only those participants

who are willing to share their data, for clinical studies, this may result

in a selection bias. However, this same selection bias would be pre-

sent when only data with consent to share data, is shared. Thus, espe-

cially for clinical studies, an indication of the representativeness of the

participants included in the data sharing initiative should be provided.

The representativeness can be illustrated by comparing the demo-

graphic and clinical information of those who chose not to share their

data compared to those who are willing share their data. While this

will provide an indication of representativeness between those willing

and not willing to share their data, it does not account for representa-

tiveness as a result of potential biases during the inclusion phase of

the study (i.e., selection bias).

NIH program officers have raised concerns regarding re-

anonymization attacks (Narayanan & Shmatikov, 2008; Ravindra &

Grama, 2019), the importance of security-hardening of software tools,

and privacy protection. Entering a data use agreement (DUA) can help

mitigate these issues, but setting up a DUA is often a cumbersome

process, requiring multiple agreements (one per site and sometime

even one per researcher, including institutional sign-off), discouraging

potential users and still providing no more than a trust-based protec-

tion of the data. Nevertheless, in spite of the obstacles, many forms of

data sharing are taking place and the benefits of these efforts have

been seen (Milham et al., 2018).

5 | DATA OWNERSHIP

Data sharing is intimately tied to data ownership. However, the ques-

tion of who is the actual owner of research data is complex; yet

understanding this question is crucial from the perspective of data

sharing. Whoever owns the data has control over the data, its dissemi-

nation, and the timing of dissemination (Fishbein, 1991). There are

many parties who stake a claim for ownership; including academic

institutions, researchers, funding agencies, and journals that are more

and more requesting that the data supporting the articles be uploaded

(Cleary, Jackson, & Walter, 2013). In many cases, both in Europe and

North America, it is the academic institutions that claim ownership

of data from sponsored research projects (Alter & Gonzalez, 2018).

In many cases of government sponsored projects, that is, the

U.S. National Institutes of Health, are considered the owners of the

data. With the funding of the sponsored project, the academic institu-

tions are then contracted to collect, clean, and to serve as the custo-

dians of the data (Alter & Gonzalez, 2018). The university agrees to

comply with specific regulations regarding the ethical collection, stor-

age, sharing, and use of the data. The last decade has seen a paradigm

shift with a number of federal government funding institutes (i.e., the

National Institutes of Drug Abuse (NIDA) and the National Institutes

of Mental Health (NIMH)) have laid requirements for data sharing

for research that they fund. For example, the perspective of the NIH

for nearly two decades has been that “all data should be considered

for data sharing” (NIH, 2003). Researchers submitting applications

have yearly direct costs greater than $500,000 are required to

submit a data sharing plan, with the release of the data coinciding

with the publication of the main findings of the study. Similarly, the

EU's Human Brain Project also has a major component involving data

sharing. Under the recent Horizon 2020 call, as far as possible,

research data should be made available to “access, mine, exploit,

reproduce, and disseminate (free of charge)” research data (European-

Commission, 2017).

There has been little discussion in the literature of the partici-

pants themselves being the true owners of their research data. Yet

one of the strongest messages inherent in the EU's GDPR is that

individuals have much more control of their own data. This is best

highlighted in the GDPR law that entails the individuals to have the

“Right to be Forgotten.” The “Right to be Forgotten” essentially means

that an individual can request that their complete paper and electronic

research history be “erased” for a specific organization (EU, 2018).

When an individual participant living within the EU invokes their

“Right to be Forgotten,” any personal and de-identified data are then

erased or destroyed. It could be argued that if an individual has the

right to have their data removed or destroyed, that they are the “true

owners of their data.” However, the GDPR “Right to be Forgotten”

does not apply to any fully anonymized data that has been released.

Fully anonymized data would not contain the coded link, which would

allow the data to be traced back to a specific individual.

Understanding who are the rightful owners, and who are the

custodians of the data is beneficial to know how we go about data

sharing. In most cases, de-identified human subject's data, including

neuroimaging and its associated meta-data, cannot be shared without

adequate consent that specifically states that the data can be shared.

However, it is the researchers who write the consent forms and thus

can ultimately control, to some extent, the opportunities for data

sharing. A consent form written that precludes the option for data

sharing dramatically limits the ability for sharing to occur, although if

it's possible to fully anonymize the data, then sharing is possible in

most situations. Thus, it is important that the opportunity for data

sharing be given to the participants via consent, and when applicable,
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assent, so that they can make the decision whether they, with the

optimal data protection under the law, want to share their data or not.

Under some laws individual participants can request their own

data and personally share it. However, this would require considerable

organization and knowledge of how the data are organized. That

said, mechanisms are emerging, such as “Open Humans” (Tzovaras

et al., 2019) that allow research participants, after obtaining their own

data, to allow it to be uploaded to a site in which the participants

receive requests when researchers would like to access their data to

address specific questions. Initiative such as “Open Humans” are

highlighting the potential paradigm shift related to the ownership of

personal data moving in the direction of the owners being those from

whom the data were originally derived. While the topic of data own-

ership is complex, it is a crucial element that should be discussed in

the context of data sharing.

6 | OPPORTUNITIES FOR DATA SHARING

The brain is a highly complex organism housing billions of neurons

and trillions of synapses that have the ability to orchestrate a beautiful

symphony of social, cognitive, and emotion functions. Within this

backdrop, there is no question that it takes teamwork to understand

the brain from the sub molecular to the gross anatomical level. This is

supported by the recent increase in both large scale studies that make

the data openly available to researchers and consortia which pool

many smaller studies for either meta- or mega analyses.

The fields that have been at the forefront of data sharing or data

pooling initiatives are those fields in which (a) data can be easily har-

monized; and (b) large sample sizes are necessary and potentially

available to address specific questions. Thus, it is not surprising that

within medicine, it is the field of human genetics that has been at the

forefront of these initiatives, followed closely by the field of neuroim-

aging. The combination of neuroimaging and genetics, coined “imaging

genetics” has also emerged, with the Enhancing Neuro Imaging Genet-

ics through Meta Analyses (ENIGMA) consortium playing a leading

role in this initiative (Thompson et al., 2014). Fields such as epidemiol-

ogy, which also benefit from larger sample sizes, lag behind in data

sharing initiatives partly due to the complexities in harmonizing the

different approaches to measure environmental variables (Ehrenstein,

Nielsen, Pedersen, Johnsen, & Pedersen, 2017; Fairchild et al., 2018).

The opportunities for data sharing can best be portrayed in those

studies or initiatives that have been very successful, with success

being defined as contributing positively to the advancement of knowl-

edge. One well known and successful approach for data sharing within

a collaborative network involves the ENIGMA consortium (Thompson

et al., 2014). In the ENIGMA model, the approach which allows the

largest participation involves sharing pre- and post-processing analysis

scripts with the group. Results from each participating site are then

returned to the site leading the analysis in order to conduct a meta-

analysis (e.g., Kelly et al., 2018). This provides a powerful way to lever-

age data from around the world and has received wide adoption by

the community. Moreover, performing analyses at a centralized site

has the benefit of being able to work within local or regional restric-

tions, whether defined by law or by the facility. However, such meta-

analytic approaches are limited to low dimensional analyses (such

as volumetric analyses) and do not yet enable the use of voxelwise,

surface-based, or iterative machine learning analyses (i.e., those that

perform iterative analyses using the entire dataset). To accomplish the

latter, for the subset of sites that are able to have their data central-

ized, data can be pooled in order to perform mega-analyses (Boedhoe

et al., 2019).

There are also data sharing initiatives in which neuroimaging data

collected by many different studies is retrospectively made anony-

mous and pooled. Examples include the Autism Brain Imaging Data

Exchange (ABIDE-I and II)(Di Martino et al., 2014, 2017), 1,000 Func-

tional Connectomes (Biswal et al., 2010), Consortium on Reliability

and Reproducibility (Zuo et al., 2014), the REST-meta-MDD consor-

tium (Yan et al., 2019) and the Healthy Brains Consortium (O'Connor

et al., 2017).

Funding agencies have also been instrumental in pushing for and

funding a number of large studies of which data sharing is a key ele-

ment. From the United States the most common include the Human

Connectome Project (Van Essen et al., 2012; Van Essen et al., 2013),

Baby Connectome Project (Howell et al., 2019), Alzheimer's Disease

Neuroimaging Initiative (Mueller et al., 2005), Longitudinal Study of

Adolescent Brain Cognitive Development or the ABCD Study (Casey

et al., 2018), MIND Clinical Imaging Consortium (Gollub et al., 2013),

COBRE (Aine et al., 2017), Pediatric Imaging, Neurocognition, and

Genetics Study (Jernigan et al., 2016), Philadelphia Neurodevelopmental

Cohort (Satterthwaite et al., 2014), and Infant Brain Imaging Study

(Hazlett et al., 2017); from the United Kingdom the UK Biobank has the

goal to release neuroimaging data from 100,000 participants (Miller

et al., 2016), and the EU Human Brain Project (Markram, 2012) has data

sharing as a key element of the grant. The NIMH currently mandates

data sharing (with an institutionally signed DUA (Miller et al., 2017)) for

almost all funded studies (there are some notable exceptions to this in

the case of extremely sensitive data which might lead to the ability to

re-identify an individual).

7 | A SPECTRUM OF SHARING

Data sharing of neuroimaging data can be considered to lie on a spec-

trum; ranging from fully open to completely closed. While the “open

science” philosophy typically suggests that researchers should share

as much data as possible, sharing can also be done on a smaller scale,

depending on the goals. There is a broad-spectrum of goals for which

data can be shared. At one end of the spectrum data can be shared

solely for reproduction (i.e., sharing only the data and code necessary

to rerun the analyses to reproduce the results). In the middle of the

spectrum, a subset of data can be shared that allow others to replicate

findings from other studies (i.e., re-running analyses). Finally, on the

other end of spectrum is sharing all data obtained from a study. The

latter allows researchers to address questions that have not been

addressed before.
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Table 1 lays out the trade-offs that are present in the existing

spectrum of data sharing. At one end is the sharing of peak coordi-

nates. These are often extracted from existing manuscript tables, but

may also be provided for specific individuals to provide more accurate

information. This enables meta-analytic approaches to be performed

by combining experiments and studies (Fox & Lancaster, 2002). How-

ever, regions that did not reach statistical significance in the original

analyses will not be included in this meta-analytic approach. The next

level is to share unthresholded (Gorgolewski, Varoquaux, et al., 2016)

or network maps (Muetzel et al., 2016), which allows for voxelwise or

connectivity analyses to be done even for regions that did not achieve

significance in the original study. Multivariate and other advanced

analytic approaches have the ability to extract a remarkable amount

of information from these highly distilled features, for example, intrin-

sic networks can be captured from covariation among individual

datasets (Calhoun & Allen, 2013; Smith et al., 2009). However, both

of these approaches, though more informative and useful than peak

results, still provide relatively low information relative to the raw data

(Calhoun, 2015). In addition, these approaches involve retrospective

storage of completed studies and do not allow for novel subject-level

models to be run on the time series data.

The next level of sharing involves building consortia to analyze

previously collected data as a group, often without sharing of the raw

data. ENIGMA consortia (Thompson et al., 2014) have been highly

successful in creating a culture of sharing built primarily around dis-

tributing a common set of scripts which are run locally. The results

run locally (e.g., analyses involving volumetric MR data) are then

shared for centralized meta-analysis. This edition of Human Brain

Mapping has multiple examples of this form of data sharing. In some

cases, if allowable, raw or preprocessed data can also be shared, these

can then be used for mega-analyses.

Pooling results for meta-analyses has the major advantage that data

is analyzed locally and thus it is not necessary to share individual data.

Moreover, it does not require advanced analysis methods to account

for clustering-effects within cohorts. However, sharing of the individual

datasets can be extremely beneficial for numerous reasons, including

increasing sample size (Button et al., 2013), better performance (Boedhoe

et al., 2019), greater flexibility in controlling for confounders, and the abil-

ity to parse heterogeneous groups to better understand the underlying

neurobiology. While certain analyses cannot be applied to small datasets,

pooling these smaller datasets expands the opportunities to address spe-

cific questions and to assess the replicability of the findings.

TABLE 1 A sampling of sharing approaches and their trade-offs

What is shared
Centralized
full data

Centralized
individual
features

Voxel-based
and machine
learning

Information
content

Compute
load

Custom
subject-level
models Privacy

Nothing No No No None None No Highest

Privatized intermediates (e.g.,

COINSTAC [Plis et al., 2016])a
No No Yes High Med-lowb Yes Higherc

Intermediates (e.g., COINSTAC

[Plis et al., 2016])

No No Yes High Med-lowb Yes Highc

Group coordinates (e.g., Brainmap

[Fox & Lancaster, 2002])

No No Yes Low Low No Highd

Features (e.g., dataShield

[Wolfson et al., 2010]_

No Yes Yes Med-high Med-low Yes Med-highc

Data (temporarily) (e.g., ViPAR

[Carter et al., 2016])

Yes (private) Yes Yes Med-high Med-high Yes Highc

Group maps (e.g., neurovault

[Gorgolewski et al., 2016])

No No Yes Med-low Med-low No Highd

Meta data (e.g., ENIGMA

[Thompson et al., 2014])

No No No Med-low Med-low Yes Med

Mega data (e.g., ENIGMA

[Thompson et al., 2014])

Yes Yes Yes Med Med Yes Med

Preprocessed data Yes Yes Yes High High Yes Med

NIfTI data Yes Yes Yes High High Yes Low

DICOM data Yes Yes Yes High High Yes Low

Everything Yes Yes Yes Highest Highest Yes Lowest

aOne can use decentralized algorithms which also include additional privacy protection by, for example, adding structured noise to the derivatives before

they are sent to the aggregator (e.g., differential privacy).
bBecause COINSTAC preprocessing for a given site can be pre-computed once, the computational demands for subsequence analyses can be much lower

(e.g., if one wants to incorporate a remote large N dataset with a local smaller N dataset).
cDerivatives are privately aggregated.
dIt has been shown that in multiple cases, even group averages can reveal unanticipated information about the individual.
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There are also some drawbacks of pooling datasets for mega-

analyses. Differences in data-acquisition protocols and MR platforms

introduce noise in the data. However, from a clinical perspective, it

is critical that findings are robust enough to be detectable across

scanners and protocols. When comparing results of meta- and mega-

analyses, the two are fortunately quite similar (Debray et al., 2015).

In addition, iterative meta-analyses can be identical to mega-analysis

(Sarwate, Plis, Turner, Arbabshirani, & Calhoun, 2014). However

meta-analysis are limited in that it is inefficient to add additional

features that were not originally included in the distributed scripts to

the different sites. Further, meta-analyses do not allow iterative

approaches that require access to the first level data. Beyond this,

mega-analyses have the advantage of an increased power to detect

differences, which is especially important when there are non-

significant associations at individual sites (Boedhoe et al., 2019). If

certain associations reach sub-threshold significance at individual

sites, they will not be taken into account in the pooled meta-analysis,

whereas in a mega-analysis, those associations might be discovered,

simply because of the increased power.

Approaches for decentralized sharing provide a way to “thread the

needle” between privacy and openness. Approaches like data SHIELD

(Wolfson et al., 2010) enable analysis of centralized pre-computed

features and another approach called ViPAR (virtual pooling and analysis

of research data) leverages federated databases to provide temporal

pooling of the actual data for analysis (Carter et al., 2016). The collabo-

rative informatics and neuroimaging suite toolkit for anonymous compu-

tation (COINSTAC [Plis et al., 2016]; https://github.com/trendscenter/

coinstac) tool and approach goes a step further in offering fully

decentralized (and potentially privatized analysis), allowing the data

to remain local at the site of collection, by leveraging local compute

resources for each site's data. This allows researchers to draw conclu-

sions from large scale data without the need to have full control

over the samples or aggregating them in a central place. An ongoing pro-

ject (http://grantome.com/grant/NIH/R01-MH121246-01) is focused

on combining the ENIGMA and COINSTAC approaches together, offer-

ing a powerful approach that leverages a large and active consortium

with a decentralized analysis approach that offers advanced and high-

dimensional approaches to data that is unable to be centrally shared.

Decentralized analysis such as COINSTAC provide a way to offer

access to datasets that are not currently shareable due to regulatory

or other concerns. However, another important use case is the ability

to link external data sources (e.g., a large curated repository of data)

to local data without requiring a huge amount of local storage. The

current “big data in neuroscience” era has led to, in some cases, an

“analytic bottleneck,” with some groups being unable to leverage the

necessary compute resources, despite the availability of cloud based

analytic workbenches and repositories such as NDA, brainlife.io, Open

NEURO, COINS, and many others (Eickhoff, Nichols, Van Horn, &

Turner, 2016). Often there is a need to compare across datasets that

are not centralized, but do allow for common references to be rapidly

updated and used and to enable these data to be quickly combined

with (potentially unsharable) local data. Assuring that the shared data

has the optimum data quality, or including metrics that allow users to

understand the underlying quality of pre-processed images (Esteban

et al., 2017; White et al., 2018) is important to reduce noise-related

variability and to increase power (Zuo, Xu, & Milham, 2019).

At the other end of the spectrum are fully open approaches men-

tioned earlier that share the preprocessed data, NIfTI files (avoiding

potential privacy issues included in the DICOM file headers) or the

DICOM files. This is the best option for research groups that focus

on creating novel neuroimaging methodologies and require the raw

DICOM or NIfTI neuroimaging data, as they will need software and

computational power (i.e., GPUs) to run their algorithms). An early

example of an fully open approach is the OpenfMRI Project (Poldrack

et al., 2013), which provided an open dissemination of task-based

functional neuroimaging data. OpenfMRI has since been depreciated

and has migrated to OpenNEURO (openneuro.org), which provides a

platform for sharing not only MRI data, but also other imaging modali-

ties. However, sharing data within OpenNEURO has the requirement

that, following a 36-month grace period following the first successful

analysis of the data, the data will be become publicly available under a

Creative Commons (CCO) license. Thus, under some regulations and

certain countries, the data would need to be fully anonymized prior to

being uploaded.

While there are many challenges of data sharing, sharing data

alone is often not sufficient. Neuroimaging data can be highly complex

and different groups have traditionally come up with their own

approach to naming and storing data. However, the combination of

the complexity of neuroimaging data, coupled with data sharing can

result in groups spending a considerable amount of time becoming

acquainted with how the data is structured. Thus, the creation of

standardized approaches for naming and storing data, such as the

Brain Imaging Data Structure (BIDS) (Gorgolewski, Auer, et al., 2016),

is becoming increasingly adopted in the neuroimaging community.

BIDS provides a mechanism to organize both NIfTI image and meta-

data in a uniform structure (both a uniform tree structure, naming

of the data elements, and the coding of metadata) across datasets.

The utilization of standardized approaches can dramatically reduce

the time necessary to understand the nature of the data and to reduce

the number of errors due to misunderstandings surrounding the

data. In addition, increasingly more databases, such as OpenNEURO

(Botvinik-Nezer, Iwanir, Poldrack, & Schonberg, 2019), and tools for

validation and data analysis packages are nested within the BIDS-

format, creating a greater incentive to be used by future researchers.

When the goal of sharing is reproduction, it is important to share

not only the data, but also the scripts used to analyze the data. Pure

reproduction can only be established with detailed information on the

coding of variables, the approach to missing data, and how the ana-

lyses were performed. In these cases, it may be important to share

not only the data that has been used for the analyses, but also the

data that was excluded from the analyses. While not optimal, new

techniques provide algorithms that can be used to simulate data simi-

lar to the data used in the specific studies (Shepherd, Peratikos,

Rebeiro, Duda, & McGowan, 2017). This simulated data can then be

used for other researchers to run the scripts on the simulated data,

without gaining access to the actual data.
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Sharing of scripts/code is good, but it is also not sufficient. Code

is often complex and is constantly undergoing changes and updates.

Versioning approaches like GitHub can help with tracking the versions

used, but beyond this it would be beneficial to have tools that would

enable recording the full provenance of the analyses, including code.

Both code and data could be stamped with a unique doi, for example,

including information about the computer used and each process hav-

ing a timestamp. Even just the analysis pipeline is incredibly complex,

initiatives like the neuroimage data model are working to try to incor-

porate standardized provenance tracking into the major analysis pack-

ages (Dinov et al., 2010; Keator et al., 2013).

8 | OBSTACLES FOR DATA SHARING

Funding agencies are nearly unanimous in their support of data shar-

ing. With appropriate consent and, if necessary, assent, participants

can determine whether they wish to have their data shared or not.

Thus, the greatest obstacle for data sharing lies not with the partici-

pants, nor with the funding institutions, nor with legal aspects related

to data sharing, but rather with the researchers. One obstacle for

researchers is that it requires considerable work to do it well, and

there is currently very little credit or compensation for data sharing.

Shared data needs to be carefully curated and described in ways that

other researchers can use the data properly (Leonelli, 2014), which is

above and beyond the standard work load. Research careers are pri-

marily evaluated on the number, quality, and impact of papers publi-

shed; and the acquisition of grant funding, where the acquisition of

grant funding being dependent on the number, quality and impact of

the publications. There are a number of valid concerns raised by

researchers related to data sharing, however, for every concern there

is a feasible solution (Figure 1):

Data sharing requires considerable work and there is currently little

credit for data sharing—Data collection takes considerable time and

effort to assure that the quality of the data is high and the data is prop-

erly cleaned and used appropriately. Researchers are evaluated not on

data sharing, but rather based on publications and grants, thus there is

less incentive to engage in the considerable effort necessary to make a

dataset available for sharing. Solution: Creating a mechanism that pro-

vides credit for researchers who make their data available to other

F IGURE 1 The pros and cons of data sharing from the perspective of funding agencies, the public, and researchers
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researchers. This could be via a similar metric as a weighted “h-index”

for data sharing (share-index), weighted by the amount or type of data

that are made available. Researchers who use the data would then pro-

vide a data citation for the shared dataset and these could be used for

promotion, tenure, and metrics used in decisions for grant funding.

Since researchers currently receive credit for the number of

papers, one current approach to receive credit for data pooling initia-

tives is through authorship. This form of credit is highlighted by the

increase in publications with over 200 authors. While the large num-

ber of authors may dilute the impact of those authors contributing

the most work, without rewarding via authorship would likely impair

initiatives such as the ENIGMA consortium. With the high impact

of the ENIGMA papers, most journals provide a mechanism for all-

owing a large number of co-authors. However, separating the names

into “authors” and “contributors,” while providing equivalent credit

for both, would provide a mechanism to credit those authors who did

most of the work. Currently crediting those authors who did most

of the work or who play a major role in the consortium is accom-

plished via the order of the authors at the beginning and end of the

author list.

It is also possible to cite datasets as well as data papers, that pro-

vide a description of the data and metadata within a dataset. There

are a growing number of journals that welcome data papers, such as

Nature - Scientific Data and GigaScience, and thus creating a mecha-

nism in which credit is received for citations of data papers or datasets

could provide a mechanism to help foster data sharing. An example of

making data open access for researchers, coupled with the data and

metadata involves a multimodal 7-Tesla study that includes structural,

diffusion-weighted, susceptibility weighted, and functional MRI while

watching the movie “Forrest Gump.”

Other researchers will scoop us with data that we collected—

Assuring that the quality of the data is high and the data is properly

cleaned and used appropriately is time consuming, but extremely

important. Data sharing requires that those who use the data have a

good understanding of the key variables, including the nuances of the

data. If the data is released relatively quickly after collection, other

groups may access the data and publish prior to those who actually

have collected the data. Junior investigators are especially at risk, as

they typically need more time to analyze and write the papers. They

also may be busy curating other data or involved in course work,

which would slow down the process of publishing. If a different group

publishes first, it may make it difficult for the PhD student to publish,

and thus could hamper their career. Solution: Providing a relatively

short “grace period” that allows the researchers to publish initial stud-

ies with the data could resolve this issue.

I don't have the financial resources needed for data sharing—

Preparing data for sharing is work above and beyond what is needed

for a group to analyze data locally. From the perspective of a research

group, this time could be spent doing other tasks important to com-

pleting the research project or for obtaining additional funding. Thus,

there is little motivation for many researchers to take the time and

effort to engage in data sharing. Solution: Funding agencies should

both reward those who make the effort to share data and provide

extra support that covers the costs of the work, storage, and support

involved in data sharing.

The data can be easily used to re-identify the individual—In some

cases, for example, rare disease, or an extremely high-profile scientific

focus, the risk level may be too high for sharing. Solution: In this

case one can still share coordinates or group level maps, or use a

decentralized approach such as COINSTAC.

I'm afraid my data can be used for unintended purposes—Data misuse

can occur at different levels. An extreme example would be that data is

leaked to health insurance companies. Solution: A valid DUA and Data

Transfer Agreement (DTA), based on the laws of the country of the

researchers, should help prevent the possibility of further distribution.

However, there is always a risk and thus minimizing the risk, while promot-

ing the advancement of scientific discovery is the goal. Attorneys whose

job is to protect the university may side on the being overly risk aversive,

limiting the risk to a university, while at the same time potentially limiting

the advancement of scientific discovery. Thus, both teamwork and creating

a risk/benefit balance is necessary and these may differ per institution.

While there are obstacles to data sharing, most of these can be

overcome. Changing some of the obstacles would likely require changes

in policies of funding agencies and journals to provide support and

credit for those who make the time and effort to participate in data

sharing. For additional references and resources related to data sharing,

we point the reader to the following articles: Poline et al., 2012; Keator

et al., 2013; Poldrack et al., 2014; Gibaud, 2011; Temal, Dojat, Kassel,

and Gibaud, 2008; Jack et al., 2008; Zou et al., 2005; and Van Essen

et al., 2012.

9 | THE ETHICS OF DATA SHARING

There are many challenges relating to the sharing of neuroimaging

data, of which each could be a paper in and of itself. One of the chal-

lenges for data sharing includes navigating data sharing initiatives

within the ethical and the changing legal tides related to human sub-

jects data. In light of recent legal changes, notably in the EU, ethical

aspects related to data have actually become more straightforward.

These laws, in essence, give much of the control back to the partici-

pants. Within this context, the most important aspect of data sharing

is obtaining thorough and transparent informed consent and when

appropriate, informed assent. Research studies involving neuroimag-

ing require approval from the local medical ethics committee or insti-

tutional review board in accordance with the Declaration of Helsinki

(WMA, 2000). The consent form should provide an overview of the

goals of the study, how the data will be used, a general description of

who will have access to the data (academic institutions, industry, etc.),

how long the data will be stored, and safeguards for data security.

Further, data use or DTAs should be created to adhere to the laws of

the country where the data has been collected. Those who sign the

DTA or the DUA must agree to abide by the laws regarding the use of

the data from the country which the data has been collected.

All human subjects data that is shared should have all personal

identifiers removed and data that is not already open to the public
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should be stored both locally and at the site where the data is shared

behind protected firewalls. If the data is analyzed external to these

settings, it should be on a securely encrypted drive.

9.1 | Data sharing and the GDPR

Those who are living in Europe are well acquainted with changes in

data as a result of the GDPR. The GDPR was implemented on the 25th

of May 2018 to provide data protection regulations for the inhabitants

living or traveling within the EU. For data sharing of human subjects

data both within and outside of the EU, the GDPR requires that spe-

cific information be provided on both participant information forms

and consent forms. Explicit information regarding how the personal

data will be used, for how long it will be used, who will have access to

the data (i.e., researchers, industry), whether the data will be shared in

a de-identified manner should be provided in plain language to the par-

ticipants. Moreover, the consent form should specifically ask for con-

sent to share data with countries that have both similar and less strict

privacy protection policies than the EU. Specific rules apply for data

sharing with countries with similar privacy protection, (i.e., countries

that fall under the GDPR adequacy decision [Council of the European

Union and European Parliament, 2016]), and thus to share data with

other countries, additional safeguards are often necessary.

9.2 | Data sharing and the HIPAA

For those living in the United States, most human subjects research

falls under the “Common Rule” (45 C.F.R. § 46 Subpart A), which is

based on the 1975 revision of the Declaration of Helsinki. However,

research taking place with personal health information from covered

institutions (i.e., hospitals, clinics, etc.) falls under the HIPAA. HIPAA

was implemented in 1996 and the “Privacy Rule” was incorporated

April 14th, 2003. The most notable difference between the GDPR

and HIPAA is to whom the regulations apply. The GDPR applies to

anyone who is processing personal data within the EU and anyone

outside the EU processing personal data from individuals within the

EU. HIPAA applies to covered entities only, covered entities are health

plans, health care clearinghouses, and health care providers electroni-

cally transmitting health information in connection with transactions

for which Health and Human Services (HHS) has adopted standards

(45 C.F.R. § 160.103). Research involving PHI from non-covered institu-

tions does not fall under HIPAA, but rather under the Common Rule.

As certain institutions have both covered and non-covered functions,

there is a possibility to elect for being a hybrid entity, where only the

covered functions must comply with the HIPAA requirements under

the Privacy Rule. PHI not held by a covered entity can be used and dis-

closed without regard to the Privacy Rule. However, specific state regu-

lations such as the “Federal Policy for the Protection of Human

Subjects” or the Common Rule still apply.

For data sharing within and outside the United States, HIPAA does

offer opportunities for sharing with researchers. For example, clinical

neuroimaging data is held by covered entities and HIPAA applies to

this data. Covered entities are permitted to share PHI without individ-

ual consent if (a), a waiver of authorization for the disclosure of PHI is

approved by the IRB; (b), with confirmation by researchers that they

will use the data only to prepare a research protocol or for similar pur-

pose preparatory to research and the researcher will not remove PHI

from the covered entity and that the data is necessary for the study;

or (c), with representations of the researcher that data will be used

only for research on the PHI information of decedents and the data is

necessary for the study and documentation of the death of the individ-

ual (45 C.F.R. § 164.512(i)). In addition, similar to the GDPR, the Pri-

vacy Rule also allows for research use, disclosure, and data sharing

when consent is obtained from the participant (45 C.F.R. § 164.508).

With the protection of a DUA limited datasets can also be shared to

address specific research questions.

10 | DISCUSSION

The last decade has seen a dramatic increase in data sharing, data

pooling, and the formation of collaborative data harmonization and

analysis networks, such as ENIGMA. The reason why these initiatives

are gaining momentum is because they foster collaboration and can

advance the pace of scientific discovery. Data sharing allows for greater

transparency in science with the ability to promote reproducibility and

replication of study findings (Button et al., 2013; Ioannidis, 2005; Open

Science Collaboration, 2015). Data sharing is cost effective for funding

agencies (Milham et al., 2018), as they are not funding redundant stud-

ies and thus they see “more bang for their buck.” In addition, data can

be shared with investigators from low- and middle-income countries

who may not have the resources to conduct expensive neuroimaging

studies, but do have the ability to ask interesting and creative questions

of the data. Finally, if participants provide consent for their data to be

shared, which is the most important element, then they can enjoy

knowing that researchers across the globe are potentially working with

their data to better understand the complexities of brain structure and

function and to bring about novel discoveries.

10.1 | Scientists without borders

The greatest obstacle to sharing medical research data is not because

of the laws, but rather the researchers and the institutions. Scientists

are sometimes not overly keen about sharing their data with others.

There are very real issues related to data sharing that make researchers

less willing to share. The most common is that it takes considerable

effort to collect and collate the data and others could then publish

results sooner than those who actually collected the data. Providing

some time for those who collected the data to write up the results,

however, can typically circumvent this issue. Further, some studies

may be quite complex and those using the data may not fully under-

stand the sometimes-subtle complexities of the data. This can result in

either misuse or the investigators who collected the data serving as a
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“help desk” for those using the data. Further, some studies have a dif-

ferent business plan in which data sharing is tied to monetary reim-

bursement to help support further work or data collection by the

researchers.

However, we believe that scientists should be at least as altruistic

as the participants who are participating in their research studies.

While it may appear that laws, such as the GDPR are in place to limit

data sharing initiatives, this is far from the truth. The goal of the

GDPR is to provide greater control and protection to the individual

over whose data has been collected. Thus, the key issue is to offer the

opportunity for the participants to share their data, if they would like.

This can be done through obtaining consent for data sharing (and

assent when appropriate) that adhere to the regulatory laws of

the country of the study. Researchers should strongly consider that

the participants are provided the option whether they want their

data shared with other researchers. Further, it is often the case that

researchers who utilize shared de-identified human research data will

need to sign DUAs that adhere to the laws specific to the country of

the participants (i.e., GDPR for data shared from the EU, or the DUA

to use ABCD Study data from NIDA). Within the EU and likely other

countries, the complexities of these laws and the fears of retribution

may serve as a rationale for some researchers for not sharing. How-

ever, with proper consent and, when necessary, completing data use

or DTAs, sharing data in most countries, including the EU, is possible.

10.2 | Scientists within borders

There is no question that data sharing will entail some level of risk. A

data leak of sensitive information, for example, could result in individ-

ual's data being used for unintended and potentially harmful purposes.

However, if all researchers kept their data under tight control with no

data sharing outside their research group, this will hamper the pro-

gress of scientific discovery. Thus, there is a balance. Not only should

strict precautions be set to assure to the best means possible the pro-

tection of individual data, but there needs to be some level of risk/

benefit ratio for data sharing. Different countries may differ slightly in

the level of restrictions towards data, however, these differences

become equalized to some extent if the participants are allowed to

decide how they want their data to be used.

Attorneys who work for specific universities have the goal to assure

that the university is protected from potential legal actions, such as the

potential 20 million euro fine imposed by non-compliance with the

GDPR. This may result in the setting of a very restrictive bar for individ-

ual researchers within certain institutions. Thus, within this framework,

it is very important that the research community work together with

attorneys and ethicists to determine what is necessary with respect to

making important advances in medical research while offering adequate

protection for human subjects data. Within the field of bioinformatics,

mechanisms are emerging that allow for data sharing without the

data ever leaving the institution where the data collected (Landis

et al., 2016), which can offer the opportunity for institutions with more

restrictive policies to be able to engage in data sharing initiatives.

11 | CONCLUSIONS

Collaborative networks and data sharing initiatives are broadening the

opportunities for the advancement of science and the ability to ask

important research questions that could benefit others. These initia-

tives offer greater transparency, with the opportunity for external

research groups to reproduce and/or replicate findings (Nichols

et al., 2017). There are both real and imagined obstacles for data shar-

ing which equate with not all researchers being supportive of data

sharing initiatives. For researchers who are not keen on data sharing,

recent and emerging regulations regarding human subjects data can

be used as a barrier, or excuse, for not taking part in data sharing ini-

tiatives. However, there should be a balance, as keeping data under

lock and key for use by only a handful of researchers may protect

privacy, but will limit scientific discovery. Alternatively, sharing every-

thing with everyone does not safeguard individual privacy. The

safeguarding and ethical use of that which has been entrusted to us

(data) is the responsibility of all researchers, irrespective of the GDPR,

HIPAA and other regulations that exist. While we do not intend

to minimize the importance of data security, there is a certain fear

that has emerged regarding data sharing where it has become greater

than life, monsters under the bed. We have provided approaches to

neuroimaging and metadata that can help protect the privacy of the

research participants involving data sharing initiatives. However, one

key element that is often not discussed in regards to data sharing is

the wishes of the participant in allowing their data to be shared.

Researchers can provide the opportunity for the participants to

decide whether they are willing, or would like that their data be shared.

This can take place via discussions with the participants and providing

information and the choice on the consent form. The researchers should

then set up the proper safeguards under the law to both protect the

data to the greatest extent possible, while also sharing the data if that is

the wish of the participant. Then, within the context of contentiously

obtaining consent and the use of proper data use and DTAs, if legal

cases are brought against a researcher or an institution, then it is open

science that will be brought to trial, which is a battle worth fighting for.
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