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Abstract: In the treatment of advanced head and neck squamous cell carcinoma (HNSCC), including
oral SCC, radiotherapy is a commonly performed therapeutic modality. The combined use
of radiotherapy with chemotherapy improves therapeutic effects, but it also increases adverse
events. Ceramide, a central molecule in sphingolipid metabolism and signaling pathways, mediates
antiproliferative responses, and its level increases in response to radiotherapy and chemotherapy.
However, when ceramide is metabolized, prosurvival factors, such as sphingosine-1-phosphate (S1P),
ceramide-1-phosphate (C1P), and glucosylceramide, are produced, reducing the antitumor effects of
ceramide. The activities of ceramide- and sphingosine-metabolizing enzymes are also associated with
radio- and chemo-resistance. Ceramide analogs and low molecular-weight compounds targeting these
enzymes exert anticancer effects. Synthetic ceramides and a therapeutic approach using ultrasound
have also been developed. Inhibitors of ceramide- and sphingosine-metabolizing enzymes and
synthetic ceramides can function as sensitizers of radiotherapy and chemotherapy for HNSCC.

Keywords: head and neck squamous cell carcinoma; radiotherapy; chemotherapy; ceramide-metabolizing
enzyme; enzyme inhibitor; molecular targets

1. Introduction

Head and neck cancers are malignant tumors of the oral cavity, pharynx, and larynx, with the
sixth highest incidence worldwide, accounting for 5% of all cancers [1–3]. Over 90% of head and
neck cancers are squamous cell carcinomas (SCC), and the majority of oral cancers are also SCC [4].
Surgery is prioritized for the treatment of oral SCC. Among digestive organ cancers, a characteristic of
head and neck SCC (HNSCC), including oral SCC, is the availability of radiotherapy. For advanced oral
SCC, postoperative ionizing radiation with X-rays is usually combined with chemotherapy to improve
the outcomes. The US Food and Drug Administration (FDA)-approved chemotherapeutic agents for
HNSCC include cisplatin, methotrexate, 5-FU, bleomycin, docetaxel, and small-molecule targeted
drugs [5,6]. Combination of radiotherapy with chemotherapy, when overdosed in any combination,
can lead to serious acute side effects and late-onset dysfunction [7]. Therefore, safe and effective
sensitizing drugs against radiotherapy and chemotherapy are needed.

The Cancer Genome Atlas (TCGA) program reported the results of whole-genome sequencing
on tumor tissues from 279 patients with HNSCC [8]. This led to the division of HNSCC into two
subsets with different clinical and molecular profiles: human papillomavirus (HPV)-positive tumors,
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which generally have a better prognosis, and HPV-negative tumors with a poorer prognosis. Although
HPV-associated oropharyngeal cancer has a better prognosis, evaluation of HPV and p16 expression in
oral SCC failed to demonstrate any survival benefit [9]. In HPV-negative HNSCC, activating mutations
in classic oncogenes are relatively rare, and most genetic alterations are in tumor suppressor genes
such as p53 and cyclin-dependent kinase inhibitor 2A (CDKN2A). This finding is important to develop
therapeutic agents because the discovering of new compounds to restore the activity of altered tumor
suppressor genes is highly challenging [10]. On the other hand, activation of numerous signaling
pathways has been implicated in cell survival, proliferation, angiogenesis, and/or inflammation, and
many molecules in theses pathways have emerged as potential targets [11,12]. For HNSCC, monoclonal
antibodies against epidermal growth factor receptor (EGFR) and human EGF receptor 3 (HER3), in
addition to as small-molecule inhibitors against serine threonine kinase, cyclin-dependent kinase and
tyrosine kinase are under clinical investigation [13–15]. Other types of approaches are also required.

Among sphingolipids constituting cell membranes, ceramide, a central molecule in sphingolipid
metabolism and signaling pathways, is a typical sphingolipid exhibiting cytotoxicity [16–21]. In cancer
cells, its levels and signaling are usually suppressed by the overexpression of ceramide-metabolizing
enzymes or down-regulation of ceramide-generating enzymes. Radiotherapy and chemotherapeutic
drugs increase intracellular ceramide levels, and this increase can restore the therapeutic sensitivity of
HNSCC to these therapies [22–25]. Therefore, drugs that inhibit ceramide-metabolizing enzymes are
expected to be sensitizers of radiotherapy and chemotherapy. In this article, we review the metabolic
pathways of ceramide, its function, the inhibitors of ceramide- and sphingosine-metabolizing enzymes,
and their mechanisms of action.

2. The Pathways of Generation and Metabolization of Ceramide

Sphingolipids are structural molecules of cell membranes and important regulators of proliferation,
migration, invasion, and metastasis of cancer cells. Ceramide can be generated through the hydrolysis of
complex sphingolipids, de novo synthesis pathway, or salvage pathway [26]. In the sphingomyelinase
(SMase) pathway, SMase hydrolyzes plasma membrane sphingomyelin, and produces ceramide and
phosphocholine [27–29]. There are acidic, neutral, and basic isoforms of SMase. The de novo synthesis of
ceramide begins in the endoplasmic reticulum (ER) with the condensation of serine and palmitoyl-CoA
by serine palmitoyl transferase (SPT) to form 3-ketodihydrosphingosine (3-ketosphinganine), which
is, then, reduced to dihydrosphingosine (sphinganine) and acylated by dihydroceramide synthase,
referred to as ceramide synthase (CerS), to produce dihydroceramide. Lastly, the desaturation of
dihydroceramide by dihydroceramide desaturase (DES) generates ceramide (Figure 1). In the salvage
pathway, ceramides can be synthesized, re-utilizing free sphingosine formed by the degradation of
glycosphingolipids and other complex sphingolipids [30].

Ceramide is metabolized via the action of many metabolizing enzymes. Three classes of
ceramidases (CDases)—acid, neutral, and alkaline—have been identified and distinguished by their pH
for optimal activity [31–33]. CDase hydrolyzes ceramide to yield sphingosine, which is phosphorylated
by sphingosine kinase 1 (SphK1) and SphK2 to generate sphingosine-1-phosphate (S1P) [34]. SphK1 is
localized predominantly in the cytosol, whereas SphK2 is localized mainly in the nuclear membrane
and cytoplasm [35,36]. S1P functions in both extracellularly and intracellularly [37]. Extracellularly,
S1P engages with five G protein-coupled receptors, S1PR1-5, to elicit prosurvival signaling [38–40].
Ceramide is involved in cell growth arrest and apoptosis, whereas S1P has the opposing function of
promoting cell growth and cell survival, suggesting that the balance of ceramide and S1P is essential
for cell fate [41]. S1P is metabolized by S1P phosphatase to sphingosine or by S1P lyase 1 to yield
ethnolamine-1-phosphate and C16 fatty aldehyde. In the Golgi apparatus, ceramide is converted to
sphingomyelin by sphingomyelin synthase (SMS) or to glucosylceramide by glucosylceramide synthase
(GluCS), and then, to complex glycosylsphingolipids [42,43]. Phosphorylation of ceramide by ceramide
kinase (CerK) produces ceramide-1-phosphate (C1P) [44]. C1P activates cytosolic phospholipase 2
(cPLA2), which recruits it to the Golgi apparatus and the cell membrane to cleave arachidonic acid
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and produce prostaglandin [45–47]. C1P also stimulates reactive oxygen species (ROS) formation in
primary marrow-derived macrophages and ROS are required for the mitogenic effect of C1P [48].Cancers 2020, 12, 2062 3 of 23 
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to yield glucosylceramide. Ceramide is also phosphorylated by ceramide kinase (CerK) and converted 
into ceramide-1-phosphate (C1P). SMS, sphingomyelin synthase; S1PPtase, sphingosine-1-phosphate 
phosphatase; C1PPtase, ceramide-1-phosphate phosphatase. 
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Figure 1. Ceramide-generating and -metabolizing pathways. Sphingomyelin present in the cell
membrane is hydrolyzed by sphingomyelinase (SMase) to produce ceramide. Serine and palmitoyl-CoA
were condensed by serine palmitoyl transferase (SPT) to form 3-ketosphinganine, which then becomes
dihydroceramide by ceramide synthase (CerS). Dihydroceramide desaturase (DES) functions to
form ceramide. Ceramide is metabolized by the action of ceramidase (CDase) and converted into
sphingosine, which is phosphorylated by sphingosine kinase 1 (SphK1) and SphK2 to become
sphingosine-1-phosphate (S1P). Glucosylceramide synthase (GluCS) glucosylates ceramide to yield
glucosylceramide. Ceramide is also phosphorylated by ceramide kinase (CerK) and converted
into ceramide-1-phosphate (C1P). SMS, sphingomyelin synthase; S1PPtase, sphingosine-1-phosphate
phosphatase; C1PPtase, ceramide-1-phosphate phosphatase.

3. Functions of Ceramide

Ceramide is composed of a sphingosine base and amide-linked acyl chains varying in length from
C14 to C26. CerS has six isoforms, CerS1-6, and the ceramides synthesized by these isoforms have
different fatty acyl chains and distinct biological properties [21,49,50]. CerS1 preferentially generates
ceramide with 18-carbon fatty acids, C18-ceramide, whereas CerS5 or CerS6 primarily generate
ceramide 16-carbon fatty acids, C16-ceramide. A proapoptotic role of CerS1-generated C18-ceramide
and prosurvival role of CerS6-generated C16-ceramide were suggested. Indeed, in HNSCC cells,
CerS6-generated C16-ceramide protects cells from ER stress-mediated apoptosis and C18-ceramide is
selectively down-regulated [49,51,52]. Karahatay et al. [52] measured ceramide levels in tumor tissues
of 45 patients with HNSCC. The levels of C16- and C24-ceramides were significantly increased in the
majority of tumor tissues compared with their normal tissues, whereas the levels of only C18-ceramide
were significantly decreased in tumors. The decrease in C18-ceramide levels was also associated
with the higher incidence of lymph node metastasis. Treatment with gemcitabine and doxorubicin,
known inducers of ceramide generation, supra-additively inhibited the growth of human HNSCC
cells. The treatment resulted in the elevation of mRNA and protein levels of the human homologue of
yeast longevity assurance gene 1 (LASS1), which was consistent with an increase in the endogenous
CerS activity for generation of C18-ceramide [53].

When the production and accumulation of ceramide increase in response to cellular stress, cell
death is induced through numerous mechanisms such as apoptosis, necroptosis, autophagy, and ER
stress [54]. These cell death pathways depend on cell type, the subcellular location of ceramide, and
downstream targets of ceramide. Many types of cellular stress stimulate acid SMase (aSMase) to
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produce ceramide from sphingomyelin, leading to the formation of ceramide-enriched membrane
platforms. In such platforms, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunits
and other redox molecules are aggregated, leading to signal transduction by the increase in ROS [55–58]
(Figure 2). In neuronal cells, TNF-α exposure dramatically increased neutral SMase activity, thus,
generating ceramide essential for subsequent NADPH oxidase activation and oxidative stress [59,60].
If the level of ROS increases further, it will damage DNA, proteins, and glycols. Mitochondria were
demonstrated as a primary target of ceramide, leading to the generation of ROS by interacting with
complex III of the electron transport chain [61,62].
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Figure 2. Outlines of ceramide-driven signaling pathways. Ceramide activates PP2A, which activates
Bax and suppresses Bcl-2 to promote apoptosis. Ceramide suppresses Akt, inactivates downstream
mTOR, and induces autophagy. Ceramide activates PKCζ, which inhibits Akt phosphorylation and
activates JNK. Activated c-Jun increases Beclin1 expression. Ceramide also increases NADPH oxidase-
and mitochondrial complex III-mediated ROS production. NADPH oxidase, nicotinamide adenine
dinucleotide phosphate oxidase; PP2A, protein phosphatase 2A; ER stress, endoplasmic reticulum
stress; ROS, reactive oxygen species; mTOR, mammalian target of rapamycin.

Ceramide and activated Bax directly interact to induce outer membrane permeabilization in
isolated mitochondria and induce Bax-dependent apoptosis [63]. Protein phosphatases, together
with protein kinases, control the reversible phosphorylation of proteins, playing a central role in
cellular signal transduction [64,65]. One of the well-described downstream targets of ceramide is the
protein phosphatase 2A (PP2A) that regulates vital cellular processes, including cell cycle, growth,
metabolism, and apoptosis [65]. SET is a nuclear protein and known inhibitor of PP2A activity.
A unique mechanism for ceramide-mediated PP2A activation is the direct binding of ceramide to SET,
relieving PP2A from SET, increasing PP2A activity, and leading to tumor suppression. C2-ceramide
induces the PP2A-dependent dephosphorylation of Bcl-2 to inhibit its antiapoptotic activity and
promote its binding to p53 for the induction of apoptosis [66–68].

Protein kinase C (PKC)ζ is an additional direct effector of ceramide implicated in
ceramide-mediated growth arrest and apoptosis [69–71]. There are nine mammalian isoforms of PKC,
which consist of the classical PKC (PKCα, β, γ), the novel PKC (PKCδ, ε, θ, η), and the atypical
PKC (PKCζ, ι) [72–74]. The identification of PKC as the major receptor for tumor promoting phorbol
esters marked the concept that PKC functions as an oncoprotein [69,75]. However, although phorbol
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esters result in acute activation of PKC, this is followed by the chronic loss or down-regulation of PKC.
The repetitive application of phorbol esters is expected to cause a loss of PKC, promoting tumor formation.
PKCζ inhibits Akt phosphorylation and activates the stress-induced protein kinase JNK [70,71,76]. In PKC
mutations of cancers, loss-of-function with no gain-of-function was often identified [77].

Ceramide has been implicated in the induction of autophagy, which has dual functions in cell
survival and cell death. Ceramide is a well-established suppressor of Akt [78], which inactivates
downstream mammalian target of rapamycin (mTOR) signaling and leads to the induction of
autophagy [79,80]. Ceramide also activates JNK and the JNK-mediated activation of the transcription
factor c-Jun increases Beclin1 expression [81]. C-Jun positively regulates the transcription of LC3 to
increase the autophagic process in response to ceramide [82]. In HNSCC and acute myeloid leukemia
cells, stress-induced mitophagy is dependent on the localization of de novo-generated C18-ceramide at
the outer mitochondrial membrane, which directly binds LC3 protein. Ceramide-LC3 binding results
in the recruitment of autophagosomes for the execution of mitophagy [83,84].

Ceramide-mediated autophagy is also attributed to the induction of ER stress. The ER is the largest
organelle in the cell and performs a variety of functions, including the synthesis of lipids, regulation
of intracellular calcium, and synthesis and maturation of secreted and membrane-bound proteins,
generating correctly folded proteins [85–87]. An increased need for protein-folding components is
defined as ER proteotoxic stress. This stress induces the unfold protein response (UPR). The mammalian
UPR consists of three parallel signaling pathways, initiated by the ER transmembrane sensors inositol
requiring enzyme 1 (IRE1), PKR-like endoplasmic reticulum kinase (PERK), and activating transcription
factor-6 (ATF6) [88–91]. Accumulation of long-chain ceramides, such as C14- and C16-ceramides,
induces ER stress-dependent autophagy and functions in cell survival [92]. NADPH oxidase 4, an ER
resident capable of producing ROS, acts as a signaling intermediate to transduce ER stress to the UPR.
Chronic ER stress causes a secondary increase in ROS, generally resulting in cell death [93–95].

4. Radiation Therapy and Ceramide Generation

Ionizing radiation with X-rays stimulates cells to generate ceramide, an established second
messenger in apoptotic signaling pathways. In irradiated cells, ceramide is mainly generated via
the hydrolysis of sphingomyelin by SMase or by CerS-mediated synthesis [96–98]. Unlike the fast
generation of ceramide at the plasma membrane via SMase, engagement of CerS and ceramide
neogenesis is delayed, and increases between 8 and 24 h after irradiation [99,100]. In HeLa cells,
dose-dependent ceramide generation was induced 28 h after irradiation, with a 2.3-fold increase by
10 Gy but 1.25-fold by 5 Gy [99]. Apoptosis of vascular endothelial cells in tumors and abnormal
microvascular function lead to cell death of tumor cells. High doses of radiation can induce the
translocation of endothelial cell aSMase into glycosphingolipid-enriched plasma membrane rafts,
where it hydrolyzes sphingomyelin to generate ceramide. In contrast, the endothelial cell damage
induced by the low-dose exposure in fractionated radiotherapy does not efficiently increase tumor
cell death, as the death signaling pathway in endothelium is repressed by concomitant activation of
tumor cell hypoxia inducible factor 1 (HIF-1). The post-radiation translation of HIF results in the
up-regulation of vascular endothelial growth factor (VEGF) and other proangiogenic factors [101].
Single-dose radiotherapy (SDRT), a disruptive technique that ablates more than 90% of human cancers,
operates a distinct dual-target mechanism, linking aSMase-mediated microvascular perfusion defects
to DNA unrepair in tumor cells to confer tumor cell lethality [102].

CDases are overexpressed in several forms of cancer, including head and neck cancer, prostate
cancer, and melanoma. Overexpression of acid CDase (aCDase) was observed in 70% of HNSCC
patients, with an increased incidence of overexpression in higher grade tumors [103]. In prostate
cancer, 5-Gy ionizing radiation induces increased sphingolipid expression between 24 and 72 h.
Specifically, total ceramide content increased between 40% and 100%, whereas the products of
ceramide metabolism, sphingosine and S1P, demonstrated a 200% to 270% increase, suggesting that
irradiation elicited a marked shift of sphingolipid content toward the soluble products of ceramide
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metabolism [104]. The radiation-induced increase in aCDase activity confers resistance to Taxol and
C6-ceramide [105,106].

5. Chemotherapy and Ceramide Generation

Chemotherapeutic agents can apply stress to cancer cells, and in response to this stress, ceramide
levels are increased by both sphingomyelin hydrolysis and through de novo ceramide synthesis [21].
This increase, demonstrated by many chemotherapeutics, including daunorubicin (anthracycline),
etoposide (topoisomerase II inhibitor), and gemcitabine (nucleoside analog), can be ascribed to the
activation of CerS or SPT [107–109]. Vinblastine and paclitaxel were reported to increase ceramide levels
and caspase activity in doxorubicin-resistant MCF-7-AdrR breast cancer cells [110]. Gemcitabine and
doxorubicin combination reconstituted levels of C18-ceramide vis up-regulation of CerS1 expression,
increasing CerS1 activity for C18-ceramide generation, leading to growth inhibition in head and neck
xenografts in vivo [53]. In a phase II clinical trial, the combination therapy with gemcitabine and
doxorubicin could represent an effective treatment for some patients with recurrent or metastatic
HNSCC, and that serum C-18-ceramide elevation might be a serum biomarker of chemotherapy
responses [111]. Up-regulation of GluCS levels prevents the accumulation of a ceramide pool, which
reduces ceramide-induced apoptosis in response to certain cytotoxic drugs [18]. Doxorubicin treatment
was reported to increase GluCS expression in invasive ductal breast cancer cells through the recruitment
of transcription factor Sp1 to the GluCS promoter [112]. Cisplatin is widely used in many types of
human solid neoplasms, including HNSCC, but the main limitation of its clinical usefulness is the high
incidence of chemoresistance. Up-regulation of GluCS and P-glycoprotein (P-gp) leads to cisplatin
resistance in head and neck cancer [113,114].

6. Inhibitors of Ceramide- and Sphingosine-Metabolizing Enzymes

6.1. CDase Inhibitor

A number of ceramide analogs, including LCL204, LCL385, and LCL521, were previously
designed to target aCDase in the lysosomal compartment where aCDase primarily functions [115–118].
LCL204 alone was not toxic, but pretreatment of HNSCC cells with LCL204 significantly increased
Fas-induced toxicity and apoptosis induction [103]. LCL385 was demonstrated to increase ceramide
levels and sensitize PPC-1 prostate cancer cells to radiation, and significantly reduce tumor xenograft
growth [119]. Photodynamic therapy (PDT) is a clinically established treatment modality for cancer.
In PDT, a light-absorbing agent is activated by a highly focused laser to induce oxidative stress and
destroy a cellular target [120]. When PDT-treated mouse SCCVII cells were used to vaccinate SCCVII
tumor-bearing mice, adjuvant LCL521 treatment resulted in the marked retardation of tumor growth.
This effect may have been due to the ability of LCL521 to restrict the activity of regulatory T cells (Tregs)
and myeloid-derived suppressor cells (MDSCs) [121]. A novel CDase inhibitor, Ceranib-2, inhibited
CDase activity, increased ceramide levels, reduced S1P levels, and inhibited cell proliferation and
tumor growth [118]. Ceranib-2 and carboplatin exhibit synergism in combination for non-small cell
lung cancer, where caspase 3, caspase 9, and Bax expression were increased, whereas Bcl-2 expression
was reduced [122]. Treatment of acute myeloid leukemia cell lines with a novel aCDase inhibitor,
SACLAC, effectively blocked aCDase activity and induced a decrease in S1P and an increase in total
ceramide levels [123].

6.2. GluCS Inhibitor

D-threo-1-phenyl-2-palmitoylamino-3-morpholino-l-propanol (PPMP) and D-threo-1-phenyl-
2-decanoylamino-3-morpholino-1-propanol (PDMP) were previously developed as GluCS
inhibitors [124,125]. Exposure of MCF-7-AdrR breast cancer cells to PPMP reduced cellular ganglioside
levels, restored sensitivity to vinblastine, increased vinblastine uptake three-fold, and reduced the
expression of multidrug resistance 1 (MDR1) by 58% compared with untreated controls [126,127].



Cancers 2020, 12, 2062 7 of 23

GluCS and P-gp overexpression is also associated with acquired cisplatin resistance in head and neck
cancer. PPMP induced the accumulation of ceramide and increased cisplatin-induced cell death via
P-gp down-regulation and restoration of p53-dependent apoptosis [113]. The antiestrogen tamoxifen,
a first-generation P-gp inhibitor, blocked C6-ceramide glycosylation and magnified apoptotic responses.
Specific high-affinity P-gp inhibitors, tariquidar and zosuquidar, synergistically enhanced C6-ceramide
cytotoxicity in multidrug resistant leukemia cells [128]. A drug cocktail of GluCS inhibitor, CDase
inhibitor, and imipramine that disturbs lipid turnover in biological membranes was reported to induce
a marked increase in ceramide levels in radio-resistant HNSCC cells, corresponding with marked
effects on radiation sensitivity [129]

6.3. SphK Inhibitor

Sphingosine kinases modulate the proliferation, apoptosis, and differentiation of keratinocytes
through the regulation of ceramide and S1P. SphK1 expression has been shown to be elevated in HNSCC
as compared with normal tissue, and positive SphK1 expression was associated with shorter survival
time [130]. SphK1 is found to be the target of the microRNA, miR-124, which acts as a suppressor
of HNSCC by directly inhibiting SphK1 activity and its downstream signaling [131]. These findings
suggest that SphK1 inhibitors could be used to treat HNSCC Inhibitors for both SphK1 and SphK2
have been developed. They include N,N-dimethylsphingosine (DMS), SK1-I, SK-I-II, safingol, PF543,
FTY720, and ABC294640 [132–136].

6.3.1. Safingol

Safingol, the synthetic L-threo-stereoisomer of the naturally occurring (D-erythro-)
dihydrosphingosine [137], was initially reported to be a PKC inhibitor, but was later found to
inhibit SphK [138]. As other PKC inhibitors were not effective on cancer in clinical trials [74], the
antitumor ability of safingol is not due to its anti-PKC activity. Safingol is a competitive inhibitor of
SphK with a Ki of approximately 5µM [139]. In MDA-MB-231 breast cancer cells and HT-29 colon cancer
cells, 5–10 µM safingol reduced glucose uptake, activated AMP-activated protein kinase, and induced
autophagy. In addition, Bcl-xL expression was decreased and Bax expression was increased, resulting
in ROS-mediated necrotic cell death [140]. At the doses of 25–50 µM, safingol induced ROS-mediated
apoptosis of human oral SCC cells [141]. During this process, Bcl-xL expression was decreased and
mitochondrial endonuclease G was released into the cytoplasm, resulting in DNA fragmentation in
the nucleus [142,143]. Autophagy was also induced, which promotes cell survival because autophagy
inhibitors increase cell death by safingol [144]. Treatment of human colon cancer cells with 12 µM
safingol increased the amounts of cell-associated safingol and N-acyl-safingol. In addition, small
increases in endogenous sphingosine and dihydrosphingosine were noted, whereas no increases were
observed in ceramide or dihydroceramide [145]. In response to ER stress, levels of dihydroceramide
and dihydrosphingosine increased and, conversely, the addition of exogenous dihydroceramide or
dihydrosphingosine activated on the ER stress sensor, ATF6, in HEK293 cells [146]. ATF6 can induce the
objective genes, Bip/Grp78, Grp94, and C/EBP homology protein (CHOP) [147,148]. The transcription
factor CHOP is induced late in ER stress, leading to increased expression of ER oxidase 1 and the
generation of ROS within the ER [94]. In addition to the endogenous dihydrosphingosine increase by
safingol treatment, safingol, the L-thero-dihydrosphingosine, may function as dihydrosphingosine
intracellularly, leading to the induction of ER stress, ROS production, and cell death (Figure 3A).
Safingol was the first SphK inhibitor to enter clinical trials as an anticancer agent [149,150]. In a phase I
clinical trial, patients with advanced solid tumors were treated using safingol in combination with
cisplatin [150]. Patients treated using a dose at or near the maximum tolerated dose achieved safingol
levels of higher than 20µM and maintained levels higher than 5µM for 4 h. A dose-dependent reduction
in S1P in plasma was observed. Reversible dose-dependent hepatic toxicity was also noted. The best
response was stable disease in 6/37 (16%) for an average of 3.3 months (range 1.8–7.2 months). Safingol
synergistically sensitized epigallocatechin-induced apoptotic cell death, and suppressed multiple
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myeloma cells by preventing protein tyrosine kinase phoshorylation and activation of death-associated
protein kinase 1 (DAPK1) [151]. As high SphK1 correlates with resistance to cisplatin in gastric cancer,
safingol was used synergistically with cisplatin to restore the efficacy of the chemotherapy in gastric
cancer cells [152].
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and increases sphingosine and dihydrosphingosine (DSph), but not ceramide. These increased
sphingolipids may induce ER stress and ROS production, leading to apoptosis and/or autophagy.
(B) FTY720 is phosphorylated by SphK2, resulting in p-FTY720, which extracellularly inhibits S1PR
signaling. Intracellularly, FTY720 inhibits SphK1, activates PP2A, and suppresses Akt, Erk, c-Myc,
and β-catenin. FTY720 also activates PKCδ through an NADPH-mediated pathway. (C) ABC294640
inhibits SphK2, and induces proteasomal degradation of SphK1 and dihydroceramide desaturase
(DES). Accumulated dihydroceramide (DCer) can induce ER stress, up mark(triangle), increase by the
inhibitor, and down mark (inverted triangle), decrease by the SphK inhibitor.

6.3.2. PF543

PF543, a sphingosine-competitive cell-permeant inhibitor of SphK1, inhibits Sphk1 with a Ki of 3.6
nM. Its selectivity is more than 100-fold greater for SphK1 than for SphK2 [153]. However, PF543 had
no inhibitory effects on the proliferation or survival of 1483 HNSCC cells, regardless of the marked
decrease in the S1P/sphingosine ratio. Why PF543 did not exert antiproliferative effects was not clarified.
The increased binding affinity of PF543 to SphK1 may result in a lack of specificity toward other
enzymes, such as CerS, which effectively negates the effects of inhibiting SphK1 activity on cell growth
and survival by preventing the formation of ceramide from sphingosine [154]. However, in 1483 cells
treated with 3–10 µM PF543 for 16 h, PF543 did not inhibit CerS, increasing the amount of available
sphingosine and synthesis of ceramides, including C18-ceramide and C24-ceramide. Long-chain
ceramides, such as C18-ceramide, are antiproliferative, whereas very-long-chain ceramides, such as
C24-ceramide, promote cell proliferation [155]. The variety of ceramide species generated by PF543
may determine its effects on cell viability. Alternatively, as an off-target effect, PF543 may inhibit mixed
lineage kinase 1 (MLK1) at low concentrations [153]. The MLK family functions in JNK activation
and TGF-β-induced cell death [156,157]. The cytotoxicity of PF543 by inhibiting SphK1 activity may
be attenuated by its effects on the MLK family. On the other hand, at a concentration of 2.5 µM or
higher, potent antiproliferative and cytotoxic effects of PF543 were demonstrated in human colorectal
cancer cells, leading to necroptosis. In animal studies, intravenous injection of PF543 significantly
suppressed HCT-166 xenograft growth while markedly improving mouse survival [158]. Treatment of
oral SCC cells with PF543 at a concentration of 25 µM reduced cell viability, and induced apoptosis,
necrosis, and autophagy, although autophagy promoted cell survival [159]. At higher concentrations,
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the inhibitory effects of PF543 on cell proliferation and cell survival may be ascribed to its off-target
effects on other cellular enzymes, including SphK2. Levels of SphK1 in triple-negative breast cancer
patients were significantly higher than those in patients with other breast tumors. PF543 sensitized
such breast cancer cells to 5-FU and doxorubicin [160,161]. A PF543 derivative, Compound-2, has
inhibitory activity on SphK1 in a manner similar to that of PF543, but it exerted antitumor activity on
HT29 and HCT116 colorectal cancer cells at low concentrations [162].

6.3.3. FTY720 (Fingolimod)

FTY720 is a sphingosine analog that functions via intracellular and extracellular
pathways [163–165]. FTY720 is phosphorylated by SphK2 to become p-FTY720, and down-regulates
S1PRs and inhibits T lymphocyte leakage in lymphoid tissues, marking it an immunosuppressant
for recurrent multiple sclerosis [166,167]. S1PR inhibition by p-FTY720 sensitized drug-resistant
colorectal cancer cells and tumors to cetuximab [25]. At higher concentrations (5–10 µM), FTY720 was
demonstrated to be a potent apoptosis inducer in prostate, liver, and bladder cancer cells [165,168,169].
The antitumor effects of FTY720 were suggested to be due to its ability to stimulate ROS production,
which culminated in PKCδ activation and subsequent caspase-3-dependent apoptosis in hepatocellular
carcinoma cells [170] (Figure 3B). FTY720 also activates PP2A, which dephosphorylates proteins, with
the most well-defined targets being Akt, Erk, c-Myc, and β-catenin, all of which are known to play a
role in tumorigenesis [171,172]. In oral SCC, FTY720 inhibited Akt/NF-κB signaling, facilitated the
proteasomal degradation of the antiapoptotic protein Mcl-1, and increased ROS generation, leading to
apoptosis. When FTY720-induced autophagy was blocked by the autophagy inhibitor bafilomycin
A1, FTY720-induced cell death was suppressed. This suggests that FTY720 induces autophagic cell
death in oral SCC cells [173]. FTY720 acts synergistically with cisplatin to induce cell death [174].
In contrast to FTY720, OSU-2S was not phosphorylated by SphK2 in vitro and did not cause S1PR
internalization in hepatocellular carcinoma cells or T lymphocyte homing in immunocompetent mice.
OSU-2S suppressed the proliferation of hepatocellular carcinoma via ROS/PKCδ/caspase signaling and
exhibited high in vivo potency in suppressing xenograft tumor growth without overt toxicity [175].
Furthermore, another FTY720 analog, Compound 7, which activates PP2A with antitumor activity was
previously developed based on a PP2A docking study [176].

6.3.4. ABC294640 (Opaganib)

ABC294640, 3-(4-chlorophenyl)-adamantane-1-carboxylic acid (pyridin-4-ylmethyl)amide, is a
small-molecule SphK2-selective inhibitor that is orally available, has favorable pharmacological properties,
and can reach therapeutic levels in mouse plasma and tumors without overt toxicity [136,177,178].
ABC294640 reduces S1P levels and increases ceramide in tumor cells, suppresses signaling through
Akt, Erk, and NF-κB, increases proteasomal degradation of c-Myc, and promotes autophagy and/or
apoptosis in a variety of cancer cells. In addition, ABC294640 induces proteasomal degradation of
SphK1 and DES [179] (Figure 3C). As dihydroceramide was reported to be involved in ER stress [146],
accumulation of dihydroceramide by DES inhibition may induce ER stress and ROS production, and
function in the antitumor effects of ABC294640 [136,180]. In a phase I clinical study, ABC294640 was
orally administered continuously in cycles of 28 days to 21 patients with advanced solid cancer [181].
The most common drug-related toxicities were nausea, vomiting, and fatigue. Among the patients
evaluated, one (6%) had a partial response, six (38%) had stable disease, and nine (56%) had progressive
disease as their best response. ABC294640 increased the transcription of pro-apoptotic Noxa and
degradation of prosurvival Bcl-2 family molecule Mcl-1 in human cholangiocarcinoma cells. ABC294640
synergized with Bcl-2/Bcl-xL inhibitors ABT-263 and Obatoclax to induce cholangiocarcinoma cell
death [182,183].
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6.4. CerK Inhibitor

The CerK/C1P pathway has been implicated in survival signaling for cancer progression [184].
Exogenous C1P at low concentrations was reported to increase the survival and proliferation of NIH3T3
fibroblasts and A549 lung cancer cells, but at high concentrations, it reduced survival and induced
apoptosis in correlation with the conversion of C1P to proapoptotic ceramide [185]. In MCF-7 breast
cancer and NCI-H358 lung cancer cells, the CerK inhibitor NVP-231 caused a concentration-dependent
decrease in cell viability and induced apoptosis. Cell cycle analysis revealed that NVP-231 reduced the
number of cells in S phase and induced M phase arrest [186]. CerK is up-regulated in metastatic breast
cancer cells, and plays a role in migration and invasion. The increased migration of CerK overexpressing
cells was mitigated by NVP-231 via inhibition of the phosphoinositide 3-kinase (PI3K)/Akt pathway
and Rho kinase, but not by inhibition of the classical Erk pathway [187].

7. Anti-S1P Antibody

Antibodies against S1P have been generated to block the S1P-mediated growth signal [188,189].
Sonepcizumab is a fully humanized monoclonal antibody directed at S1P. In a phase I study for
treatment-resistant solid tumors, no dose-limiting adverse events were observed [190]. A phase II
study was performed in patients with metastatic renal carcinoma with a history of prior VEGF-directed
therapy [191]. Although the study did not achieve its primary endpoint based on two-month
progression-free survival, a median overall survival of 21.7 months was observed. Four (10%) of
40 patients demonstrated a partial response, with a median duration of response of 5.9 months. No grade
3/4 treatment-related adverse events were observed. The most frequent grade 1/2 treatment-related
adverse events were fatigue (30%), weight gain (18%), constipation (15%), and nausea (15%).

8. Synthetic Ceramides

Short-chain ceramides, unlike long-chain ceramides, can induce cell death, which is useful
for therapeutic applications in cancer [192,193]. However, decreased solubility and bioavailability
of ceramides analogues present problems for their delivery as chemotherapeutic agents in vivo.
To overcome these problems, varied-chain pyridinium ceramides, such as C6-, C16-, or C18-pyridinium
ceramides, have been synthesized with increased solubility and cell membrane permeability [194,195].
When PDT was combined with C6-pyridinum ceramide (LCL29), apoptosis via mitochondrial ceramide
accumulation was increased [193]. A cationic water-soluble L-thero-C6-pyridinium-ceramide bromide
(Ws-CER) inhibited the growth of several HNSCC cell lines, independent of their p53 status. Consistent
with its targeting ability to negatively charged intracellular compartments, Ws-CER accumulated
mainly in mitochondria- and nuclei-enriched fractions from treated cancer cells [192]. The combination
of Ws-CER with gemcitabine further suppressed HNSCC in mice. Liposome-mediated delivery of
C6-ceramide was reported to be an effective drug delivery method. Nanoliposomal C6-ceramide
inhibited the in vitro and in vivo growth of breast cancer, pancreatic cancer, chronic lymphocytic
leukemia, hepatocellular carcinoma, ovarian cancer, and melanoma [196–201]. Nanoliposomal
C6-ceramide induced the phosphorylation of phosphoinositide 3-kinase (PI3K) and PKCζ, and
dephosphorylation of PKCα. Concomitantly, activated PKCζ caused the dephosphorylation of paxillin,
resulting in stress fiber depolymerization and focal adhesion disassembly in the metastatic tumor
cells [202]. The combined use of nanoliposomal C6-ceramide with sub-therapeutic concentrations of
gemcitabine exhibited cell toxicity in PANC-1, a gemcitabine-resistant human pancreatic cancer cell
line [203].

9. Future Perspectives

A characteristic of treatment for HNSCC is the application of photon radiotherapy with gamma
rays and X-rays. Although it is possible to irradiate a high dose of 6–13 Gy equivalent in particle
radiotherapy using proton or carbon beams [204,205], each irradiation dose in fractionated X-ray
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radiotherapy for head and neck cancer is usually 2 Gy [206]. Previous studies reported that ceramide
production in tumors and tumor vessels was low at an irradiation dose of 2 Gy [99,207]. Therefore, it
is necessary to further investigate the interaction between the X-ray irradiation dose and ceramide
production. PDT was reported to produce ceramide in the treatment of oral SCC, and the combined
use of synthetic ceramide further increases the ceramide level and antitumor effects [193]. However, its
effects may be limited to the superficial layer of advanced tumors. Microbubbles are often composed
of microscopic lipid or protein shells encapsulating gaseous content, such as octafluoropropane, and
have previously been used for imaging, gene delivery, tumor ablation, and as disrupting agents [208].
Recent studies using preclinical models of human tumors demonstrated that ultrasound-stimulated
microbubbles (USMB) can mechanically perturb cell membranes, resulting in additive increases in
ceramide-based radiation effects [209,210]. This method was confirmed to accumulate ceramide
in endothelial, leukemia, breast cancer, prostate cancer, and fibrosarcoma cells [211,212], and has
the advantage of producing ceramide at deeper tumors. Indeed, when sarcoma-bearing mice were
treated with varying radiation doses with prior USMB exposure, acute vascular effects were induced,
resulting in extensive tumor cell death. This was caused by increased ceramide production and can
be elicited at low radiation doses (<8 Gy) by prior USMB exposure [213]. For distant metastasis
unable to be treated by radiotherapy, chemotherapy with cisplatin or paclitaxel may be combined
with USMB to increase the ceramide production at the site of ultrasound exposure. On the other
hand, Alphonse et al. [129] demonstrated that a drug cocktail of GluCS inhibitor, CDase inhibitor, and
imipramine increased ceramide levels in HNSCC cells, with marked effects on radiation sensitivity.
This suggests that inhibitors of GluCS, CDase, SphK, or CerK can be used simultaneously to improve
therapeutic outcomes.

10. Application of Sphingolipid Target Therapy to HNSCC

The aCDase is overexpressed in 70% of HNSCC compared to normal controls (Section 4). Therefore,
the aCDase inhibitor, LCL204, which can sensitize HNSCC cells to Fas-induced apoptosis in vitro and
in vivo, could be a therapeutic agent for HNSCC (Section 6.1). SphK1 expression was also shown to
be elevated in head and neck SCC compared to normal tissue, and positive SphK1 expression was
associated with shorter survival time. SphK1 was found to be a target of the microRNA, miR-124,
which acts as a suppressor in HNSCC by directly inhibiting SphK1 activity and downstream signaling
(Section 6.3). These findings suggest that SphK1 inhibitors could be used to treat HNSCC. Indeed, in
a phase I study, treatment of solid tumors containing HNSCC with safingol and cisplatin effectively
down-regulated S1P (Section 6.3.1). Synthetic ceramides, such as C6-pyridium ceramide, enhanced
the ability of PDT to accumulate ceramide in mitochondria, followed by cytochrome c release and
caspase 3 activation. Therefore, the utility of C6-pyridium ceramide in the treatment of HNSCC with
PDT was suggested (Section 8). As a clinical study, a phase II clinical trial revealed that combination
therapy with gemcitabine and doxorubicin was an effective treatment for some patients with recurrent
or metastatic HNSCC, and that serum C-18-ceramide elevation can serve as a serum biomarker to
determine responsiveness to chemotherapy (Section 5). In another clinical trial, patients with recurrent
HNSCC were treated with combination therapy of in vitro-expanded natural killer T (NKT) cells
and α-galactosylceramide (αGalCer)-pulsed antigen-presenting cells. The intra-arterial infusion of
Vα24NKT cells and the submucosal injection of αGalCer-pulsed APC induced significant antitumor
immunity with beneficial clinical effects in the management of advanced HNSCC [214]. Thus, although
clinical trials on sphingolipids in HNSCC have been limited, GluCS inhibitors, SphKs inhibitors (PF543,
FTY720, and ABC294640), CerK inhibitors, anti-S1P antibodies, and synthetic ceramides (Sections 6–8)
against HNSCC should be validated in clinical studies. Radiotherapy is a major treatment modality
for HNSCC, with radiation increasing ceramide levels through hydrolysis of sphingolipid by SMase
and CerS-mediated synthesis (Section 4). Because these reagents can be used to sensitize SCC to
radiotherapy/ radiochemotherapy, HNSCC is in an advantageous situation compared to tumors that
cannot be treated with radiation.
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11. Conclusions

Although a number of inhibitors for ceramide- and sphingosine-metabolizing enzymes have
been developed, published clinical trials have been limited to several inhibitors, such as safingol and
ABC294640, and the anti-S1P antibody sonepcizumab. The major role of these inhibitors may be to
increase the sensitivity of HNSCC, including oral SCC, to radiotherapy and chemotherapy through the
increase in ceramide levels in the tumor. When the X-ray radiation dose in fractionated radiotherapy is
low, an additional method, such as prior USMB exposure, is helpful to increase ceramide generation.
Based on studies using the SphK2-selective inhibitor ABC294640, it can inhibit DES and SphK2.
This suggests the importance of off-target effects of the inhibitor in its antitumor activity. In order to
improve the therapeutic effects of radiotherapy and chemotherapy for HNSCC, a cocktail of multiple
inhibitors for ceramide- and sphingosine-metabolizing enzymes may be also useful.
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