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Abstract

Motif discovery and characterization are important for gene regulation analysis. The lack of intuitive and integrative web servers
impedes the effective use of motifs. Most motif discovery web tools are either not designed for non-expert users or lacking
optimization steps when using default settings. Here we describe bipartite motifs learning (BML), a parameter-free web server that
provides a user-friendly portal for online discovery and analysis of sequence motifs, using high-throughput sequencing data as the
input. BML utilizes both position weight matrix and dinucleotide weight matrix, the latter of which enables the expression of the
interdependencies of neighboring bases. With input parameters concerning the motifs are given, the BML achieves significantly higher
accuracy than other available tools for motif finding. When no parameters are given by non-expert users, unlike other tools, BML
employs a learning method to identify motifs automatically and achieve accuracy comparable to the scenario where the parameters
are set. The BML web server is freely available at http://motif.t-ridership.com/ (https://github.com/Mohammad-Vahed/BML).
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Introduction
Transcription factors (TF) are essential regulatory pat-
terns that control gene expression. Transcription factor
binding sites (TFBS) are critical to a comprehension of
gene expression regulations. The discovery of TFBS is one
long-lasting issue in computational biology, with almost
a hundred algorithms developed in the last 30 years [1–
3]. It is important to identify the binding motifs for a
single block of TFBS and motifs for two-block (bipartite)
of TFBS separated by variable gaps. Many various types of
bipartite motifs exist in both eukaryotes and prokaryotes
[4]. Position weight matrices (PWMs) are generally used to
identify and represent TFBSs [5]. They are based on the
assumption that each nucleotide independently partic-
ipates in the TFBSs of DNA sequence interaction. How-
ever, it has been long known that interactions between
neighboring DNA bases affect TFBSs of DNA sequences
interactions. For example, there are many interdepen-
dencies between neighboring positions of LexA and cyclic
AMP receptor protein (CRP) binding sites in Escherichia coli
[6]. Methods that used dinucleotide weight matrix (DWM)
outperformed those based on PWM [7].

Despite the algorithmic progress, most methods are
difficult for non-experts to use. To overcome this prob-
lem, several web tools are available in the public domain,

including MEME [8], GLAM2 [9], Bipad [10, 11], BioProspec-
tor [12] and AMD [13]. MEME and GLAM2 were developed
to predict one-block TFBS, while tools such as Bipad, Bio-
Prospector and AMD are designed for ab initio discovery of
bipartite motifs for a set of DNA sequences. BioProspector
is based on Gibbs sampling, and BiPad is based on the
entropy minimization algorithm. Both of them use PWM
and enable bipartite motif prediction with variable gaps.
On the other hand, AMD predicts bipartite motifs with
constant gaps by comparing the target sequences with
the background sequences. Most motif discovery web
tools push certain levels of burden for motif parame-
terization to non-expert users, such as the motif length,
direction, gap range, the number of occurrences or the
number of genes that include motifs. Some tools attempt
to circumvent this problem by setting reasonable (yet not
optimized) default parameters, however leading to sub-
optimal performance.

To lessen the burden of motif parameterization for
users but still deliver optimal performance, we propose
using BML (short for Bipartite Motif Learning), a new
parameter-free (PF) web server for motif-finding. BML is
a novel ensemble learning method based on a hybrid
of three-component algorithms (Gibbs sampling, mini-
mize entropy and expectation–maximization [EM]), each

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
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aimed at a specific motifs category. BML can be used to
find de-novo patterns using input RNA or DNA sequences
beyond the prior knowledge of a database of known
motifs. It is based on our previous dipartite method [14],
which discovers the bipartite motifs by considering the
interdependencies of neighboring positions in the ChIP-
seq data [15]. Specifically, we have improved BML in
three aspects: (1) adding a novel PF method for discov-
ering motifs, (2) increasing the accuracy of the results
for the adjusted parameter method and (3) adding the
graphical result such as sequence web logo and dia-
gram.

Materials and Methods
BML web server
We used ASP.NET, C#, Java, HTML and CSS to implement
BML. The absence of nuisance parameters enabled us
to implement a clean and straightforward interface for
input data, which can be either DNA or RNA sequences.
Upon uploading or pasting sequence data, users can
choose either with parameter mode or with PF mode.
Users can select the method to find motif: PWM or
DWM that only require setting some parameters. In the
parameter mode, users will need to provide some addi-
tional information, e.g. lengths of motifs and gaps, strand
direction, option to allow degenerate sites, the number
of acceptable repeats and the option of expecting motif
sites (one occurrence per sequence, any number of rep-
etition, or zero or one occurrence per site). PF mode
enables the practicing biologists to obtain comparable
results with those of other motif finders without the has-
sle of guessing or experimenting with the combination
of parameters that gives the best performance. Meth-
ods supporting PF mode are described in the following
sections.

Results from BML are displayed both in graphic and
text formats. The best significant motifs found by BML
are displayed graphically as consensus sequences on the
main results page. Below is a table containing summary
statistics for each motif. Additional detailed information
about the motifs is listed on the bottom part as texts.
It shows the entropy scores in the iterations, consensus
sequences, the position weight matrix (PWM and DWM)
constructed from all instances of the motifs and loca-
tions of the motif in each site (Figure 1).

Expectation–maximization expressions
The EM algorithm is a family of algorithms for learning
probability models in problems that involve a hidden
state [16]. In our problem, the hidden state is where
the motifs start in each training sequence. EM algorithm
repeats the following two steps until convergence: ‘E’
step: Estimate the missing information using the current
model parameters. ‘M’ step: Optimize the model parame-
ters using the estimated missing information. The initial
values for the motif model are done by randomly choos-
ing the motif start point for each input sequence, then

counts each nucleotide’s occurrence at different motif
positions, and creates a consensus structure. The PF
method implemented in BML assumes that each column
in PWM or DWM can be identified as one nucleotide
of the motif. In the context of motif discovery, this can
be viewed as calculating the probability for the motif
occurrences at a specific position in the input dataset.
The M-step then evaluates the estimation by maximizing
the expected value of the log-likelihood function. Below,
we describe the EM algorithm mathematically.

Let us denote the observed part of the data by X, and
the missing information by Z. In our case, X represents
the input sequences and Z the positions of the motifs.
The aim is to find the model parameters θ maximizing
the log-likelihood given the observed data:

arg maxθ logPr(X|Z, θ) (1)

The EM algorithm is used to solve this optimization
problem. The log-likelihood for the observed data might
be difficult to obtain directly, thus we start by considering
the conditional log-likelihood for the observed data given
the missing information [17–22]:

Pr
(
Xi|Zi,j = 1, θ

)
�

w∏
k=1

θck
,k (2)

Xi is the ith sequence, and Zi,j in the matrix Z repre-
sents the probability that the motif starts in position j
in sequence i. The w is the length of the motif, c is the
length of each sequence and k is the position of the motif,
θck

represents the probability of character c in column k.
We calculate the probability of a training sequence given
a hypothesized starting position:

Pr
(
Xi|Zi,j = 1, θ

)
�

j+W−1∏
k=1

θck
,k−j+1 (3)

To calculate the probability of a motif, BML computes
the probability of motif sequence range, as well as the
probability of these background sequences before and
after the motif range. It is the outcome of probabilities
over the w positions in the motif and the remaining back-
ground positions (Supplementary Figure S1). This time
using background probabilities for all positions within
sequence i:

Pr
(
Xi|Qi,j = 0, θ

)
�

j−1∏
k=1

θck
,0 +

L∏
k=j+W

θck
,0 (4)

Q functions as the {X, Z} background log-likelihood.
The novel index variable Qi,j is

∑M
j=1Zi,j, and j is motif start

position.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab536#supplementary-data
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Figure 1. Snapshots of BML web-tool and outputs. (A) BML web tool takes the following inputs from users: sequencing data (in fasta or text format),
DNA or RNA type, analysis method and yes/no for degenerated sites. (B) After BML finishes the motif detection, the results of each prediction are shown
graphically as sequence logo and text format including the PWM diagram.

In the E-step, the anticipated counts of all nucleotides
at each position are calculated based on the parameters’
current guess. The E-step needs to assess the probability
of the hidden data p(Z|X, θ ), that is, Z(t)

i,j for each position.

Then, Bayes’ theorem is applied to specify Z(t)
i,j in parts of

Equation (6):

Z(t)
i,j = Pr

(
Xi|Zi,j = 1, θ(t)

)
Pr

(
Xi|Qi,j = 0, θ(t)

) (5)

For all i ∈ {1, . . . , N} and j ∈ {1, . . . , M} (N is # of
sequences, M is # of nucleotides in each sequence).

In the M-step, all parameters are updated based on the
values calculated in the E-step. The M-step estimating,
recall θc,k represents the probability of character c in
position:

θ
(t+1)

c,k = nc,k + dc,k∑
k∈A

(
nb,k + db,k

) (6)

nc,k =
{ ∑

k

∑
{j |Xi,j+k−1=C} Zij k > 0

nc − ∑W
j=1 nc,j k = 0

For j ∈ {1, . . . , W}, A ∈ {A, C, G, T} for PWM and A ∈
{AA, AC, AG, AT, CA, .., TT} for DWM, d is pseudo-counts
({dA, dC, dG, dT} or {dAA, dAC, dAG, . . . dTT}), and ncis total # of
c’s in data set and b is background.

BML iteratively does the E and M steps until the change
in formula (Euclidean distance) falls below a threshold
(default: 10−8). EM algorithm makes maximum likelihood

estimation to maximize an objective function. Since the
E and M steps are repeated, the EM algorithm converges
to a maximum.

Objective function
The objective function minimizes Shannon’s entropy for
PWM and DWM of the concatenated TFs of the left and
right motifs, in Equation (7) below:

M̂LR = argminMLR

(
ICMLR

)
(7)

where MLR is the concatenated motif, and ICMLR is the
entropy for the motif MLR. ICMLR is given by:

ICMLR = ∑j
i

∑
x∈X − pi(x) × log

{
pi(x)

b(x)

}
,

i =
{

1, PWM
2, DWM

, X =
{ {A, C, G, T} , PWM

{AA, AC, · · · , TT} , DWM
(8)

where x is a mononucleotide in PWM, or a dinucleotide
for DWM, pi(x) and b(x) are the compositions of x in
the motif sites and the background sites (no motif sites),
respectively. j is the sum of the lengths of the left and
right motifs. pi(x) and b(x)are given by:

pi(x) = fi(x) + β/k
N + β

, k =
{

4, PWM
16, DWM

(9)

b(x) = g(x) + β/k
n + β

(10)
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where fi(x) is the frequency of x at position i, i.e. the
mononucleotide at the position i for PWM (or PWM-L),
or the dinucleotide at the positions i − 1, and i for DWM
(or DWM-L). β is the pseudo-count (β = 1). k is the number
of the patterns, i.e. k = 4 for PWM (PWM-L) or k = 16 for
DWM (DWM-L). N is number of sequences in the input
data. g(x)is the frequency of x in the background sites. n
is the total number of the background mononucleotides
for PWM (PWM-L) or background dinucleotides for DWM
(DWM-L), which do not harbor the motif sites.

Filtering motifs
To reduce the false positive scores and optimize motif
results, we add the cut-off value on the standardized
motif scores. The normalization is done as the following:

Z − score =
∑m

1

(
log2N −

(
− ∑N

n=1 pnlog2pn

))
m

(11)

where m is the number of sites in input sequences data,
pn is the detected frequency of symbol n at a special
sequence position and N is the number of different sym-
bols for the read sequence type. As a result, the maxi-
mum sequence conservation per site is log2 16 = 4 bits
for dinucleotide (DWM) and log2 4 = 2 bits for mononu-
cleotide (PWM). Only motifs with scores larger than the
minimum cut-off scores (equation 12) are shown as the
output of BML.

Real datasets
Cyclic AMP receptor protein data

CRP is a prokaryotic TF that is significant in regulating
genes involved in energy metabolism. It binds to 22-
bp consensus motif sites in E. coli. The sequences were
recovered from Regulon Database as ‘TFBSs’ (Release:
9.4 Date: 05-08-2017) [23]. Among 374 sequences of CRP-
binding sites, we used 323 unique sequences for per-
formance comparison whose lengths are 36–42 bp. The
motif lengths are: 16 bp (11 sites), 17 bp (1 site), 20 bp (1
site), 22 bp (308 sites) and 23 bp (two sites).

Promoter motifs in human

We selected the motifs among 1460 motifs in human [24],
where the left and right motifs (or two-block motifs) are
more than 3-nt and the gap length is more than the left-
/right motif length, due to the limitation of BioProspector
and Bipad in detecting bipartite motifs. As a result, we
obtained 40 motifs. We retrieved the promoter sequences
around each binding site (500 bp upstream to 500 bp
downstream) as the datasets.

GLAM2 has an input size limit of 60 000 bp and did not
work for 11 of the 40 datasets, namely, CCCNNNNNNAAG
WT-4, GGCNNNNNKCCAR-13, GTTNMNNNNNAAC-18,
GTTNNNNNKNAAC-19, MCAATNNNNNGCG-23, MYAAT
NNNNNNNGGC-25, TGGNNNNNNKCCAR-32, TTTNNNN
NAACW-35, WGTTNNNNNAAA-38, YKACANNNNNCA

GA-39, YTGGMNNNNNGCC-44 and YTGGMNNNNNNC
CA-45.

Sigma factor data

We used nine datasets of bipartite motifs with vari-
able gap lengths from the sigma factor dataset in
Bacillus subtilis from DBTBS [25]. Minimum and max-
imum gap lengths, and left motif and right motif
lengths are determined by DBTBS, with the abbreviation
MotifLeft < (MinGap,MaxGap] > MotifRigth:

-SigA (344 sequences ranging between 38 bp and 93 bp,
6< [11, 23]>6).

-SigB (64 sequences ranging between 39 bp and 64 bp,
6< [12, 18]>6).

-SigD (30 sequences ranging between 44 bp and 57 bp,
4< [12, 18]>8).

-SigE (70 sequences ranging between 41 bp and 58 bp,
7< [12, 18]>8).

-SigF (25 sequences ranging between 41 bp and 71 bp,
5< [13, 19]>10).

-SigG (55 sequences ranging between 40 bp and 76 bp,
5< [15, 20]>7).

-SigH (25 sequences ranging between 41 bp and 60 bp,
7< [9, 18]>5).

-SigK (53 sequences ranging between 38 bp and 85 bp,
4< [9, 17]>9).

-SigW (34 sequences between from 38 bp to 53 bp, 10<

[13, 17]>6).

Mus musculus data

We used 10 single motif datasets of Mus Musculus
from the JASPAR server [31]. The matrix ID, name and
other details (‘Left Motif Length < Gap > Right Motif
Length’) of all motifs were determined based on all
identified binding sites described below. The 10 M.
musculus motifs were determined based on all identified
binding sites: MA0018.2(CREB1, 5), MA0029.1(Mecom,
14), MA0079.2(SP1, 10), MA0099.2(FOS::JUN, 7), MA0150.1
(NFE2L2, 11), MA0152.1(NFATC2, 7), MA0153.1(HNF1B,
12), MA0157.1(FOXO3, 8), MA0160.1(NR4A2, 8) and
MA0442.1(SOX10, 6).

Arabidopsis thaliana data

We include seven bipartite motifs datasets from the
JASPAR server, determined based on all identified binding
sites: MA0005.1 (AG, 6 <2 > 3), MA1165.1(HHO6, 3 <1 > 7),
MA1207.1(GT-A3, 9 <1 > 7), MA1214.1(ATHB40, 14<3 > 4),
MA1235.1(AIL7, 2 <1 > 8), MA1270.1(AT3G45610, 10
<2 > 7) and MA1390.1(HHO2, 5 <1 > 7).

Homo sapiens data

We include five bipartite motifs datasets from the
JASPAR server, determined based on all identified binding
sites: MA0119.1 (NFIC::TLX1, 5 <4 > 5), MA0256.1(ESR2, 8
<3 > 6), MA0486.1 (HSF1, 9 <2 > 4), MA0501.1(MAF::NFE2,
11 <1 > 3) and MA0513.1(SMAD2::SMAD3::SMAD4, 7
<1 > 5).
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Other programs used for comparison

Five popular tools, namely MEME (ver. 5.1.1), GLAM2
(ver. 5.1.1), BioProspector (release 2), BiPad (ver. 2) and
AMD, were compared with BML. For the CRP dataset,
MEME was executed with the options ‘-mod oops,’ ‘-
dna,’ ‘-minw 22,’ ‘-maxw 22’ and ‘-w 22’. GLAM2 was
executed with the options ‘-z 100’ ‘-a 22’ ‘-b 22’ ‘-w
22’ ‘-r 1’ ‘-n 2000’ ‘-D 0.1’ ‘-E 2.0’ ‘-I 0.02’ ‘-J 1.0’. Bio-
Prospector was executed with the options ‘Width (22,
22),’ ‘Gap (0, 0),’ ‘-n 50’ and ‘-n 3’. BiPad was executed
with the options ‘-l 22,’ ‘-a 0,’ ‘-r 0,’ ‘-i,’ ‘-b 0’ and ‘-y
1000’. AMD was executed with the options ‘-MI’ and ‘-
T 1’. For human promoter and Sigma factor datasets, we
used the same above settings for each tool but different
motif size and gap ranges. AMD did not work on SigE and
SigF, we used option ‘-T 2.’ For the background sequences
in AMD, we used the 200 bp upstream areas of 4314
genes in E. coli K-12 (NC_000913.3) for CRP TF binding
sequence data, the promoter sequences of human genes
(hg17: upstream1000.fa.gz) for human promoter TF bind-
ing sequence dataset, and the 200 bp upstream areas
of 4448 genes in B. subtilis 168 (NC_000964.3) for Sigma
factors.

Evaluation of prediction accuracy

To evaluate the performance of each tool, we use the
nucleotide-level correlation coefficient (nCC) with the
same datasets and parameters [26]. The nCC is calcu-
lated as:

nCC = nTP × nTN − nFN × nFP√
(nTP + nFN) (nTN + nFP) (nTP + nFP) (nTN + nFN)

(12)

where nTP is the number of nucleotides in sequences
that correctly detected motifs, nFP is the number of back-
ground nucleotides incorrectly detected motifs, nTN is
the number of background nucleotides correctly identify
as the background, 4. nFN is the number of nucleotides
with motifs but incorrectly be called as the background.
The graphic illustrations of nTP, nFP, nTN and nFN are
provided in Supplementary Figure S2.

Results
Summary of BML web server
We used ASP.NET, C#, Java, HTML and CSS to imple-
ment BML. In designing the web interface for BML, we
aimed for the optimal user experience with as minor
technical nuisance as possible, maximized the amount of
output information and minimalized run-time for each
task. BML takes sequence data as the input and uses
two methods to find motifs: PWM and DWM. It also
has two modes of motif discovery: with parameters or
parameters-free (PF) mode. In the parameter mode, the
users can choose the default values or decide a small
set of input parameters, such as length of motifs and
gaps, sequence type as DNA or RNA, forward or reverse

direction, option to allow degenerate motif sites, the
number of iterations to run the algorithm, and expected
motif site distribution in the sequences (Figure 1A). In
the PF mode, users do not need to set any parame-
ters, instead the BML-PF methods (PWM-PF and DWM-
PF) will predict the motifs based on sequence input data
alone.

Results from BML are displayed both in the graphic
and text format (Figure 1B). BML shows the best motif
logos graphically on the main results page, with a table
containing summary statistics for each motif. It also
shows more detailed information about the motif in the
text format underneath, such as the entropy scores over
iterations, the position weight matrix (PWM and DWM)
constructed from all instances of the motifs, and the
starting/ending site of each motif. A typical run of BML
takes between 5 s and 10 min. Runtime is dependent
mostly on the size of input data and whether users
provide parameter values in BML. BML-PF method is
slower due to its search space over a wide number of
parameters.

Benchmarking BML (with parameters) against
other web tools
Using experimentally determined datasets as the testing
cases, BML identified motifs with a significantly higher
accuracy level than several other popular motif finding
tools (with their default parameters). Below we describe
the comparison results on CRP TF binding sequence data,
human promoter sequence data and sigma factor data in
bacteria B. subtilis 168 sequentially. We use the nCC as the
metric for accuracy (see Methods).

Performance on CRP sequence dataset
We evaluated the performance of BML (BML_PWM and
BML_DWM) with the five popular motif discovery tools
(MEME, GLAM2, BioProspector, BiPad and AMD) by using
the TF-binding sites of CRP (Figure 2A and B). We chose
323 unique sequences out of 374 sequences of CRP-
binding sites as the test datasets. For testing the one-
block motif, namely, the 22-bp motif, BML performs
the best among all methods. BML_DWM is slightly
better than BML_PWM, as expected, with a nCC of 0.944
(Figure 2A). Next, we compared the accuracy of detecting
the bipartite motif on these sequences (Figure 2B).
Similar to the annotation in dipartite [14], we annotate
a bipartite motif as: L < d > R where L and R are the
lengths of left and right motifs respectively, and d is the
gap range. Among all three types of bipartite motifs 8<

[6]>8, 6< [8]>8, 6< [10]>6, BML_PWM and BML_DWM
are superior to BiPad and BioProspector. To evaluate
the robustness of the methods, we randomly sampled
100 datasets with 100 sequences from these CRP-
binding sites. Again, we obtained consistent conclusion:
BML_DWM and BML_PWM slightly outperform other
tested tools (Supplementary Figure S3). Taking them
together, BML shows better performance at identifying
the bipartite and one-block motifs.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab536#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab536#supplementary-data
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Figure 2. The motif detection comparison on CRP sequences, Human Promoter and sigma factor dataset in B. subtilis. (A) Average nCC results for searching
the one-block motif, i.e. the 22 bp motif, in descending order on BML webserver (BML_PWM and BML_DWM modes), GLAM2, BiPad, BioProspector, AMD
and MEME. (B) Average nCC results for searching the bipartite motifs, i.e. 6< [10]>6, 6< [8]>8 and 8< [6]>8, on BML_PWM, BML_DWM, BioProspector,
BiPad and PWM. (C) The combined nCC values calculated using a total of 3054 sequences from 40 bipartite human motifs datasets. Note: GLAM2 can
only support 29 datasets due to the limit of max input sequence length of 60 000 bp. (D) Average nCC results of all sigma (σ ) factor datasets. Datasets
σA, σB, σD, σE, σF, σG, σH, σK and σW consist of 344, 64, 30, 70, 25, 55, 25, 53 and 34 sequences, respectively. (E) Heat map and boxplots of the nCC values
by different motif methods on all nine Sigma datasets.

Performance on human promoter sequence
datasets
We evaluated the performance of bipartite motif detec-
tion by different methods on the 40 human promoter

motif datasets that met our selection criteria (see
Methods). Due to the input size limit of GLAM2, it only
accepted 29 out of 40 datasets. BML_DWM significantly
outperforms other tested tools on the human promoter
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Figure 3. Illustration of BML algorithm. (A) The overall workflow of BML. BML uses two methods, with parameter and PF modes. It proposes bipartite
motifs based on PWM or DWM iteratively. Each iteration starts from randomly generated positions until differences of the entropy are minimized. (B)
Strategy of EM algorithm for BML_PF to extract the best parameter values. Initialized with the maximally acceptable motif length, in each iteration EM
algorithm updates the PPM and improves the positions of the motifs by M-Step and E-Step, then updates the motif score table. (C) Normalization and
filtering of motif sequences in BML_PF. In this step, dynamic programming is used to update the motif scores. The low-value motif sequences are filtered
separated from the beginning and the end of the motifs body.

datasets, with the highest nCC = 0.84 and is followed
by BML_PWM with nCC = 0.74 (Figure 2C). This confirms
that DWM improves the bipartite motif detection upon
PWM, as the dataset does consist of dinucleotides.
Other tools BioProspector, AMD, Bipad, MEME and
GLAM2 have sequentially descending performance
after BML methods, with nCCs of 0.57, 0.44, 0.42 and
0.01, respectively. Closer examinations show that AMD,
Bipad and MEME also have larger interquartile ranges,
suggesting the lack of stability in their predictions
(Supplementary Figure S4).

Performance on sigma factor datasets
We next evaluated the performance of BML with
other methods over bipartite motifs with variable gaps
between two block motifs. For this, we used nine bipartite
motifs in sigma TF in B. subtilis, from DBTBS as the
testing datasets. The nine sigma factor datasets are,
SigA (344 sequences), SigB (64 sequences), SigD (30
sequences), SigE (70 sequences), SigF (25 sequences),
SigG (55 sequences), SigH (25 sequences), SigK (53
sequences) and SigW (34 sequences). Overall BML
methods (BML_PWM and BML_DWM) perform the best,
with the average nCC of 0.78 and 0.75 for BML_PWM
and BML_DWM, respectively (Figure 2D and E). They
also show the smallest variations among datasets
(Figure 2E). AMD has significantly worse nCC values
(average nCC = 0.11) than all other methods, confirming

that it is not desirable at handling variable gap lengths
in bipartite motifs.

One challenge in motif discovery comes from noises
in some input datasets. We evaluated the performance
of BML under different noise levels (10%, 25% and
50%) using the CRP dataset, as compared to MEME
(Supplementary Table SS1). BML has consistently better
true positive rates (TPR), with values of 0.96, 0.85 and
0.83 at 10%, 25% and 50% noise levels, as compared to
0.85, 0.77 and 0.75 for MEME; on the other hand, MEME
maintains better true negative rate (TNR) at 95% in all
three noise levels.

Using BML to predict bipartite motifs with the
parameter-free mode
In some cases, the users do not know what best
parameters should be used as the input. To handle these
situations, they may use BML-PF mode (Figure 3) to find
the bipartite motifs with variable gaps based on input
sequences only. The BML-PF algorithm is inspired by
the unsupervised approach to estimate the parameters
of the probability distributions to best fit the motifs
of a given dataset. It is implemented by an iterative
approach of EM algorithm that cycles between two
steps (Equations 5 and 6, Methods). The EM algorithm
is applied quite widely in machine learning and is
frequently used in unsupervised learning problems,

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab536#supplementary-data
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Figure 4. The performance of BML in PF mode. (A-B) The robust assessment on randomly generated subsets from SingA dataset using PF modes. 100
datasets were generated by sub-sampling of the SigA dataset, yielding 10, 20, 50, 100, 150, 200, 300 sequences in each of the 100 datasets. (A) nCCs of
BML_PWM and BML_PWM_PF; (B) nCCs of BML_DWM and BML_DWM_PF. (C) Average nCC results for searching the one-block motif of CRP TF binding
sequences. (D) Average nCC results for searching the one-block motif of all nine sigma factor datasets. (E) Sequence logos of Motifs discovered on SigW
dataset, by BML using PWM and DWM with parameterization, or under PF mode using PWM_PF and DWM_PF.

such as density estimation and clustering without
input parameters [27–30]. In our application, the first
step (E-step) attempts to estimate the latent variables.
The second step (M-step) attempts to optimize the
parameters of the model to discover the best motifs on
sequences data (Figure 3B).

Initialized with the maximally acceptable motif
length, in each iteration EM algorithm updates the
position probability matrix (PPM) and improves the
positions of the motifs (Figure 3B). The sequences data
along with the best-fit parameters extracted in the
EM step are sent back to the Gibbs sampling for motif
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Figure 5. The performance comparisons among BML (with or without PF), MEME, BioPros and Bipad, in M. musculus, A. thaliana and H. sapiens. (A)
Combined nCC values of detecting 10 M. musculus motifs on a total of 195 sequences. (B) Combined nCC values of detecting seven A. Thaliana motifs on
a total of 6198 sequences. (C) Combined nCC values of detecting five H. Sapiens motifs using a total of 2246 sequences.

predictions (Figure 3A). We have observed that the EM
algorithm sometimes chooses some nucleotides with
low scores as a motif. To reduce the false positive scores
and optimize results, we add the cut-off value on the
standardized motif scores. Only motifs with scores larger
than the minimum cut-off scores (Equation 11, see
Methods) are shown as output (Figure 3C). As a default,
BML assumes 0.5 as the minimum Z-score shown in the
sequence logo.

Comparing PF- and parameter-based modes in
BML
We first demonstrate BML results in the PF mode as
compared to the set-parameter mode (Figure 4), on

the same CRP TF binding sequence, Human promoter
sequence and Sigma factor datasets as described earlier.
We first evaluated the effect of input data size on the
performance of BML-PF using the sequences of SigA
in B. subtilis (Figure 4A and B). By randomly sampling
the sequences of SigA, we generated 100 datasets,
where each dataset contains 10, 20, 50, 100, 150, 200
and 300 sequences, respectively. With increasing the
size of the datasets, BML exhibits better performance
on both the average values and variances of nCC
scores (Figure 4A and B). BML_PWM-PF variances for
the datasets with 200 and 300 sequences are relatively
close to those of BML_PWM (Figure 4A). Interestingly,
BML_DWM-PF has an even better performance than
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BML_DWM on this simulated dataset based on SigA
(Figure 4B). On the other hand, the averaged results of
the BML PF method (BML_PWM-PF and BML_DWM-PF)
are both similar but slightly less compared to BML with
adjusted parameters (BML_PWM and BML_DWM), on
both CRP TF binding (Figure 4C) and on all nine sigma
factor datasets (Figure 4D). Out of nine sigma factors,
SigW has the highest average nCCs (Figure 1E) in both
PWM (0.808) and DWM (0.811) approaches, indicating the
presence of base interdependencies in the motif of SigW.
We thus compared the PF and parameter modes to the
real motif in SigW next (Figure 4E). BML PWM_PF and
DWM_PF have nCCs of 0.752 and 0.808, respectively, very
similar to the scenarios with parameters where PWM
and DWM approaches have nCCs of 0.808 and 0.811,
respectively. This shows the accuracy of the BML-PF
method. Confirming by the logos, all four approaches
largely recover the bipartite motif as determined by
DBTBS, which includes 10 bp (TGAAACTTT) on the left
and 6 bp (CGTATA) on the right.

We also compared the performance of BML with
MEME, Bipad and BioProspector for single block motif
and bipartite motifs from three organisms: mouse, Ara-
bidopsis and human (Figure 5). Specifically, we compared
the nCCs on detecting motifs of 10 M. musculus tran-
scription factors (Figure 5A), seven Arabidopsis thaliana
transcription factors (Figure 5B) and five homo sapiens
transcription factors (Figure 5C), where sequences were
taken from the JASPAR server (see Methods). As shown
in Figure 5A, BML_PWM is the best method for detecting
given motifs in mouse in human (Figure 5A and C), and
BML_PWM-PF is the equally best method (with MEME)
for detecting motifs in A. thaliana (Figure 5B). Despite the
data-set dependent differences, BioProspector and Bipad
tend to have worse accuracy (Figure 5).

Additionally, we tested the running time among
BML, MEME, BioProspector and Bipad using five dif-
ferent datasets generated from 50, 100, 250, 500 and
1000 randomly sampled sequences from the CRP
dataset (Supplementary Figure S5). There is a clear
trade-off between performance and speed. MEME and
BioProspector are the fastest software among tested
software, but their accuracy is worse, as shown before
(Figure 2A and B). BML_PWM has comparable speed with
Bipad, but BML_DWM needs a longer running time than
BML_PWM due to the complexity of identifying bipartite
motifs. BML PF mode also takes longer processes to detect
the best parameters for motifs discovery.

Conclusion
Here we present the BML web server, a very user-friendly
motif exploration method that enables both expert and
non-expert biologists to identify one-block motifs and
bipartite motifs. We evaluate the performance of BML
on various datasets compared with other freely available
tools, namely, MEME, GLAM2, BioProspector, AMD and
BiPad for motif discovery. We show that BML performs

significantly better than these alternatives. When naïve
users are not sure about the values of the input
parameters, they can use BML as a PF web server and still
retrieve consistent motifs. Currently, BML implements
EM algorithm and Gibbs sampling for motif predictions,
we plan to test deep-learning methods for accuracy
improvement in the future. BML is available for use at
http://motif.t-ridership.com/ (https://github.com/Moha
mmad-Vahed/BML).

Key Points

• We compared computational methods for motif
discovery. Most motif discovery web tools are
either not designed for non-expert users or
lacking optimization steps when using default
settings.

• We developed a new web tool called bipartite
motifs learning (BML) for bipartite motif discov-
ery.

• BML achieved significantly better accuracies
with or without parameters provided by the
users, making it an ideal tool of motif discovery
for both expert and non-expert users.

Supplementary data
Supplementary data are available online at https://acade
mic.oup.com/bib.

Authors’ contribution
M.V. envisioned the project and conducted the imple-
mentation and analysis, M.V. participated in designing
and coordinating the study. L.X.G. supervised the study
and provided funding support. M.V. and L.X.G. wrote the
manuscript. All authors have read and approved the
manuscript submission.

Acknowledgements
We are grateful to Dr Bing He for assistance with BML
project, he moderated this paper and, in that line,
improved the manuscript significantly.

Funding
This research was supported by grants K01ES025434
awarded by NIEHS through funds provided by the trans-
NIH Big Data to Knowledge (BD2K) initiative (www.bd2k.
nih.gov), R01 LM012373 and LM012907 awarded by NLM,
R01 HD084633 awarded by NICHD to L.X.G.

References

1. Boeva V. Analysis of genomic sequence motifs for deciphering
transcription factor binding and transcriptional regulation in
eukaryotic cells. Front Genet 2016;7:24.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab536#supplementary-data
http://motif.t-ridership.com/
https://github.com/Mohammad-Vahed/BML
https://github.com/Mohammad-Vahed/BML
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab536#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib
www.bd2k.nih.gov
www.bd2k.nih.gov


Bipartite motif discovery | 11

2. Wasserman WW, Sandelin A. Applied bioinformatics for the
identification of regulatory elements. Nat Rev Genet 2004;5:
276–87.

3. Sandve GK, Drabløs F. A survey of motif discovery methods in
an integrated framework. Biol Direct 2006;1:1–16.

4. Bi C, Leeder JS, Vyhlidal CA. A comparative study on computa-
tional two-block motif detection: algorithms and applications.
Mol Pharm 2008;5:3–16.

5. Stormo GD. DNA binding sites: representation and discovery.
Bioinformatics 2000;16:16–23.

6. Salama RA, Stekel DJ. Inclusion of neighboring base interde-
pendencies substantially improves genome-wide prokaryotic
transcription factor binding site prediction. Nucleic Acids Res
2010;38:e135.

7. Siddharthan R. Dinucleotide weight matrices for predicting
transcription factor binding sites: generalizing the position
weight matrix. PLoS One 2010;5:e9722.

8. Bailey TL, Boden M, Buske FA, et al. MEME SUITE: tools for motif
discovery and searching. Nucleic Acids Res 2009;37:W202–8.

9. Frith MC, Saunders NF, Kobe B, et al. Discovering sequence
motifs with arbitrary insertions and deletions. PLoS Comput Biol
2008;4:e1000071.

10. Bi C, Rogan PK. Bipartite pattern discovery by entropy
minimization-based multiple local alignment. Nucleic Acids Res
2004;32:4979–91.

11. Lu R, Mucaki EJ, Rogan PK. Discovery and validation of informa-
tion theory-based transcription factor and cofactor binding site
motifs. Nucleic Acids Res 2017;45:e27.

12. Liu X, Brutlag DL, Liu JS. BioProspector: discovering conserved
DNA motifs in upstream regulatory regions of co-expressed
genes. Pac Symp Biocomput 2001;6:127–38.

13. Shi J, Yang W, Chen M, et al. AMD, an automated motif discovery
tool using stepwise refinement of gapped consensuses. PLoS One
2011;6:e24576.

14. Vahed M, Ishihara JI, Takahashi H. DIpartite: a tool for detecting
bipartite motifs by considering base interdependencies. PLoS One
2019;14:e0220207.

15. Zhao Y, Ruan S, Pandey M, et al. Improved models for transcrip-
tion factor binding site identification using nonindependent
interactions. Genetics 2012;191:781–90.

16. Holmes I, Rubin GM. An expectation maximization algorithm
for training hidden substitution models. J Mol Biol 2002;317:
753–64.

17. Lawrence CE, Reilly AA. An expectation maximization (EM) algo-
rithm for the identification and characterization of common
sites in unaligned biopolymer sequences. Proteins 1990;7:41–51.

18. Gorodkin J, Hofacker IL. From structure prediction to
genomic screens for novel non-coding RNAs. PLoS Comput
Biol 2011;7:e1002100.

19. Bailey TL, Elkan C. The value of prior knowledge in discovering
motifs with MEME. IN ISMB 1995;3:21–9.

20. Bailey TL, Bodén M, Whitington T, et al. The value of position-
specific priors in motif discovery using MEME. BMC Bioinformatics
2010;11:1–14.

21. Bailey TL, Elkan C. Fitting a mixture model by expectation
maximization to discover motifs in biopolymers. 1994;2:28–36.

22. Quang D, Xie X. EXTREME: an online EM algorithm for motif
discovery. Bioinformatics 2014;30:1667–73.

23. Gama-Castro S, Salgado H, Santos-Zavaleta A, et al. Regu-
lonDB version 9.0: high-level integration of gene regulation,
coexpression, motif clustering and beyond. Nucleic Acids Res
2016;44:D133–43.

24. Xie X, Lu J, Kulbokas EJ, et al. Systematic discovery of regulatory
motifs in human promoters and 3’ UTRs by comparison of
several mammals. Nature 2005;434:338–45.

25. Makita Y, Nakao M, Ogasawara N, et al. DBTBS: database of
transcriptional regulation in Bacillus subtilis and its contribution
to comparative genomics. Nucleic Acids Res 2004;32:D75–7.

26. Tompa M, Li N, Bailey TL, et al. Assessing computational tools for
the discovery of transcription factor binding sites. Nat Biotechnol
2005;23:137–44.

27. Toivonen J, Kivioja T, Jolma A, et al. Modular discovery of
monomeric and dimeric transcription factor binding motifs for
large data sets. Nucleic Acids Res 2018;46:e44.

28. Figueiredo MAT, Jain AK. Unsupervised learning of finite mixture
models. IEEE Trans Patt Anal Mach Intell 2002;24:381–96.

29. Bailey TL, Elkan C. Unsupervised learning of multiple motifs
in biopolymers using expectation maximization. Mach Learn
1995;21:51–80.

30. Yang CH, Liu YT, Chuang LY. DNA motif discovery based on ant
colony optimization and expectation maximization. In: Proceed-
ings of the International Multi Conference of Engineers and Computer
Scientists 2011;1:169–74.

31. Fornes O, Castro-Mondragon JA, Khan A, et al. JASPAR 2020:
update of the open-access database of transcription factor bind-
ing profiles. Nucleic Acids Res 2020;48:D87–92.


	 BML: a versatile web server for bipartite motif discovery
	Introduction
	Materials and Methods
	Results
	Conclusion
	Key Points  
	Supplementary data
	Authors' contribution
	 Acknowledgements
	Funding


