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Abstract: Organic UV filters are a kind of emerging pollutants, which have been widely used
in personal care products (PCPs). This study evaluated the effects of benzophenone-4 (BP-4),
4-aminobenzoic acid (PABA), and 2-phenylbenzimidazole-5-sulfonic acid (PBSA) on the selected
indices of antioxidative responses in zebrafish (Danio rerio) liver. Zebrafish were exposed to two
different doses (i.e., 0.5 and 5 mg L−1) of semi-static water with three individual compounds. Liver
samples were collected on 7 and 14 days to analyze biochemical indicators, including superoxide
dismutase (SOD), glutathione S-transferase (GST), reduced glutathione (GSH), and malondialdehyde
(MDA). Oxidative stress occurred in zebrafish liver with significantly changed indicators during
the whole exposure period. Different experimental groups could induce or inhibit the activity of
antioxidant enzymes with varying degrees. With a prolonged exposure time and increased exposure
dose, the hepatic lipid peroxidation was also obviously observed. Moreover, the toxicity order of
three organic UV filters was analyzed using the integrated biomarker response (IBR) index and the
results indicate that exposure to PABA for 7 days at 0.5 mg L−1 and PBSA for 7 days at 5 mg L−1

induced the most severe oxidative stress in the liver of zebrafish.

Keywords: organic UV filters; oxidative stress; lipid peroxidation; integrated biomarker response;
zebrafish

1. Introduction

In recent years, the amount of ultraviolet radiation has been increasing with the destruction
of the ozone layer and its impact on human beings is well known. UV filters in both inorganic
and organic forms can separately scatter or absorb UV-A (320–400 nm) and UV-B (280–320 nm) to
protect hair and skin [1,2]. However, organic UV filters can be further metabolized in the body
when they are absorbed via the skin and finally accumulated in the organism [3]. Organic UV
filters are a kind of aromatic compounds widely used among personal care products (PCPs), such as
benzophenone-3 (BP-3), benzophenone-4 (BP-4), 4-aminobenzoic acid (PABA), 4-methylbenzylidene
camphor (4-MBC), 2-ethylhexyl 4-methoxycinnamate (EHMC), 2-phenylbenzimidazole-5-sulfonic
acid (PBSA), octocrylene (OC) [4,5]. The levels of UV filters in cosmetics are generally from 0.1% to
10% [6]. At present, only 14 types of organic UV filters are allowed in cosmetics in the United States,
and 26 of them are allowed in the European Union [5]. It has been reported that UV filters entered
the aquatic system via either direct input of recreational activities (e.g., washing and swimming) or
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indirect input from the wastewater treatment plants (WWTPs) [7]. Kaiser et al. [6] observed that
B-MDM, EHMC, and OCR were three main pollutants in sediments from the Rhine main area near
Frankfurt (Hesse, Germany), with their highest levels of 62.2, 6.8, and 642 µg kg−1, respectively.
Jurado et al. [8] reported the detection of a variety of benzophenones in groundwater of Barcelona and
the maximum concentrations were measured as 36.6 ng L−1 (BP-4), 19.4 ng L−1 (BP-3), and 19.2 ng L−1

(BP-1). Balmer et al. [9] reported that the concentration of 4-MBC in fish from Swiss midland lakes can
reach 166 ng g−1 on a lipid basis. Fent et al. [10] reported the chronic toxicity of organic UV filters,
including 4-MBC, EHMC, BP-3, and BP-4, to Daphnia magna, but found the reduced reproduction and
body length only at the highest concentration of 4-MBC (50 µg L−1).

Environmental contaminants can trigger the toxicity associated with oxidative stress. Oxygen
toxicity is a harmful effect caused by cytotoxic reactive oxygen species (ROS), produced during
metabolic transformation in organisms [11]. Under normal conditions, antioxidant defense system
of organisms can remove ROS and protect complex biological macromolecules from ROS attack.
However, when ROS levels induced by pollutants exceed the scavenging capability of antioxidant
defense system, the balance will be destroyed, therefore weakening the activity of antioxidant enzymes.
Organisms will suffer oxidative stress, resulting in lipid peroxidation (indicated by the significantly
enhanced level of malondialdehyde (MDA)), chain breakage, enzyme-protein gluing, and even cell
damage [12], death or canceration [13]. Antioxidant defense systems consist of a variety of enzymatic
(e.g., catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase
(GR), and glutathione S-transferase (GST)) and non-enzymatic antioxidants such as reduced glutathione
(GSH) [14,15].

Organic UV filters have been reported to be associated with the induction of oxidative stress in
aquatic organisms. Gao et al. [2] reported that BP-3 at 1.0 µg L−1 could cause a significant increase of
CAT activities and a significant reduction of GSH content of Tetrahymena thermophile. Campos et al. [16]
confirmed that exposure to OC at 0.23 and 18.23 mg Kg−1 could lead to an increase in GST levels
of Chironomus riparius while 4-MBC at 14.13 mg Kg−1 could cause reductions of CAT activity and
an increase of GST activity in Chironomus riparius. Quintaneiro et al. [17] found that GST activity in
zebrafish embryos (0–96 hpf) was elevated after exposure to 4-MBC at above 0.15 mg L−1. Owing to
the complexity of organic UV filters in aquatic environment, the induction of oxidative stress with the
significantly affected antioxidant defenses can be used to reflect the comprehensive pollution of PCPs
in aquatic environment and to evaluate the environmental risks of polluted water.

Zebrafish (Danio rerio) have been widely used as indicator organism in toxicological studies of
environmental pollutants [18,19]. The aim of this work was to (1) measure the levels of four oxidative
stress indicators (i.e., SOD, GST, GSH, and MDA) in zebrafish liver exposed to these three pollutants,
and (2) evaluate their toxicity order using the integrated biomarker response (IBR) index.

2. Materials and Methods

2.1. Reagents and Materials

The purity of three organic UV filters (i.e., BP-4, PABA, and PBSA, see their physico-chemical
properties in Table 1) was 99%. Sodium chloride, acetic acid, and ethanol (95%) are of analytical
grade and were purchased from Shanghai Aladdin Biochemical Technology Co., Ltd. (Aladdin,
Shanghai, China). Enzymatic activity assay kits for SOD, GST, GSH and MDA and protein assay kits
were purchased from Nanjing Jiancheng Institute of Bioengineering (Nanjing, China). Fish feed was
purchased from a local aquarium store in Wuhan, China. Ultrapure water used throughout the whole
experiment was produced via a Millipore Purification System (Millipore Elix 20, Millipore Corporation,
Billerica, MA, USA).

The instruments used in the experiment included a high-speed refrigeration centrifuge (5810/5810R,
Eppendorf, Hamburg, Germany), an electric homogenizer (F6/10, Jingxin Technology, Shanghai, China)
and an ultraviolet-visible spectrophotometer (UV-1100, Shanghai Mespectra, Shanghai, China).
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Table 1. Physico-chemical properties of three tested chemicals.

Compounds Chemical Structure Log Kow
a Solubility (g L−1) b
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2.2. Fish Culture and Experimental Design

Experimentation was performed in accordance with the laboratory animal welfare of China
and was approved by the animal ethics committee of Anhui University (No. 201916; effective date,
15 March 2019). The experiment was carried out according to the animal protection policy of Anhui
University and an approved animal use agreement. The zebrafish (2.0 ± 1.0 cm and 0.2 ± 0.1 g) used in
this study were purchased from the Institute of Hydrobiology of the Chinese Academy of Sciences
(Wuhan, Hubei). Zebrafish were domesticated in freshwater over 72 h of aeration for a week. Fish
were fed once a day according to 1% of the body weight. Only when the mortality rate is less than
1% during domestication can zebrafish be cultured in laboratory. Then, under natural light, zebrafish
were cultured in the circulation system at 25 ◦C with pH 7.5 before further experiments. Semi-static
mode was used for water change (every 24 h). Prior to normal experiments, the acute toxicity of
three compounds was assessed via water exposure and the results suggest that the lethality of these
compounds did not exceed 50%, even at the dose of 100 mg L−1. The doses of BP-4, PABA, and
PBSA were selected at 0.5 mg L−1 and 5 mg L−1, which are higher than their environmental levels
and the higher dose did not exceed 1/20 of LD50. At different exposure times, each ten zebrafish after
domestication as an experimental group were exposed to 10 L experimental solutions containing 0,
0.5, or 5 mg L−1 of BP-4, PABA, and PBSA, respectively. Three replicates were performed for each
experimental group. Fish were starved for 24 h prior to sampling to avoid prandial effects and to
prevent the deposition of feces in the course of the assay. Livers of three zebrafish were individually
taken out from 7 days and 14 days of exposure for determination of oxidative stress biomarkers
(i.e., SOD, GST, GSH, and MDA). The water conditions were maintained constant during the whole
exposure period (Temperature: 25 ± 1 ◦C; pH: 7.5 ± 0.1; Dissolved oxygen: 7.05 ± 0.43 mg CaCO3 L−1;
Conductivity: 521 ± 9.56 µS cm−1; Hardness: 123 ± 3.42 mg L−1). During the whole exposure, the
behaviors (i.e., lethargy, anorexia, erratic swimming, exophthalmia, corneal opacity, visible deformity,
and hemorrhage at the operculum, pectoral, and ventral areas) of zebrafish were observed for judging
the pathogenicity of fish. In short, the testing procedures for oxidative stress are illustrated in Figure 1.
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Figure 1. The testing procedures for oxidative stress evaluation of BP-4, PABA, and PBSA in
zebrafish liver.

2.3. Sample Preparation and Biochemical Analysis

The dissected liver was washed with 0.9% normal saline after zebrafish were frozen to death,
then dried with filter paper and weighed. The homogenate produced by Ultra Turrax homogenizer in
0.9% normal saline was centrifuged at 8000 r/min for 10 min at 4 ◦C. The clear supernatant extract was
analyzed for enzymatic activity.

All indicators were determined according to the manufacturer’s instructions. SOD activity was
determined based on the principle that SOD could inhibit the reactivity of O2

−• [20]. GST activity
was calculated by spectrophotometric determination of 1-chloro-2,4-dinitrobenzene (CDNB) and GSH
at 412 nm [21]. MDA content was tested by method of thiobarbituric acid (TBA) [22]. Under acidic
conditions (e.g., glacial acetic acid) and a high temperature (95 ◦C) for 40 min, the determination of
MDA contents in zebrafish liver involved in the reaction between MDA and TBA to form the red
complex that can be detected by a UV-VIS spectrophotometer at 523 nm. GSH levels were assayed
using the method described by Jollow et al. [23]. The protein concentration measured by the Bradford
method [24] was used to correct the activity of antioxidant enzymes.

2.4. Determination of the Concentrations of Three Compounds in Exposure Medium

The actual concentrations of BP-4, PABA, and PBSA in exposure water were determined using
a HPLC system (Waters e2695). The mobile phases included methanol (80%) and 0.25% ethanoic
acid in water (20%) with a flow rate of 1.0 mL/min. The detection wavelength was set as 310 nm for
all three compounds. The column (Agilent ZORBAX SB-C18, 150 × 4.6 mm, 5 µm) temperature was
25 ◦C, and the injection volume was 10 µL. In addition, for preparation of the calibration curve, these
compounds were dissolved in methanol at 100 mg L−1 as stock solutions. The stock solution was
diluted to different concentrations (0.25, 1, 5, 10, and 50 mg L−1) in a 10 mL volumetric flask. The R2

values of the calibration curves for BP-4, PABA, and PBSA were 0.998, 0.996, and 0.995, respectively.

2.5. Integrated Biomarker Response (IBR)

Multiple biomarkers were combined into a general-purpose IBR index, by which the toxicity of
three compounds can be directly reflected and proposed by Beliaeff et al. [25]. A brief calculation of
IBR is given here. The formula for standardized data (Y) is as follows:

Y = (X −m)/S (1)

where X = the value of each biomarker responses, m = the mean value of the biomarker, and S = the
standard deviation of the biomarker.
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Z was computed through Z = Y in the case of activation or Z = −Y in the case of inhibition.
The minimum (min) is provided by Y. Then, the score of a given biomarker (S) was obtained from
S = Z + |min|, where S ≥ 0 and |min| is the absolute value.

Star plots can visually show the outcomes of biomarkers. The area of star plots (Ai) was obtained
from the following equation:

β = Arctan(
Si+1sinα

Si − Si+1cosα
), (2)

Ai =
Si

2
sinβ(S icosβ+ Si sinβ), (3)

where α = 2π/n radians; Si = the obtained value of each biomarker, and Sn+1 = S1.
When only four biomarkers are selected, the area formula was simplified to

Ai = SiSi+1/2, (4)

The value of IBR was calculated as

IBR =
i∑

n−1

Ai, (5)

where n = the number of biomarkers, which plays a key role [26].

2.6. Statistical Analysis

The SPSS statistical package program (ver. 22.0, IBM, Chicago, IL, USA) for Win 7.0 was used
for a statistical analysis. Prior to a One-way ANOVA analysis, the standardization and homogeneity
of data were checked by Kolmogorov–Smirnov test and Levene test, respectively. One-way ANOVA
and Dunnett test were used to show difference between the control and the experimental treatments.
Duncan’s multiple range test was conducted to identify significant difference among groups. Significant
differences between groups could be illustrated by Duncan’s test. Significant difference was divided
into two levels, i.e., significant (p < 0.05) and extremely significant (p < 0.01). All the results are
represented as means ± S.D., and Origin 2017 (Origin Lab, OriginLab Corporation, Northampton, MA,
USA) was used for figure plotting.

3. Results

In the present study, no pathogenic or dead fish were observed during the whole domestication
and exposure (14 days). Indicators of oxidative stress included antioxidant enzymes (i.e., SOD and
GST) and non-enzyme antioxidant (i.e., GSH and MDA). Changes of these indicators among different
treatments are discussed in the next section. The actual levels of BP-4, PABA, and PBSA were monitored
throughout the exposure duration (Table 2). The results indicate no significant difference (within
10%) between the nominal (i.e., 0.5 and 5 mg L−1) and measured concentrations. Hence, the nominal
concentrations were used in the following discussions.

Table 2. Nominal and corresponding measured concentrations of the three compounds.

Compounds Nominal Concentration Measured Concentration
(mg L−1) (mg L−1) a

BP-4
0.5 0.47 ± 0.03
5 4.58 ± 0.23

PABA
0.5 0.46 ± 0.04
5 4.79 ± 0.66

PBSA
0.5 0.53 ± 0.06
5 5.38 ± 0.83

a Data are presented as mean ± S.D. and determined using HPLC.
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3.1. Antioxidant Enzyme Activities

The effect of BP-4, PABA, and PBSA with two different concentrations on the activity of SOD
and GST in zebrafish liver is shown in Figure 2. Compared with the control group after 7 days, SOD
activity in all experimental groups decreased significantly (p < 0.01) (Figure 2A) and the decreases for
the treatments by BP-4, PABA, and PBSA were 12.4%, 29.1%, 34.8% for 0.5 mg L−1 and 31.3%, 52.2%,
and 44.4% for 5.0 mg L−1, respectively. After 14 days of exposure, no significant change (p > 0.05) in
SOD activity was detected.
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Contrarily to the trend of SOD activity, GST activity increased significantly in all experimental
groups after 7 days of exposure (p < 0.01) (Figure 2B). With the extending exposure time, GST activity
in all experimental groups, except the group of BP-4 (5 mg L−1), returned to the level of the control
group. After 14 days of exposure, the group of BP-4 (5 mg L−1) showed a significant downward trend
and the change of GST activity became the greatest.

3.2. GSH Levels

During the whole exposure, the change of GSH levels in zebrafish liver is illustrated in Figure 2C.
After 7 days of exposure, GSH levels in low-dose groups (0.5 mg L−1) of BP-4 and PABA altered
significantly (p < 0.01), but no significant variation (p > 0.05) was observed in other groups. GSH levels
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were significantly induced in the group of BP-4 (0.5 mg L−1), but significantly inhibited in the group
of PABA (0.5 mg L−1) (p < 0.01). After 14 days of exposure, no significant change in GSH levels was
observed among the experimental groups.

3.3. MDA Contents

Figure 2D exhibits the change of MDA contents. After 7 days of exposure, MDA contents were
significantly decreased (p < 0.01) in the treatments, including BP-4 (5 mg L−1) and PABA (5 mg L−1),
but all the treatments of PBSA (0.5 and 5 mg L−1) were significantly increased (p < 0.01). After 14 days
of exposure, MDA contents were highly induced (p < 0.05 or p < 0.01) in all the treatments, particularly
for PABA (5 mg L−1) and PBSA (0.5 mg L−1) (p < 0.01), except for the groups of BP-4 (0.5 and 5 mg L−1).

3.4. IBR Index

In this study, the standardized values of four biomarkers determined on the 7th and 14th day of
exposure are presented in Figure 3A, and the calculated IBR values are shown in Figure 3B. The IBR
values for three chemicals-treated groups ranged from 1.24 for PBSA after 7 days (0.47 for 0.5 mg L−1

and 0.77 for 5 mg L−1) to 9.99 for PABA after 14 days (6.89 for 0.5 mg L−1 and 3.09 for 5 mg L−1).
This indicates that at the test concentration of 0.5 mg L−1, zebrafish liver was most severely affected by
oxidative damage in the following order: PABA-7 d > PBSA-7 d > PABA-14 d >BP-4-7 d > PBSA-14 d
> BP-4-14 d > Control group. Comparatively, at the exposure level of 5 mg L−1, zebrafish liver was
influenced by oxidative damage in the following order: PBSA-7 d > BP-4-7 d ≈ PABA-7 d > BP-4-14 d
> PBSA-14 d ≈ PABA-14 d > Control group.
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4. Discussion

It has been documented that organic UV filters could be released into the aquatic environment,
accumulated by organisms in the food chain, therefore posing potential risks on fertility and
reproduction of fish species [27,28]. According to the data obtained from this study, BP-4, PABA, and
PBSA could cause oxidative damage to fish liver under different exposure doses and durations.

4.1. Antioxidative Responses

Measuring the effects of pollutants on organisms by the changes of key enzymes in specific
reactions is a widely used method to study the status of oxidative stress [29]. SOD, as the first line of
defense against oxidative stress, can catalyze the mutation of O2

−• and convert it into H2O and H2O2.
GST, a phase II detoxification metabolic enzyme, can catalyze the binding of electrophilic groups of
xenobiotics with sulfydryl groups of GSH to increase its hydrophobicity. GST also has GPx activity,
which can inhibit lipid peroxidation [30]. In this experiment, compared with the control group, SOD
activity decreased significantly in all the groups after 7 days of exposure to three chemicals. Excessive
ROS production in fish after exposure, which exceeds the ability of SOD to remove ROS, was a cause of
the results [31]. Similar results were also reported by Li et al. [32], in which SOD activity in the liver of
Carassius auratus was inhibited after 14 days of exposure to highly fluorinated PFDDs (100 µmol kg−1).
Falfushynska et al. [33] found that the gibel carp Carassius auratus gibelio inhabiting both upstream
and downstream of the dam of Kasperivtci HPP in the West Ukraine showed a similar response in
the decrease of SOD activity. Aytekin et al. [34] reported an inhibited SOD activity in the liver of
Oreochromis niloticusin exposed to 0.6, 3.0, and 6.0 mg L−1 of Cu for 15 days. On the seventh day of
exposure, GST activity increased more remarkably (p < 0.01) in all the experimental groups than those
in controls, indicating that GST participated in the detoxification of these UV filters. Assessment of the
effect of endosulfan in different concentration ranges on clams also showed a similar detoxification
mechanism [30]. After 14 days of exposure, hepatic GST activity induced by BP-4 (5 mg L−1) increased
significantly, which might be due to the accumulation of pollutants. These results indicate that GST
was involved in the biotransformation of BP-4, and the complex of GST and BP-4 was produced to
detoxify the toxicants in zebrafish liver.

GSH can detoxify not only by acting as a substrate of GPx and GST, but also by directly binding to
ROS and electrophilic compounds [35,36]. Previous studies have clearly demonstrated that exposure
to organic pollutants resulted in the increase or decrease of GSH levels in organisms depending
on the exposure species, exposure duration and dose [37,38]. In this study, significant changes in
GSH levels were found in the low-dose group after 7 days of exposure. The significantly increased
GSH levels in the group of BP-4 (0.5 mg L−1) probably resulted from the enhanced hepatic uptake of
amino acid substrates and the activities of biosynthetic enzymes in order to protect the organisms
against oxidative damage [39]. The consumption of GSH due to the direct scavenging of ROS or
as a co-factor for GST/GPx activities may significantly decrease GSH levels in the group of PABA
(0.5 mg L−1) [40]. Moreover, the reaction of GSH during xenobiotic exposure might have been affected
by the dose saturation phenomenon. In other words, GSH levels may not change significantly when
the concentrations of test chemicals reach a certain dosage. This suggests that other detoxification
systems may be involved in the reaction, or GSH is not very sensitive to those chemicals [41], or GSH
contained in fish feed may have an enduring impact on the experiment during domestication [42].
In this study, the antioxidant responses were saturated with PABA group at 5 mg L−1 rather than
0.5 mg L−1. This suggests that GSH may be more sensitive to low doses and suitable for evaluating the
antioxidant status of three organic UV filters at low levels.

4.2. Estimation of Lipid Peroxidation

Xenobiotics induce zebrafish to produce a large number of oxygen free radicals and will combine
with unsaturated fatty acids in biofilm and cause lipid peroxidation [43]. MDA is a major degradation
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product of lipid hydroxides (LPO) and is often used as an effective biomarker for evaluating LPO
when aquatic species are exposed to pollutants [44]. The level of MDA indirectly reflects the severity
of free radical attack on body cells [45]. In the current study, MDA contents of PABA and PBSA at
different concentrations increased significantly after 14 days of exposure. With the extension of the
exposure time, the increased MDA content in zebrafish liver may indicate a significant time-dependent
effect [46,47]. It can therefore be inferred that exposure of xenobiotics at high concentrations resulted in
excessive generation of ROS in a short time. However, the ability of the antioxidant system to eliminate
ROS was limited, while the remaining oxygen free radicals attacked the polyunsaturated fatty acids
in biofilm, leading to the formation of lipid peroxides, i.e., lipid peroxidation, and also an increased
MDA content [45,48]. Previous studies have also confirmed the lipid peroxidation in zebrafish liver
exposed to triazophos, which was based on the significantly enhanced MDA content in the high-dose
groups and a longer exposure time [47]. In contrast, the growth trend of MDA content in PBSA-treated
groups was more obvious, indicating that PBSA was more likely to induce ROS production in fish
liver, resulting in damage on the cell membrane.

Moreover, after 14 days of exposure to PABA and PBSA, the increase was only recorded in hepatic
MDA contents. Similar results were also reported by Li et al. [49], in which they found that MDA
contents in the liver of Carassius auratus were increased significantly after 2 days of exposure of 10 µg
kg−1 2,2′,4-Tris-CDPS, while no significant change in antioxidant enzymes was detected. It was thus
speculated that no obvious relationship existed between MDA contents and other oxidative indicators
(SOD, GST and GSH) after exposure of PABA and PBSA. Yonar et al. [50] reported that SOD activity,
GST activity and MDA contents significantly increased after exposure of Common carp to chlorpyrifos
(0.080 mg L−1) for 14 days, while CAT activity and GPx activity significantly decreased. An increase in
MDA contents may indicate tissue damage caused by oxidative radicals, which might be reflected by
other indicators (e.g., CAT and GPx activity). The findings of this study reinforce that MDA contents
might be more suitable as the short-term toxicity index of PABA and PBSA. Moreover, no significant
difference could occur in oxidative indicators (SOD, GST and GSH) after 14 days of exposure compared
with the control group, depending on time and dose of application as well as the susceptibility of
exposed species. However, as a final product of lipid peroxidation, MDA can increase continually by
accumulating in fish tissues. MDA contents provide more direct evidence of the toxic process caused by
free radicals than other indicators, which can be further confirmed by the determination of ROS levels.

In summary, exposure to organic UV filters can not only induce the increase of oxidative stress
level in zebrafish liver, but also lead to lipid peroxidation. Antioxidants work together to remove ROS
and protect the body from damage of free radicals [38].

4.3. Comparison of the Oxidative Stress-Inducing Potentials of Three Organic UV Filters in Zebrafish Liver

The toxicity difference of BP-4, PABA, and PBSA was analyzed and compared by the IBR index,
which combines different biomarker signals to describe the “health status” of organisms. It is of great
environmental significance to estimate the toxic effects of pollutants with specific enzymes and to
use them as the biomarkers for early warning of water contamination [51]. Generally, the higher the
IBR value is, the greater the environmental pressure will be. The IBR data in this study showed that
PABA-7 d at 0.5 mg L−1 and PBSA-7d at 5 mg L−1 can cause the more severe damages in zebrafish
liver. The IBR values decreased gradually with the prolonged exposure time, indicating that zebrafish
liver could weaken the oxidative damage caused by these chemicals via its self-regulation mechanism.
In the later stage of pollutant exposure, zebrafish liver could effectively eliminate the harmful free
radicals produced during interactions of UV filters and zebrafish liver. In addition, it is worth noting
that the stress of PABA on zebrafish liver in low-dose group is more serious than that of the other two
compounds, which needs to be given great health concern.
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4.4. Limitations of the Present Study

This study explored the effect of exposure to organic UV filters on hepatic antioxidant response
in zebrafish. However, some limitations should also be considered. First, the doses of the three test
compounds were higher than their environmental levels, and the dose-dependent effect was not
observed due to the narrow concentration ranges. Secondly, though the present study demonstrates
that organic UV filters (BP-4, PABA and PBSA) may affect the antioxidant system of zebrafish, the
molecular mechanisms of oxidative stress need to be further clarified. Finally, determination of the
concentrations of organic UV filters in zebrafish liver will facilitate understanding on the correlation of
their bioaccumulation and hepatic antioxidant response.

5. Conclusions

In conclusion, the present study demonstrates that BP-4, PABA, and PBSA (0.5–5 mg L−1) could
cause significant changes in SOD, GST, GSH, and MDA in zebrafish liver after exposure from 7 to
14 days. These phenomena indicate that exposure to these organic UV filters could increase ROS
production and cause oxidative damage in fish liver. With the increase of exposure time and dose,
MDA contents increased significantly, suggesting the presence of lipid peroxidation. The calculated
IBR values suggested that exposure to PABA for 7 days at 0.5 mg L−1 and PBSA for 7 days at 5 mg L−1

had the most severe toxicity on the hepatic antioxidative defenses in zebrafish liver. In short, the data
obtained in this study provide a scientific basis for the ecological risk assessment of different organic
UV filters and their toxicological mechanisms are the future research direction needing more attention.
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