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Delayed cell death associated with mitotic
catastrophe in g-irradiated stem-like glioma cells
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Abstract

Background and Purpose: Stem-like tumor cells are regarded as highly resistant to ionizing radiation (IR). Previous
studies have focused on apoptosis early after irradiation, and the apoptosis resistance observed has been attributed
to reduced DNA damage or enhanced DNA repair compared to non-stem tumor cells. Here, early and late
radioresponse of patient-derived stem-like glioma cells (SLGCs) and differentiated cells directly derived from them
were examined for cell death mode and the influence of stem cell-specific growth factors.

Materials and methods: Primary SLGCs were propagated in serum-free medium with the stem-cell mitogens
epidermal growth factor (EGF) and fibroblast growth factor-2 (FGF-2). Differentiation was induced by serum-
containing medium without EGF and FGF. Radiation sensitivity was evaluated by assessing proliferation, clonogenic
survival, apoptosis, and mitotic catastrophe. DNA damage-associated gH2AX as well as p53 and p21 expression
were determined by Western blots.

Results: SLGCs failed to apoptose in the first 4 days after irradiation even at high single doses up to 10 Gy, but we
observed substantial cell death later than 4 days postirradiation in 3 of 6 SLGC lines treated with 5 or 10 Gy. This
delayed cell death was observed in 3 of the 4 SLGC lines with nonfunctional p53, was associated with mitotic
catastrophe and occurred via apoptosis. The early apoptosis resistance of the SLGCs was associated with lower
gH2AX compared to differentiated cells, but we found that the stem-cell culture cytokines EGF plus FGF-2 strongly
reduce gH2AX levels. Nonetheless, in two p53-deficient SLGC lines examined gIR-induced apoptosis even correlated
with EGF/FGF-induced proliferation and mitotic catastrophe. In a line containing CD133-positive and -negative
stem-like cells, the CD133-positive cells proliferated faster and underwent more gIR-induced mitotic catastrophe.

Conclusions: Our results suggest the importance of delayed apoptosis, associated mitotic catastrophe, and cellular
proliferation for gIR-induced death of p53-deficient SLGCs. This may have therapeutic implications. We further show
that the stem-cell culture cytokines EGF plus FGF-2 activate DNA repair and thus confound in vitro comparisons of
DNA damage repair between stem-like and more differentiated tumor cells.

Background
According to the tumor stem cell hypothesis, resistance
to conventional therapies may reside in a subset of
tumor cells with stem-like characteristics [1-3]. These
cells are called cancer stem cells (CSCs) or cancer stem-
like cells and are endowed with long-term self-renewal
and a certain differentiation capacity. Several reports
suggest that CSCs are indeed more resistant to standard
chemo- and radiation therapy than non-CSCs [4-13].
However, most studies addressing cell death modalities

have focused on apoptosis early after the genotoxic
insult [6,9-12]. The importance of mitotic catastrophe as
cause of cell death induced by genotoxic treatments has
so far not been addressed in CSCs. Mitotic catastrophe
is caused by altered mitoses and/or irreparable chromo-
some damage and is accompanied by micronucleation
and multinucleation. Mitotic catastrophe causes a
delayed mitosis-linked cell death and finally leads to
apoptosis or necrosis [14-17].
Several explanations have been proposed for the

higher gamma (g)-ionizing radiation (IR) resistance of
CSCs compared to non-CSCs: a stronger activation of
DNA damage checkpoints associated with more profi-
cient DNA damage repair [6], less initial DNA damage
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due to lower levels of gIR-induced oxidative radicals
[7,13], as well as activation of stemness pathways [7,8].
However, compared to conventional glioblastoma cell
lines, glioblastoma CSCs were either more radiosensitive
and repaired gIR-induced DNA-double strand breaks
(DSBs) less efficiently [18] or showed no difference in
radio- and chemotherapy-induced DNA damage and
repair [19,20]. Thus, the differences between CSCs and
non-CSCs in gIR-induced DNA damage, damage repair
and cell death are not fully clear.
We established cultures of immature stem-like cells

from primary glioblastomas. Removal of the stem cell
culture cytokines epidermal growth factor (EGF) and
fibroblast growth factor-2 (FGF-2) and addition of fetal
bovine serum (FBS) led in some but not all cases to dif-
ferentiation of these stem-like cells. Using such directly
related cultures, we examined the radioresponse of
stem-like glioma cells (SLGCs) and of more differen-
tiated glioma cells in terms of cell death mechanisms,
focusing on both apoptosis and mitotic catastrophe. We
also assessed whether the stem cell culture cytokines
EGF and FGF-2 contribute to differences between stem-
like and more differentiated tumor cells in terms of
DNA damage levels and of apoptosis resistance upon g-
irradiation.

Materials and methods
Tumor samples and cell culture
Brain tumor samples were obtained following approval
by the University of Freiburg ethical board (application
number: 349/08) and informed written consent of
patients. All patients were diagnosed as classical primary
GBM. Tumors were dissociated into single cells with
“Liberase Blendzymes” (Roche) for 45 min at 37°C. Cells
were then allowed to form spheres in suspension culture
in serum-free Neurobasal medium (Gibco) supplemen-
ted with EGF/FGF-2 (20 ng/ml each), B27, non-essential
amino acids, penicillin/streptomycin, glutamax and
heparin, on low attachment plates (Corning). For experi-
ments, the cultures were expanded in plates coated with
ECM proteins (mouse sarcoma-derived ECM, Sigma).
The CSC-like properties were confirmed with serial neu-
rosphere assays and serial xenotransplantation assays in
BALB/c nude or non-obese diabetic/severe combined
immunodeficient mice which were performed in accor-
dance with protocols specifically approved by the animal
care committee of the Regierungspräsidium Freiburg
(registration number: G-10/64). Two SLGC cultures
(G179 and G166) have previously been described by
Pollard et al. [21] and were purchased from Biorep
(Milan, Italy). For differentiation, the SLGCs were either
transferred to DMEM supplemented with 10% FCS,
penicillin and streptomycin, L-glutamine, non-essential
amino acids and b-mercaptoethanol or to Neurobasal

medium without EGF and FGF, supplemented with all-
trans-retinoic acid (Sigma).

g-irradiation
Irradiations were performed using a Gammacell 40
137Cs laboratory irradiator.

Cell Growth and Viability Assay
An aliquot of cell suspension was mixed with Trypan
blue solution (0.4% in PBS; Sigma), and the numbers of
live and dead cells (viable cells excluded the dye and
were unstained, nonviable cells were blue) were counted
under a microscope.

Apoptosis assays
Exponentially growing cells that had been seeded 24-60
h before were irradiated, and at the time points indi-
cated stained with Annexin V and propidium iodide (PI)
using an Annexin V-FITC Kit from Milteniy Biotec.
Apoptosis was measured by flow cytometry on a
Cytomics FC 500 instrument from Beckman Coulter.

Assessment of mitotic catastrophe
24 to 48 h after seeding, cells were irradiated and, at the
time points indicated, fixed and stained with 4’-6-diami-
dino-2-phenylindole (DAPI) for chromosome analysis
under an Olympus BX41 fluorescence microscope
equipped with a digital camera CC-12 soft imaging sys-
tem (U-CMAD3, Olympus). For each assessment of the
extent of mitotic catastrophe 200 nuclei were examined.

Immunofluorescence staining
Cells grown on slides were fixed with Histofix for 15
min at room temperature. Thereafter, the cells were per-
meabilized with 0.2% Triton-X100. After blocking (with
2% bovine serum albumin and 5% goat serum in PBS
for 1 h at room temperature), the cells were incubated
with primary antibodies against one of the following
proteins: Sox2 (Abcam), CD133 (Milteniy), GFAP
(Dako), nestin, Tuj, or musashi (Chemicon) at 4°C for 1
h or overnight, followed by incubation with Alexa Fluor
488-labeled secondary antibodies (Invitrogen) for 20
min at room temperature. Nuclei were counterstained
with DAPI, and cells analyzed using a BX41 fluores-
cence microscope (Olympus) equipped with the digital
camera CC-12 soft imaging system U-CMAD3 at 100-
fold magnification. CD133+ cells were isolated from
CSC cultures with magnetic beads coated with CD133
antibody (Milteniy).

Western blot analyses
Cell lysates were prepared in RIPA lysis buffer supple-
mented with protease inhibitor cocktail (Complete from
Roche) and phosphatase inhibitors NaF and 7 Na3VO4
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(Sigma). The blots were probed with the indicated anti-
bodies and developed by enhanced chemiluminescence
(Amersham Biosciences). The following antibodies were
used: Sox2 (Abcam), musashi (Chemicon), nestin,
gH2AX, p53, phospho-p53, Bcl-2, Bcl-xL, Mcl-1 and p21
from Cell Signaling, DNA-PK (BD Pharmingen), phos-
pho-DNA-PK (Abcam), as well as actin and Bax (Santa
Cruz). Quantification of signals was performed using
Image Quant TL (Amersham Bioscience).

Blocking the EGF and the FGF2 pathway
The binding of cytokines was blocked at the receptor
level with monoclonal antibodies. The anti-EGFR anti-
body Cetuximab (Erbitux®; Merck KGaA, Darmstadt)
was used at a concentration of 60 nM and the anti-
FGFR1 monoclonal antibody (clone VBS1, Chemicon) at
a concentration of 5 μg/ml. The antibodies were added
1 h prior to adding the cytokines.

Cell surface marker determination by flow cytometry
Directly-PE-labeled antibodies against an extracellular
glycosylation-dependent epitope (AC133) of CD133
(Milteniy) were used.

Cell cycle analyses
Exponentially growing cells seeded 60 h before were
irradiated, fixed at the indicated time points with 70%
ethanol, and stored overnight at -20°C. Cells were then
washed and incubated with PI (50 μg/mL) and RNase
(100 μg/mL) for 2 h at 4°C. After washing, the cells
were analyzed for DNA content by flow cytometry.

Statistical analyses
All data are presented as mean ± SD and analyzed by
Student’s t test, two-tailed, with unequal variance. P <
0.05 was considered significant.

Results
Establishing cultures of stem-like and directly derived
differentiated glioma cells
AC133/CD133 is an established CSC marker for glio-
blastoma [22]. However, the epitope is not detected in
all glioblastomas; the AC133/CD133-negative population
also contains CSCs, perhaps even the most primordial
ones, and no surface markers are known for these types
of cells [23-26], (Additional file 1). We therefore
enriched immature glioma cells by culturing single cell
suspensions of freshly resected glioblastomas in serum-
free medium supplemented with EGF and FGF-2 to
favor the growth of undifferentiated cells [27]. When
cultured on low-attachment surfaces, these cells formed
spheres (Figure 1A). The spheres were capable of gener-
ating new spheres under limiting passage conditions
consistent with self-renewal (not shown). For large-scale

propagation of undifferentiated cells we turned to
monolayer culturing on extracellular matrix (ECM) pro-
teins [21,28]. Alongside our own primary cultures
(GBM8, GBM4, GBM10, and GBM22), we used the
recently published primary SLGC lines G179 and G166,
which also were raised by adherent culturing [21]. The
cultures used were tumorigenic in immunocompromised
mice ([21], and data not shown).
After a few passages, we maintained half the cells under
stem cell conditions and exposed the other half to FBS
without EGF and FGF, conditions widely used for in
vitro differentiation of stem-like cells [6,11,18,21]. In
some cases (GBM8, G179, G166), we observed differ-
ences in the morphology and changes in protein expres-
sion compatible with loss of stem cell phenotype and
with differentiation (Figure 1B-D). Differentiating cells
became larger and lost expression of stem and progeni-
tor markers (Sox2, musashi, and nestin), instead expres-
sing differentiation markers (e.g., GFAP, Tuj-1). Nestin
expression, however, was not always eliminated, indicat-
ing abnormal differentiation.
Some SLGC lines (e.g., lines 4, 10, and 22) showed

strong resistance against differentiation in FBS culture.
However, all lines differentiated upon exposure to vita-
min A (Figure 1E).

Resistance to gIR-induced apoptosis in SLGC cultures
early after irradiation
Apoptosis can occur immediately after irradiation as
interphase death ("fast apoptosis”), after G2 arrest, or
after one or several cell divisions ("late apoptosis”) [29].
To determine susceptibility to gIR-induced apoptosis,
both SLGC and FBS cultures were irradiated with 2, 5 or
10 Gy or sham-irradiated. 2 Gy is the daily dose in con-
ventional fractionated radiotherapy; higher doses of 5 Gy
and 10 Gy are used in hypofractionated treatments [30].
As in other studies assessing apoptosis in genotoxically
treated CSCs [6,9,10,12], we first focused on apoptosis
early after genotoxic insult, determining the percentage
of annexin-V binding cells up to 96 h after irradiation.
All six SLGC cultures examined showed either no or
only marginal apoptosis (Figure 2A and 2B) even after
doses as high as 10 Gy. Differentiated FBS cultures
usually exhibited significantly more apoptosis than the
corresponding SLGC cultures, particularly after single
doses of 5 or 10 Gy, but substantially higher apoptosis
was found only in the FBS culture of GBM8 (Figure 2A).
For GBM4, GBM10, and GBM22, we could not

detect significantly higher apoptosis in the FBS cul-
tures (Figure 2B). Thus, independent of the presence
of EGF and FGF in longer-term cultures, these nondif-
ferentiated SLGCs were highly apoptosis-resistant in
the first 96 h after irradiation even after doses as high
as 10 Gy. There was no general correlation between
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apoptosis in the first 96 h after irradiation and prolif-
eration of the various cultures analyzed (data not
shown). To avoid missing apoptosis very early after
irradiation, we determined annexin-V binding 6, 14,
and 24 h after radiation, but detected no apoptosis
thereby in any culture analyzed (data not shown).

DNA damage responses
DNA DSBs - the major lethal lesion induced by gIR -
can be assessed by visualizing histone H2AX phosphory-
lation at serine 139 (gH2AX). Lower gIR-induced
gH2AX signals have been reported in CSC-like cells
compared to non-CSCs at 24 h (residual signal) but not
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Figure 1 Characterization of SLGCs and FBS cultures derived directly from the SLGCs. A. Sphere formation 14 days after seeding 500 cells/
well in 24 well plates. B. Immunofluorescence analysis of neural stem- and progenitor markers (Sox2, CD133, musashi, nestin) and differentiation
markers (GFAP, Tuj) in SLGC and in differentiating FBS cultures. Nuclei were counterstained with DAPI. C-E. Western blot analysis of stem- and
progenitor markers of SLGCs differentiating in FBS-containing medium (C), of SLGCs resistant to differention in FBS-containing medium (D) but
differentiating after exposure to vitamin A (E). Blots shown are representative of at least three independent experiments. The analyses were
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early after irradiation [6], or early (15 min - 2 h) post-
irradiation [7,8,13]. However, compared to established
glioma lines either no differences [19,20] or higher
gH2AX signals [18] were reported.
We have made detailed kinetic analyses of gIR-induced

gH2AX signals. As shown in Figure 3A, GBM8 SLGCs
displayed lower baseline levels of gH2AX and a faster
decline of induced signal to background than the corre-
sponding FBS culture. For GBM4 SLGCs, which do not
differentiate in FBS-containing medium, the background
gH2AX-signals did not differ between the two culture
types. Nevertheless, here also the induced signal
declined to background levels faster in the SLGC culture
(data not shown).
Activated p53 is one of the most important regula-

tors and executors of the DNA damage response, and
blocked apoptosis is often related to problems in p53
activation [15]. We therefore analyzed p53 levels at
several time points after g-irradiation. As shown in
Figure 3B, radiation-induced stabilization of p53 and
induction of the p53 target cyclin-dependent kinase
inhibitor p21 was only observed for GBM10 and
GBM22. The other 4 lines lack functional p53, showing
high basal p53 expression that could not be augmented
by radiation and no radiation-induced upregulation of
p21. However, p53 was phosphorylated at Ser15, a step
known to occur in response to radiation-mediated
DNA damage.

Influence of cytokines EGF and FGF-2 on DNA damage
signals and radiation-induced apoptosis
Using inhibitor experiments, EGF and FGF-2 signaling
have both been shown to affect DSB repair, cell survival
and apoptosis, as well as cellular resistance to gIR
[31-34]. We therefore assessed whether direct (stem-
ness-unrelated) effects of EGF and FGF-2 contribute to
observed differences in gH2AX signals between stem-
like and differentiated cells under otherwise identical
culture conditions.
As shown in Figure 4A, short-term (16 h) preincuba-

tion of differentiated GBM8 cells with EGF plus FGF-2,
which did not induce either of the stemness markers
Sox2 and musashi, indeed strongly reduced radiation-
induced gH2AX-levels. Consistent with this, expression
of phospho-DNA-PK, the key enzyme in nonhomolo-
gous end-joining, the predominant process in DSB
repair [31], was increased (Additional file 2). Despite the
strong reduction of gH2AX and the generally assumed
anti-apoptotic nature of EGF and FGF-2 [31-34], acute
addition of these two cytokines did not reduce but even
tended to enhance IR-induced apoptosis of differentiated
glioma cells. This was associated with increased prolif-
eration (Figure 4B). Similar results were obtained for
GBM179 (data not shown).

Conversely, a 72 h (but not a 16 h) withdrawal of EGF
and FGF from GBM4 SLGCs which did not differentiate
under these conditions, strongly increased gIR-induced
gH2AX (Figure 4C). Nevertheless, the early apoptosis
resistance of these differentiation-resistant SLGCs was
not affected by the strong changes in DSB signals
induced by the withdrawal of EGF and FGF (Figure 4D).
The specificity of recombinant EGF and FGF-2 and

the role of EGF/FGF-2 signaling in DNA damage repair
were confirmed by experiments with antibodies blocking
the ligand-binding domain of EGF receptor (EGFR) and
the main receptor of FGF-2 (wich is FGFR-1, [35]). As
shown in Additional file 3, the two antibodies indeed
abolished the cytokine-mediated decrease of gIR-induced
gH2AX in differentiated GBM8 cells. However, the 72 h
12 addition of the two receptor-blocking antibodies to
GBM4 SLGCs was toxic to the cells, making experi-
ments on radiation-induced DNA damage/repair impos-
sible under these conditions.

gIR-induced mitotic catastrophe and delayed cell death in
SLGC cultures
Although mitotic catastrophe is a known major cause of
cell death in radio- or chemotherapy [15-17], mitotic
catastrophe has so far not been explicitly assessed in
studies on CSC radio- or chemosensitivity. We found
considerable numbers of cells with signs of mitotic cata-
strophe (large micro- or multinucleated cells) in three of
the six SLGC lines analyzed (GBM4, GBM8; Figure 5A,
B) and G179 (not shown) already at early time points
where the SLGCs showed either no or only very little
apoptosis (within the first 96 h postirradiation). How-
ever, the maximum of mitotic catastrophe was later
than 96 h. Particularly at high doses (10 Gy), numbers
of cells with signs of mitotic catastrophe were usually
higher after 7 d than after 5 d (Figure 5B). Consistent
with the kinetics of appearance of multi- and micronu-
cleated cells, increased proportions of polyploid cells
were found several days (e.g., d5) after irradiation (Addi-
tional file 4). The SLGC lines undergoing mitotic cata-
strophe arrested in G2M after irradiation (Figure 5C).
However, irradiated G166 SLGCs, despite a G2M arrest,
showed no morphological signs of mitotic catastrophe.
The very low level of gIR-induced mitotic catastrophe in
GBM10 and GBM22 SLGCs was associated with a
strong gIR-induced G1 arrest (significant decrease of S-
phase cells in the first cell cycle after irradiation).
Most cells undergoing mitotic catastrophe are des-

tined to die. Seven days after irradiation, we found a
clear reduction in viable cell numbers and an increase
in dead cells not only in the FBS- but also in the
SLGC cultures of GBM4, GBM8 (Figure 6A) and G179
(not shown), particularly at higher doses. Most of
these cells died by delayed apoptosis. This is suggested
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by the kinetics of annexin-V exposure (see Figure 2
and 6B), and the downregulation of the anti-apoptotic
protein Mcl-1 (Figure 6C), which correlated well with
each other. The three SLGC lines GBM10, GBM22,
and G166 did not show substantial late apoptosis
(Additional File 5). In accord with less early/late

apoptosis and less mitotic catastrophe, GBM8 SLGCs
in clonogenic assays were also less sensitive to radia-
tion than the corresponding FBS-differentiated cells
(Additional file 6). Consistent with the in vitro results
on mitotic catastrophe and delayed apoptosis, a 10-Gy
irradiation completely abolished the tumorigenicity of
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GBM4 SLGCs in immunocompromised mice (data not
shown).
Also purified CD133+ GBM8 SLGCs (Figure 7A)

showed clear, dose-dependent signs of mitotic cata-
strophe relatively late after gIR (e.g., d7). They showed
even more mitotic catastrophe than undifferentiated
(Sox2+ and musashi+) CD133- cells or unseparated
undifferentiated cells (see Figure 5B). Consistently,
CD133+ SLGCs proliferated considerably faster than the
undifferentiated CD133- cells (Figure 7A lower left).
The data thus far obtained suggested that the rate of

proliferation influences the extent of late IR-induced
apoptosis of SLGCs, particularly of those with nonfunc-
tional p53 which undergo mitotic catastrophe after g-
irradiation. Indeed, when we treated GBM4 SLGCs with
EGF plus FGF-2 (or not) and assessed cell numbers,
mitotic catastrophe and apoptosis 7 days after a 5 Gy
irradiation, a correlation among the three parameters
was observed (Figure 7B). Similar results were obtained
with GBM8 SLGCs treated with 20 ng/ml EGF/FGF (vs.
5) (data not shown).

Discussion
Glioblastomas are among the most aggressive tumors,
being incurable to date [36] and CSCs are thought to
have a major impact on their therapy resistance [4-6].
Independent of tumor entity, CSCs are generally
thought to be relatively radio- and chemotherapy-resis-
tant, but, regarding cell death modalities, investigations
have thus far concentrated on apoptosis occurring early
after the genotoxic insult [6,9,10,12]. We confirmed here
that primary SLGCs are extraordinarily resistant to
apoptosis within the first few days after g-irradiation (up
to 96 h and up to doses as high as 10 Gy in this study),
but we also show that at such doses, SLGCs very late
(>4 days after irradiation) can undergo apoptosis. How-
ever, this late apoptosis was restricted to SLGCs under-
going G2M arrest resulting in mitotic catastrophe and
seems thus to be restricted to proliferating cells. All
these SLGC lines had nonfunctional p53. However, one
line with nonfunctional p53 which underwent IR-
induced G2M arrest did not undergo mitotic cata-
strophe or late apoptosis. Mitotic catastrophe thus
seems to be an absolute requirement for this late type
of cell death. FBS-differentiated cells tended to show
significant apoptosis already between 48 and 96 h post-
irradiation. Differences in apoptosis early after irradia-
tion did not strictly correlate with observed differences
in initial or residual gH2AX. In addition, the gH2AX
levels turned out to depend strongly on the presence of
the CSC-culture cytokines EGF plus FGF, confounding
in vitro analyses of DNA damage and repair.
We have for the first time compared radiation

responses of primary stem-like glioma cells with that of

more differentiated cells directly derived from the for-
mer. So far, similar studies have either compared CSC
surface marker-positive with surface marker-negative
cells [6,8,11,13], traditional cell lines cultured as spheres
or adherently in FBS [7], or else patient-derived CSC-
like cells with traditional FBS-cultured cell lines [18,19].
In our study, only one SLGC line displayed substantial
surface AC133 (the stem cell-specific glycosylation-
dependent epitope of CD133). However, there is consid-
erable evidence for AC133/CD133 negative tumor stem
cells in glioblastoma [23,24].
It is generally assumed that differentiated tumor cells

are more susceptible to genotoxic treatment-induced
apoptosis than stem-like tumor cells. In our study, three
SLGC lines (GBM8, G179, and G166) could be induced
to differentiate by withdrawing EGF and FGF-2 and
adding FBS. Although all these differentiated lines
underwent more gIR-induced apoptosis than the corre-
sponding SLGC cultures, a large increase was only
observed for the FBS culture of one line, GBM8. An
explanation for this might be that GBM8 SLGCs differ-
entiate more readily than G179 and G166 SLGCs.
GBM8 SLGCs lose Sox2 expression completely already a
few days after EGF/FGF removal (not shown), whereas
this process is much slower in the case of G179 and
particularly G166 where the maximal (and incomplete)
decrease of Sox2 expression was observed only after 3
to 4 weeks. Thus there may well be differences in the
degree of differentiation among these three differen-
tiated lines, but other mechanisms explaining the differ-
ence in the apoptotic response are also conceivable.
Cell death caused by mitotic catastrophe can occur at

the first cell division after irradiation or at one of the
next thereafter either as secondary apoptosis or as
necrosis [14,16]. Mitotic catastrophe can be enhanced in
cells lacking p53. In contrast, p53 is crucial for geno-
toxically induced apoptosis in cell types prone to pri-
mary apoptosis [15,37-39]. We observed here that most
SGLCs with nonfunctional p53 underwent apoptosis
mostly later than 4 d post-irradiation, i.e., presumably
postmitotic, secondary apoptosis. Why one of the SLGC
lines with nonfunctional p53 and gIR-induced G2M
arrest failed to undergo mitotic catastrophe and late
apoptosis is unclear at the moment and will be the sub-
ject of further studies in our laboratory.
Many primary glioblastomas are wild-type for p53

[40]. However, in line with previous studies on primary
GBM [41] we found that p53 is not functional in most
(4/6) primary glioblastomas studied by us. A possible
reason for the lacking p53 stabilization is the deletions
or mutations in PTEN frequently associated with pri-
mary GBM, since PTEN has been described as impor-
tant for p53 stabilization [10,42]. Other possible causes
are mdm2 gene amplification, loss of p14ARF [43] or
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overexpression of the NF-�B-signaling component RIP1
[44], all frequently associated with GBM. Interestingly,
the gIR-induced phosphorylation of p53 at serine 15 was
intact, presumably because of an intact ataxia teleangiec-
tasia-mutated pathway.
The non-differentiating FBS cultures of GBM4,

GBM22 and GBM10 were almost completely apoptosis-
resistant in the first 4 d after irradiation despite the pro-
longed gH2AX signals and the week-long absence of

EGF and FGF-2. This early apoptosis resistance thus
seems to be independent of potential direct anti-apopto-
tic effects of EGF and FGF-2 [31-34]. In line with this,
Bao et al. described that, 20 h after irradiation, CD133+
glioblastoma cells showed apoptosis resistance irrespec-
tive of whether EGF and FGF were present after irradia-
tion [6]. However, immediately after cytokine
withdrawal, anti-apoptotic and DNA-repair proteins
directly induced by EGF/FGF may still be operating as
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we have observed differences in gH2AX after cytokine
withdrawal for 72 h but not for 16 h. Thus, early after
cytokine withdrawal, direct cytokine effects and stem
cell-intrinsic effects on cell survival and DNA damage
signals are not yet discernible.
It has so far not been studied whether EGF and FGF-

2 confound comparisons of DNA damage signals
between stem-like and non-stem-like cells. We
observed that acute EGF/FGF addition to differentiated
tumor cells reduces IR-induced gH2AX-signals while
subacute and chronic withdrawal from non-differen-
tiating stem-like cells increases them. This implies
that, due to the different cytokine requirements, in
vitro studies on previously suggested intrinsic differ-
ences in gIR-induced DNA-damage [7,13] and repair
[6] between CSCs and non-CSCs are problematic.
Thus, a strict in vivo comparison would be best, but
comprehensive experiments on precisely defined cell
populations will hardly be possible. Very recently, two
other groups reported that EGF [45] and FGF-2 [46]
activate DNA damage/repair as reflected by reduced
gIR-induced gH2AX signals. In these studies, conven-
tional bronchial carcinoma cell lines [45] or primary
keratinocyte progenitor cells [46] were used. The
results from these studies support our findings.
We have observed that acute EGF/FGF-2 addition to

differentiated cultures of p53-deficient SLGCs even
enhanced gIR-induced apoptosis rather than decreasing
it, despite the usually assumed pro-survival effects of
EGF and FGF-2 and even though the gH2AX signals
were reduced by the addition of the two cytokines.
However, proliferation was accelerated, indicating a
stronger correlation of the observed delayed gIR-induced
apoptosis to cellular proliferation than to DNA damage
assessed by gH2AX. We similarly examined two p53-
deficient SLGC lines and, depending on the concentra-
tion of the two stem-cell mitogens, there was a correla-
tion of cellular proliferation with mitotic catastrophe
and late apoptosis induced by 5 or 10 Gy irradiation.
However, this observation may only apply to tumor
lines whose postirradiation survival is independent of
EGF and FGF.
Mitotic catastrophe is associated with proliferation. It is

often argued that CSCs, like many types of normal tissue
stem cells, may be relatively quiescent, but it has been
shown that even some normal tissue stem cells prolifer-
ate very fast in vivo [47]. Moreover, a recent study
showed that in some GBM patients CD133+ glioblastoma
cells coexpress the proliferation marker Ki67 [48]. In
addition, in cultures of normal neural stem cells, CD133
is expressed on the surface of proliferating cells [49]. We
have made similar observations in the CD133+ SLGC
line examined by us, and accordingly found even more
IR-induced mitotic catastrophe among bead-purified

CD133+ cells than in the CD133- immature cells of the
same tumor. It is however unclear at the moment
whether this observation can be generalized.
Recent publications showed that transient pretreat-

ment with a proliferation-inducing agent leads to the
effective chemotherapy-mediated elimination of dormant
hematopoietic stem cells and human primary leukemia
stem cells in vivo [50,51], but so far it has not been
determined whether this also applies to genotoxically
treated solid tumor stem cells. Our results suggest that
this might only apply to those CSCs which undergo gen-
otoxic treatment-induced mitotic catastrophe. Besides a
search for suitable proliferation-inducing agents, more
research is necessary regarding the proliferation status
of CSCs and cell death associated with mitotic cata-
strophe in cancer patients undergoing genotoxic
therapies.

Additional material

Additional file 1: Expression levels of CD133 in SLGC cultures
determined by flow cytometry. Traces of AC133/CD133 could be
detected in lysates of GBM22 and G179 SLGCs by Western blot (not
shown).

Additional file 2: Expression levels of phospho-DNA-PK and total
DNA-PK in GBM8 FBS cultures. The cultures were supplemented or not
with EGF/FGF-2 for 16 h and irradiated with 10 Gy thereafter.

Additional file 3: Analysis of EGF/FGF-dependent modulation of
gH2AX expression in the presence of receptor-blocking antibodies.
A. Differentiated GBM8 FBS cultures pretreated for 16 h with EGF plus
FGF-2 or not were irradiated with 10 Gy and analyzed for gH2AX levels
by Western blotting. Receptor blocking antibodies abolished the
cytokine-mediated decrease of gIR-induced gH2AX levels. B. GBM4 SLGCs
either treated standardly with EGF plus FGF-2 or not for 72 h were
irradiated with 10 Gy and analyzed for gH2AX levels by Western blotting.
Receptor blocking antibodies strongly increased the basal gH2AX level in
non-irradiated cells. Since this was accompanied by induction of cell
death (not shown), the increased gH2AX is most likely due to apoptotic
DNA damage [52], thus rendering analyses of gIR-induced DNA damage
impossible under these conditions.

Additional file 4: Determination of polyploid cells in irradiated
SLGCs. SLGCs were irradiated with 10 Gy and cell cycle analysis was
performed at d5 after irradiation. Mean ± S.D. of at least three
experiments is shown; statistical significance (p < .05).

Additional file 5: SLGCs not undergoing late gIR-induced apoptosis.
SLGCs were irradiated with the doses indicated and apoptosis was
assessed by flow cytometry after 7 d. Mean ± S.D. of at least three
experiments is shown; statistical significance (p < .05).

Additional file 6: Survival curves of GBM8 and GBM4 SLGCs and
corresponding FBS cultures determined by clonogenic assay. Cells
were seeded and then irradiated 6 h later at the doses indicated. After
10 d (FBS cultures) or 20 d (SLGC cultures), colonies were fixed and
stained with 0.5% crystal violet. Experiments were performed in
triplicates.
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factor; CSCs: cancer stem cells; SLGCs: stem-like glioma cells; ECM:
extracellular matrix proteins; DSBs: DNA-double strand breaks; R: receptor; PI:
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