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Abstract
Objective
We applied longitudinal 3T MRI and advanced computational models in 2 independent
cohorts of patients with earlyMS to investigate howwhite matter (WM) lesion distribution and
cortical atrophy topographically interrelate and affect functional disability.

Methods
Clinical disability was measured using the Expanded Disability Status Scale Score at baseline
and at 1-year follow-up in a cohort of 119 patients with early relapsing-remitting MS and in
a replication cohort of 81 patients. Covarying patterns of cortical atrophy and baseline lesion
distribution were extracted by parallel independent component analysis. Predictive power of
covarying patterns for disability progression was tested by receiver operating characteristic
analysis at the group level and support vector machine for individual patient outcome.

Results
In the study cohort, we identified 3 distinct distribution types of WM lesions (cerebellar,
bihemispheric, and left lateralized) that were associated with characteristic cortical atrophy
distributions. The cerebellar and left-lateralized patterns were reproducibly detected in the
second cohort. Each of the patterns predicted to different extents, short-term disability pro-
gression, whereas the cerebellar pattern was associated with the highest risk of clinical wors-
ening, predicting individual disability progression with an accuracy of 88% (study cohort) and
89% (replication cohort), respectively.

Conclusion
These findings highlight the role of distinct spatial distribution of cortical atrophy and WM
lesions predicting disability. The cerebellar involvement is shown as a key determinant of rapid
clinical deterioration.
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MS is a chronic neuroinflammatory disease of the CNS that
leads to progressive disability in young adults. Acute in-
flammation and chronic neuronal cell loss contribute differ-
ently to disease progression and disability.1,2 Cortical gray
matter (GM) atrophy starts at or before clinical disease onset,
and the initial extent has robust associations with functional
deterioration and cognitive impairment.3 It reliably predicts
and is a relevant marker of disease progression.4,5 Along with
cortical GM atrophy, inflammatory, demyelinating white mat-
ter (WM) lesions are considered as primordial hallmarks of the
disease, and their quantity at the beginning of the disease is
associated with future clinical outcome.6 Furthermore, lesion
extent at disease onset is the most important conventional MRI
feature in the clinical setting that reliably predicts long-term
disability.7

In the advanced stages of the disease, GM and WM damage
patterns have been studied independently of each other and
have each been shown to be associated with motor dysfunc-
tion or cognitive impairment.8–10 Because both GM and WM
damage affect disease-related disability, integrating analysis of
these 2 compartments should provide more accurate pre-
dictive models for disease progression.

In our study, we investigated distinct topological patterns of
cortical GM atrophy andWM lesions in patients with early MS
and assessed the relevance of these patterns for disease pro-
gression. First, we used parallel independent component
analysis (ICA) to examine whether cortical atrophy and WM
lesions, derived from standardized 3T MRI, follow specific
patterns in relation to each other. This methodological ap-
proach has recently been successfully implemented in the ex-
ploration of GM andWM integrity in other neurodegenerative
and psychiatric disorders to depict patterns of specific tissue
abnormalities.11,12 Then, we investigated whether the identified
patterns were associated with disease progression in terms of
cortical atrophy and clinical disability after 1 year of follow-up.
To confirm the reliability of our results, we replicated the
analysis in an independent cohort of patients with MS.

Previous studies investigatingGMandWMdamage commonly
used conventional lesion and atrophy measures capturing both
aspects of the disease, inflammation and neurodegeneration,
but did not take mutual pattern recognition analysis into
account.13–15 Our hypothesis was that covarying patterns of
GM atrophy and WM lesions derived from structural MRI at
disease onset could accurately predict disability over time.

Methods
Study participants and design
In this longitudinal study, a cohort of 119 patients with early
relapsing-remitting MS (RRMS) with a maximum disease du-
ration of 5 years was included.16 A diagnosis of RRMS was
established according to the 2010 revisedMcDonald diagnostic
criteria.17 To verify the reliability of the obtained results from
the main study cohort, we replicated the analyses by including
an independent data set of a replication cohort of 81 patients
with RRMS from another medical center. All patients un-
derwent clinical evaluation, including the Expanded Disability
Status Scale (EDSS) scoring and MRI examination, and were
clinically and radiologically followed up after 12 months.
Patients were relapse- and steroid-free for at least 3 months
before the MRI scans. Patients were considered to have disease
progression if they had an increase of at least 1 point in the
EDSS score at follow-up compared with baseline. Patients
having a decrease, no increase, or an increase of 0.5 in the EDSS
score were considered to have no progression.18

Both MS cohorts were retrospectively analyzed from a pro-
spective longitudinal observational study between 2011 and
2016 comprising yearly follow-up assessment with a standard-
ized protocol. The minimal requirements for inclusion in our 2
cohorts were a standardized MRI with concomitant clinical
assessment and a follow-up after 12 months (±3 months).
Dropout rates between both cohorts were comparable (study
cohort: 12% vs replication cohort: 9%).

Standard protocol approvals, registrations,
and patient consents
The study was approved by the local medical ethics com-
mittee (approval number 837.543.11 [8085]); all patients
provided informed consent in accordance with the Declara-
tion of Helsinki.

MRI data acquisition

Study cohort
Imaging was performed on a 3TMRI scanner (MagnetomTim
Trio, Siemens, Germany) with a 32-channel receive-only head
coil using a sagittal 3D T1-weighted magnetization-prepared
rapid gradient-echo (MP-RAGE) sequence (echo time/
inversion time/repetition time = 2,52/900/1,900 ms, flip an-
gle = 9°, field of view = 256 × 256mm2, matrix size = 256 × 256,
slice thickness = 1 mm, voxel size = 1 × 1 × 1 mm3) and
a sagittal 3D T2-weighted fluid-attenuated inversion recovery

Glossary
AUC = area under the curve; EDSS = Expanded Disability Status Scale; FLAIR = fluid-attenuated inversion recovery; FWHM =
full width at half maximum; GM = gray matter; ICA = independent component analysis; LST = lesion segmentation toolbox;
MNI = Montreal Neurological Institute; MP-RAGE = magnetization-prepared rapid gradient-echo; MSFC = MS Functional
Composite; ROC = receiver operating characteristic; RRMS = relapsing-remitting MS; SVM = support vector machine;WM =
white matter.
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(FLAIR) sequence (echo time/inversion time/repetition time
= 388/1,800/5,000 ms, echo-train length = 848, flip angle =
120°, field of view = 256 × 256 mm2, matrix size = 256 × 256,
slice thickness = 1 mm, voxel size = 1 × 1 × 1 mm3).

Replication cohort
Patients from the replication cohort were scanned with a 3T
MRI (Magnetom Prismafit, Siemens, Germany) scanner with
the following acquisition parameters: a sagittal 3D T1-
weighted MP-RAGE (echo time/inversion time/repetition
time = 2,2/900/2,130 ms, flip angle = 8°, field of view = 256 ×
256 mm2, matrix size = 256 × 256, slice thickness = 1 mm,
voxel size = 1 × 1 × 1mm3) and a sagittal 3D T2-weighted
FLAIR (echo time/inversion time/repetition time = 389/
1,800/5,000 ms, echo-train length = 250, flip angle = 120°,
field of view = 256 × 256 mm2, matrix size = 256 × 256, slice
thickness = 1 mm, voxel size = 1 × 1 × 1 mm3).

In both cohorts, the acquired T1-weighted images were then
processed by using an automated processing pipeline to extract
cortical atrophy over 1 year and the T1- and T2-weighted
FLAIR images for the lesion growth algorithm of WM lesion
volumes.

MRI data processing

Quantification of WM lesion volume
The baseline and follow-up volumes of WM lesions were es-
timated by applying the cross-sectional pipeline of the lesion
segmentation toolbox,19 as part of the Statistical Parametric
Mapping (SPM8) software. Initially, 3D FLAIR images were
coregistered to 3D T1-weighted images and bias corrected.
After partial volume estimation, lesion segmentation was per-
formed with 20 different initial threshold values for the lesion
growth algorithm. The optimal threshold (ĸ value, dependent
on image contrast) was determined for each patient and an
average value for all patients calculated. Afterward, for auto-
matic lesion volume estimation and filling of 3D T1-weighted
images, a uniform ĸ value of 0.1 was applied in all patients.
Subsequently, the filled 3D T1-weighted images and the native
3D T1-weighted images were segmented into GM, WM, and
CSF and normalized to Montreal Neurological Institute
(MNI) space. Finally, the quality of the segmentations was
visually inspected to increase reliability.

Cortical thickness reconstruction
After filling of T1-weighted hypointense lesions, the construc-
tion of cortical surface and subcortical volume estimation for
each patient was performed based on 3D T1-weighted images
using FreeSurfer version 5.3.0 (surfer.nmr.mgh.harvard.edu) in
a fully automated fashion, followed by visual inspection for
quality control at various processing steps. Most of the patients’
MRIs from both cohorts had sufficient quality and required no
additional intervention after initial automated processing. Only
a few patients with excessive or insufficient skull stripping af-
fecting the surface reconstruction were reran after manual res-
toration of missing tissue or deleting nonbrain tissue. Technical
details of the processing stream for surface-based reconstruction

were previously described and validated.20,21 Briefly, this auto-
mated processing pipeline is based on the creation of an un-
biased within-subject template space and image using a robust
inverse consistent registration.20 The unbiased template serves
for initialization of skull stripping, Talairach transformation,
atlas registration, and parcellation for each subject’s time
points.21 Surface maps of regional rates of cortical thickness
atrophy (inmm/y) were computed as (thickness at time point 2
− thickness at time point 1)/(time point 2 [years] − time point
1 [years]) and smoothed with a 10-mm full width at half
maximum (FWHM) Gaussian kernel. An appropriate
smoothing level increases the sensitivity of subsequent statistical
analysis.22 We used 10-mm FWHM because larger smoothing
lowers the spatial resolution of cortical thickness measure-
ments.23 Subsequently, within each of the detected lesion pat-
terns, differences in rates of cortical atrophy between the groups
(classified according to the lesion volume of the pattern) were
evaluated. Generated statistical parametric maps of significant
group differences were corrected for multiple comparisons us-
ing the false discovery rate (p < 0.05) method.

Identification of cortical GM atrophy and WM
lesion patterns: parallel ICA
ICA allows the identification of hidden noncorrelating com-
ponents that underlie sets of measurements without any pre-
vious knowledge of the data. In this study, we used the parallel
ICA algorithm implemented in the fusion ICA toolbox.24 The
purpose of parallel ICA is to discover independent components
from 2 inputs, here, the rate of cortical atrophy and the volumes
of baseline WM lesions derived from the MRI of the same
patient, in addition to the relationship between them. Before
inputting into ICA, cortical atrophy maps (registered in the
halfway space of the FreeSurfer longitudinal pipeline) were
transformed intoMNI space to ensure their fitting with theWM
lesion maps. The association between the influences of the
cortical atrophy rate on the WM lesion volume was calculated
with the algorithm by estimating the correlation between the
rate of cortical atrophy and theWM lesion volume. Parallel ICA
optimization is based on the Infomax algorithm,25 which max-
imizes the mutual entropy to enhance the independence be-
tween the components for the 2 inputs. Finally, to avoid
overfitting because of too many estimated parameters, the
learning rate of the correlation term is adaptively adjusted.26 To
determine the correct number of independent components,
a modified version of the Akaike information criterion proposed
by Li et al.27 was applied. The components from each modality
were selected to be the correlations with the highest signifi-
cance. First, we used the Akaike information criterion to esti-
mate the number of components and then to reduce the
component number to reach a consistent level among the dif-
ferent runs. An overview of the analysis is illustrated in figure 1.
In a further analysis, we used the Buckner functional cerebellar
connectivity atlas, which parcellates the cerebellum into 7
functional zones that are coupled to cerebral cortical regions
(visual, somatomotor, dorsal attention, ventral attention, limbic,
frontoparietal, and default network).28,29 This atlas depicts the
organization of cerebro-cerebellar circuits and delimits the
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intrinsic functional boundaries of the cerebellar-cortical net-
works. The previously obtained cerebellar pattern was projected
onto this atlas to identify specific functionally interacting cere-
bellar networks. The extent of the involvement of each
cerebellar-cortical network was quantified based on the absolute
number of voxels (the threshold was set to >10 voxels; p < 0.05)
within each network and the relative size occupied by these
voxels from the respective whole network.

Individual-level support vector
machine analysis
The component loads of the lesion volumes for each individual
patient were determined from the identified significant cova-
rying patterns. These component loads for each lesion pattern
were used as predictors of disease progression (as assessed by
the EDSS score at 1-year follow-up) for each individual patient

using a machine learning algorithm, the support vector machine
(SVM). The details of the applied SVM algorithm are presented
only for the study relevant terms, whereas the full information is
available elsewhere.30 In short, the SVM algorithm is able to
classify 2 data sets based on an optimally separating threshold
between the data sets by maximizing the margin between
classes’ closest points. The points, which are located on the
boundaries, are called support vectors, and the middle of the
margin is the optimal separating threshold. For an effective
linear separation of data points, a projection into a higher-
dimensional space is required (here, by means of polynomial
function kernel). At the validation step, the component loads
were assessed for the ability to automatically distinguish be-
tween the patients with and without disability progression. The
classification was conducted for each lesion pattern separately.

Figure 1 Data analysis flowchart

(A) WM lesion volumes derived from structural
MRI data sets (T1W, T2W FLAIR) and (B) cortical
atrophy rates (FreeSurfer processing) from the
same patients were used as inputs for the pattern
identification analysis. The weights were assigned
based on the correlation between these 2
parameters. Parallel ICA was performed, and dis-
tinct covarying lesion patterns of cortical atrophy
and WM lesions were identified. For each lesion
pattern, the component loads of each patient re-
lated to cortical atrophy (brown line) and WM le-
sion volume (green line) were correlated. FLAIR =
fluid-attenuated inversion recovery; ICA = in-
dependent component analysis; T1W = T1‐
weighted; T2W = T2‐weighted; WM = white matter.
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Statistical analysis
Summary statistics are presented as mean ± SD, median
(range), or number (percentage), where applicable. The paired
t test was used for parametric scale and the Wilcoxon signed-
rank test for nonparametric scale variables. All statistical anal-
yses were performed with Statistical Package for the Social
Sciences 20.0 software (IBM, Armonk, NY) and MATLAB
R2015b (MathWorks). To account for a possible influence on
cortical atrophy rates, age and sex of the patients were included
as covariates. To investigate whether the detected lesion to-
pology patterns allow the prediction of physical disability
(measured with the EDSS) on the group level, a receiver op-
erating characteristic (ROC) analysis was conducted. This
statistical method is preferentially used to quantify how accu-
rately a diagnostic test performs when it is required to make
a series of discriminations into 2 different states (e.g., stable
EDSS and EDSS worsening) on the basis of a specific di-
agnostic variable (e.g., lesion pattern). The area under the ROC
curve was used as the index of the prediction accuracy to
compare the ROC curves. A p value of < 0.05 was considered
statistically significant. For each significant covarying pattern
that was used for the prediction of the EDSS score at follow-up,
the accuracy was 10-fold cross-validated using the SVM
algorithm.

Data availability
The raw data analyzed during this study will be shared in
anonymized format by request of a qualified investigator to
the corresponding author for purposes of replicating proce-
dures and results.

Results
Patients
Demographic, clinical, and MRI characteristics of the patients
from the study cohort are presented in table 1. The study
cohort included 119 patients with RRMS (81 women) with
a mean age of 34.6 ± 9.8 years and a mean disease duration of
37.2 ± 25.0 months. In total, 104 patients (87%) received
disease-modifying treatment, and 15 patients (13%) had no
disease-modifying treatment. During the 1-year follow-up, 12
patients (10%) presented clinical relapse, 23 (19%) had MRI
activity, and 10 (9%) presented both; the remaining 74 patients
(62%) were clinically and radiologically stable. Twenty-five
patients (21%) were considered to have disease progression
after the 1-year follow-up period (maximum increase: 1.0 in-
crease in the EDSS score). At follow-up, T2 lesion volume was
significantly increased (t = 2.3, p < 0.05), and global GM vol-
ume was significantly decreased (t = 2.1, p < 0.05) when
compared with baseline.

The replication cohort comprised 81 patients (mean age 35.5 ±
10.9 years, 57 females) with a disease duration of 44.1 ± 10.5
months (table 1). Within this cohort, 50 patients (75%) were
on disease-modifying therapy, and 31 patients (25%) were not
taking any disease-modifying medication. In the course of

1-year period, 9 patients (11%) presented clinical relapse or
MRI activity, and 72 patients (89%) were clinically and ra-
diologically stable. After 1 year, 11 patients (14%) had pro-
gression in their EDSS scores (maximum increase: 1.5 increase
in the EDSS scores). At 1 year, patients from the replication
cohort as those from the study cohort displayed reduced global
GM volume (t = 2.2, p < 0.05).

Notably, there were no significant differences in mean EDSS
scores between baseline and follow-up, neither in the study
cohort (p = 0.51) nor in the replication cohort (p = 0.14). By
comparison between the 2 cohorts (table e-1, links.lww.com/
NXI/A196), there were no significant differences in the
patients’ clinical and MRI characteristics (all p values > 0.05),
except for disease duration being longer in the replication co-
hort (37.2 vs 44.1 months; p < 0.001).

Covarying patterns of WM lesions and regional
cortical atrophy
The WM lesion distributions and regional cortical atrophy
maps determined from 119 MRI data sets of the study cohort
were included as 2 inputs into a parallel ICA. The analysis
showed 3 significant covarying lesion patterns, namely a cere-
bellar pattern (r = 0.68, p < 0.001), a bihemispheric pattern (r =
0.61, p < 0.001), implicating both hemispheres, and a left-
lateralized pattern (r = 0.58, p < 0.001), affecting pre-
dominantly the left hemisphere (figure 2).

Similarly, we juxtaposed the lesion and atrophy maps in the
replication cohort that were then fed into a parallel ICA.Here, the
correlation analyses revealed 2 significant covarying lesion pat-
terns: cerebellar (r = 0.64, p < 0.001) with a similar lesion dis-
tribution, located bilaterally in the cerebellum, and left-lateralized
(r = 0.62, p < 0.001), involving mainly the hemisphere WM
(figure e-1, links.lww.com/NXI/A193).

Covarying regional atrophy representations were in addition
analyzed by subdividing the main cohort (n = 119) into 2
subgroups dependent on the lesion load for each distinct pattern
(below vs above themedian). These groups were comparable in
terms of global cortical atrophy rates (cerebellar [t = 1.35, p >
0.05], bihemispheric [t = 1.18, p > 0.05], and left-lateralized [t =
0.89, p>0.05]). Regional atrophy distribution for each pattern is
presented in figure e-2 (links.lww.com/NXI/A194) and table
e-2 (links.lww.com/NXI/A196). None of the patterns was as-
sociated with the global cortical atrophy (Pearson correlation
analysis, p > 0.05 for all patterns) in both cohorts.

Covarying patterns predict disease
progression over time
We performed ROC analyses (figure 3) to determine the pre-
dictive ability of distinct patterns (GM and WM pathology
covariates) to discriminate patients with disability progression
(based on patients’ increase in the EDSS score by ≥1 point at
follow-up). The area under the curve (AUC) was 0.82 (95%CI:
0.73–0.91), specificity 79% and sensitivity 81% for the cerebellar
pattern, the AUCwas 0.66 (95%CI: 0.54–0.77), specificity 62%
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and sensitivity 59% for the bihemispheric pattern, and the AUC
was 0.64 (95% CI: 0.52–0.75), specificity 63% and sensitivity
59% for the left-lateralized pattern (table e-3, links.lww.com/
NXI/A196). The cerebellar pattern therefore showed the best
predictive performance of the 3 patterns in discriminating the
patients with and without disability progression over time. A
pairwise comparison of the ROC curves revealed a significant
difference between the AUC of the cerebellar pattern and
bihemispheric (p < 0.05) and left-lateralized (p < 0.05) patterns,
respectively.

Analysis in the replication cohort supported these results. Us-
ing the ROC analysis, we found that the AUC was 0.86 (95%
CI: 0.76–0.94), specificity 83% and sensitivity 88% for the
cerebellar pattern, and the AUCwas 0.66 (95%CI: 0.55–0.77),
specificity 61% and sensitivity 63% for the left-lateralized

pattern in this cohort (figure e-3, links.lww.com/NXI/A195
and table e-3, links.lww.com/NXI/A196).

In both cohorts, predictive accuracy derived from the in-
tegration of both WM lesions and cortical atrophy patterns
outperforms the predictive accuracy of one of both patterns
alone. The comparative ROC characteristics are shown in
table e-3 (links.lww.com/NXI/A196).

The map of the cerebellar lesion distribution is shown in figure
4A for the predictive power. Here, each particular voxel shows
how this region contributes to the prediction analyses for dis-
ease progression (patients with vs without disease pro-
gression). This SVM-based individual patient prediction
analysis achieved as well the best cross-validated accuracy of
88% for the cerebellar and of 75% for the bihemispheric and

Table 1 Demographic, clinical, and MRI-derived measures of the study and replication cohorts

Parameter Baseline Follow-up Z/tb p Value

Study cohort

Demographic and clinical
characteristics

Age (y) 34.6 ± 9.8

Male/female: number (%) 38 (32%)/81 (68%)

Disease duration (mo) 37.2 ± 25.0

EDSS scorea 1.5 (0–6.5) 1.5 (0–6.5) 0.6 0.51

Follow-up (mo) 12.0 ± 1.1

MRI characteristics

GM volume (mL) 627.7 ± 58.9 622.9 ± 55.0 2.1 0.04

WM volume (mL) 568.9 ± 58.7 568.6 ± 55.0 0.1 0.92

T2 lesion volume (mL) 7.3 ± 12.1 7.7 ± 12.3 2.3 0.02

Replication cohort

Demographic and clinical
characteristics

Age (y) 35.5 ± 10.9

Male/female: number (%) 24 (30%)/57 (70%)

Disease duration (mo) 44.1 ± 10.5

EDSS scorea 1.0 (0–6.5) 1.5 (0–6.5) 1.4 0.14

Follow-up (mo) 12.7 ± 5.7

MRI characteristics

GM volume (mL) 675.2 ± 123.0 672.0 ± 122.0 2.2 0.02

WM volume (mL) 516.2 ± 95.9 516.6 ± 96.3 0.4 0.66

T2 lesion volume (mL) 6.3 ± 11.0 6.2 ± 9.9 0.6 0.48

Abbreviations: EDSS = Expanded Disability Status Scale; GM = gray matter; WM = white matter.
Values presented as mean ± SD.
Significant p values (p < 0.05) are shown in bold.
a Median (range).
b Wilcoxon signed-rank (Z) or paired t test (t) between baseline and follow-up values.
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64% for the left-lateralized pattern in predicting disease pro-
gression at 1-year follow-up (table e-4, links.lww.com/NXI/
A196). In the replication cohort, the SVM-based individual

analysis achieved the best cross-validated accuracy of 89% for
the cerebellar and 66% for the left-lateralized patterns in pre-
dicting the disease progression over 1 year (table e-4, links.lww.
com/NXI/A196).

While projecting the lesion maps of the cerebellar pattern
onto the Buckner connectivity atlas (figure 4, C and D), we
depict the involvement of 4 major cerebellar networks in both
cohorts (study/replication cohort), namely frontoparietal
(relative size, range 5.0–27.4%/5.8–25%), default mode
(4.2–8.2%/6.0–8.0%), somatomotor (3.1–5.5%/2.9–4.9%),
and ventral attention (2.8–6.4%/2.4–5.2%) network.

Discussion
In this work, we investigated covarying patterns of GM and
WM tissue damage in patients with early RRMS and studied
the impact of these patterns on MS disease progression. We
identified 3 covarying patterns of WM lesions and regional
cortical atrophy. All 3 patterns predicted short-term disease
progression with clinical impairment robustly, but with differ-
ent accuracies. The cerebellar pattern was related to a more
widespread, mainly frontotemporal cortical atrophy and had
the strongest prediction accuracy of the 3 patterns. Because the
cerebellum is functionally segregated and integrated in various
functional networks including interconnected subcortical and
cortical areas, a deafferentation-driven pathology secondary to
lesions in cortico-ponto-cerebellar pathways could be postu-
lated. Our results suggest that cerebellar inflammation seems to
amplify other pathologic mechanisms, such as retrograde
neurodegeneration of cortical areas even far away from the

Figure 2 Three significant covarying patterns of regional cortical atrophy and the corresponding WM lesion volume

(A) Cerebellar lesion pattern, (B) bihemispheric le-
sion pattern, and (C) left-lateralized lesion pattern.
WM = white matter.

Figure 3 Comparison of ROC curves showing the accuracy
of covarying lesion patterns in predicting disabil-
ity progression

The shadowed areas represent the 95% CIs. In the legend, the AUC and the
95% CIs are presented. The cerebellar pattern shows the best accuracy in
predicting disability progression over time in comparison to the bihemi-
spheric and left-lateralized patterns (*p < 0.05). AUC = area under the curve.
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lesion site (as demonstrated by the covarying atrophy pattern
in our study), presumably via long-ranging connections that
were recently shown to be more severely damaged than short-
range connections.31

Previous neuroimaging and histopathologic studies have shown
that both GM and WM compartments are affected early in the
disease course of MS.32,33 However, it was still unclear whether
GMatrophy andWMdamage occur randomly, are interrelated,
or follow specific anatomical or sequential patterns and, in
particular, whether the topographical distribution is relevant for
early clinical disability. Few new studies have addressed either
the patterns of WM damage8 or GM atrophy.9,10 Steenwijk
et al.9 depicted 10 different nonrandom patterns of cortical
atrophy in patients with long-standing MS (disease duration
>20 years): 4 were associated with the functional disability
(quantified by the EDSS score) at the time point of the in-
vestigation. The cortical atrophy patterns showed stronger
associations with clinical, in particular cognitive, dysfunction
than global cortical atrophy. The detected patterns that showed

most pronounced cortical atrophy were located in the bilateral
posterior cingulate cortex and the bilateral temporal pole. In
particular, themarked cortical atrophy of the temporal lobe is in
line with our findings reporting that the cerebellar pattern is
predominantly related to atrophy of the superior temporal lobe
and the cortical areas around superior temporal sulcus. In
contrast to their findings, we found that all our detected lesion
patterns comprised—at least partly—cortical atrophy in the
parietal lobe being responsible for sensory information among
various modalities, including spatial sense and proprioception,
which is typically affected already in patients with early-stage
MS as in our cohorts. The study by Steenwijk et al. provided the
first evidence that spatial distribution of GM damage is relevant
for clinical disability inMS. However, it was limited by its cross-
sectional nature, clinically heterogeneous MS population
(i.e., RRMS and primary and secondary progressive MS), and
the exclusion of subcortical and cerebellar GM.

In our study, we were able to identify 3 covarying patterns of
spatially distributed damage in a cohort consisting of only

Figure 4 Map of the cerebellar lesion distribution

Here, each particular voxel shows how this region
contributes to the prediction analysis for disease
progression in the study cohort (A) and in the
replication cohort (B). Color bar indicates the
component load of the cerebellar pattern. (C)
shows the Buckner 7-network cerebellar nuclei
atlas, and (D) represents the corresponding cor-
tical connectivity map. ICA = independent com-
ponent analysis.
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patients with early RRMS who were evaluated in a longitudinal
approach. Our findings indicate that these patterns are clinically
relevant and allow prediction of disease progression and
emerging functional impairment in 2 early and mildly affected
RRMS cohorts. We suggest that in early RRMS, the patterns of
GM and WM pathology distribution reflect network
organization.34,35 Our recent work has shown that such GM
and WM network characteristics are essential for the mainte-
nance of function through structural adaptation despite global
long-range disconnection.30,34 In particular, at early stages, the
GM and WM display similar structural reorganization dy-
namics with strengthening of local connectivity, whereas at
later disease stages, the divergence in network patterns is as-
sociated with clinical deterioration.34,36

Our findings support the hypothesis that the distribution of
GM andWM damage is interrelated because we demonstrated
correlative links between WM lesion patterns and localization
of cortical atrophy by parallel ICA. We further showed that the
global cortical atrophy was independent of the lesion pattern
phenotype and not related to clinical deterioration in the short
time investigated here. The cerebellar pattern shows most ex-
tensive spreading of cortical atrophy and particularly with
cortical thickness reduction in the frontal and temporal lobes.
The bihemispheric pattern contains increased atrophy in the
orbitofrontal cortex, whereas the left-lateralized pattern cov-
ered fusiform, superior frontal and parietal cortical areas. The
lack of an association between the lesion volume within each
pattern and the global rate of cortical atrophy highlights the
importance of the spatial distribution of cortical GM and WM
damage and shows that the simple notion that more tissue
damage necessarily leads to more clinical disability is too nar-
row. A recent neuropathologic study investigating the re-
lationship between GM and WM damage postulated that
cortical inflammation and damage might drive the underlying
WM pathology through abnormal neuronal activity and de-
creased input from the affected areas.37 The authors provided
evidence of direct interlesional connectivity between cortical
and WM lesions, in line with our findings that the interplay of
both compartments influences disease progression.

Although infratentorial pathology was reported to increase the
risk of disability,14 we here provide compelling evidence that
individual-level SVM analysis of the cerebellar lesion pattern in
conjunction with mainly frontotemporal cortical atrophy could
be used to predict disability progression from the early disease
stages with high accuracy. This could be used to build pre-
diction models in an intersite setting and is of special clinical
relevance for tracking disease courses or therapeutic responses.
We found the cerebellar pattern to be associated with higher
atrophy rates in the superior temporal, frontal, and parietal
cortex, most of which is essential for motor and cognitive
performance. Indeed, specific reorganization of cerebello-
cortical networks is already evident in patients with clinically
isolated syndrome and early RRMS30 and might represent an
adaptive response to maintain motor function. Breakdown of
these networks, on the other hand, could lead to long-term

functional impairment or even be related to the transition into
progressive form of the disease. In addition, the cerebellar
circuits undergo functional and structural reorganization with
increasing clinical disability30,34 and are more prominent in
progressive MS.38,39

Some limitations apply to this work. Although both cohorts
were well matched on age, sex, and clinical disability, the
cohorts significantly differed in their disease duration. How-
ever, the absolute difference of approximately 6 months be-
tween both cohorts is clinically negligible, as patients in both
cohorts are clearly in the early relapsing-remitting phase of the
disease. Slight differences in some of the MRI acquisition
parameters between the 2 cohorts could have influenced the
generation of the patterns, although key acquisition parameters
determining resolution were identical in both cohorts.

Another limitation is the relatively short follow-up time of 1
year, as changes in the brain usually occur on a larger timescale
as changes on the EDSS score. However, cortical thinning as
estimated in our study has shown to occur already early in the
disease and was repeatedly detectable in 1-year intervals.40 On
the other side, the EDSS score is limited by its poor assessment
of upper limb function and cognitive decline, which is captured
better in other outcome measures like the MS Functional
Composite.41 However, despite its disadvantages, it is still the
most established score for evaluatingMS progression in clinical
trials. Finally, only 21% within the main study cohort and 14%
within the replication cohort had proven disability progression,
which is indeed in line with other 1-year progression data,42 but
resulted in a low absolute number of patients in our study and
hence reduced the power of the statistical analysis.

Our approach, combining GM and WM imaging and corre-
lating these with disease progression, fills the gap in our un-
derstanding between the functional consequences of structural
damage in the cerebellum and their predictive value in patients
with MS. Future work should evaluate and validate the long-
term (over years and decades) implications of our findings and
investigate the potential for a combined GM and WM bio-
marker with broad clinical utility in patients with MS. Identi-
fication of MS imaging phenotypes with predominant signs of
cerebellar dysfunction would further affect early therapeutic
strategies potentially pointing to prevent a worse prognosis.

Taken together, we have shown that distinct damage distri-
bution patterns in both GM and WM compartments, rather
than a broad random effect, characterize upcoming disability
progression in the first year after onset of MS. Lesion topology
strongly affects regional cortical integrity through inter-
connected structural networks and accurately predicts the
short-term progression of individual patient disability. Early
recognition and timely surveillance of lesion patterns at initial
stages of the disease might be clinically applicable to identify
patients at higher risk of cortical atrophy and worse clinical
outcome and who would therefore most benefit from prompt
therapeutic intervention.
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