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Summary 

 

Organisms continually tune their perceptual systems to the features they encounter in their 

environment1–3. We have studied how ongoing experience reorganizes the synaptic connectivity 

of neurons in the olfactory (piriform) cortex of the mouse. We developed an approach to measure 

synaptic connectivity in vivo, training a deep convolutional network to reliably identify 

monosynaptic connections from the spike-time cross-correlograms of 4.4 million single-unit pairs. 

This revealed that excitatory piriform neurons with similar odor tuning are more likely to be 

connected. We asked whether experience enhances this like-to-like connectivity but found that it 

was unaffected by odor exposure. Experience did, however, alter the logic of interneuron 

connectivity. Following repeated encounters with a set of odorants, inhibitory neurons that 

responded differentially to these stimuli exhibited a high degree of both incoming and outgoing 

synaptic connections within the cortical network. This reorganization depended only on the odor 

tuning of the inhibitory interneuron and not on the tuning of its pre- or postsynaptic partners. A 

computational model of this reorganized connectivity predicts that it increases the dimensionality 

of the entire network’s responses to familiar stimuli, thereby enhancing their discriminability. We 

confirmed that this network-level property is present in physiological measurements, which 

showed increased dimensionality and separability of the evoked responses to familiar versus novel 

odorants. Thus, a simple, non-Hebbian reorganization of interneuron connectivity may selectively 

enhance an organism’s discrimination of the features of its environment.  
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Main text 

 

 Olfactory perception is initiated by the binding of odorants to receptors on primary sensory 

neurons in the olfactory epithelium4, which in turn send axonal projections to glomeruli in the 

olfactory bulb5. Olfactory information is then conveyed to the olfactory (piriform) cortex by the 

bulb’s mitral and tufted cells6. In the anterior piriform synaptic connections between pyramidal 

neurons are highly distributed: the vast majority of inputs to a neuron are from distal partners7–9, 

resulting in a network where connection probability is low (~0.1%) even locally6,8. This sparse 

connectivity limits the probability that a pair of piriform neurons is driven by a common 

presynaptic partner, a confound that has historically hindered inference of monosynaptic 

connections from neuronal spiking. Thus, the piriform presents an opportunity to observe both the 

spiking activity of a population of neurons and their synaptic connectivity in an awake, behaving 

mouse. We have studied the relationship between piriform activity and connectivity and how this 

relationship is modified by experience. 

 

Reliable inference of monosynaptic connections 

 

We performed recordings in the anterior piriform cortex of awake, head-fixed mice using 

a 4-shank Neuropixels silicon probe11. The cell-dense layer in the anterior-most portion of the 

cortex folds over itself (Extended Data Fig. 1a), spanning a substantial fraction of our probe’s 

electrode sites. This anatomical feature permitted us to obtain 783 ± 128 single units per recording 

(mean ± s.d.; range, 642 - 1,007; N = 7 mice), the vast majority of which were located in this single 

brain region. Given the sparse connectivity of the piriform network, such a high yield was critical 

to identify a sufficient number of connected pairs. 
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We inferred monosynaptic connectivity from spike-time cross correlograms12 computed 

using the spontaneous activity of 4,401,362 single-unit pairs (Fig. 1a,b). We developed a deep 

convolutional network (Dyad, Extended Data Fig. 1c) to identify those pairs whose correlograms 

had a peak consistent with an excitatory monosynaptic interaction: a sharp rise at short latency 

followed by a slower decay13–20 (Fig. 1a,c, Extended Data Fig. 1b). Given the inherent difficulty 

in distinguishing synaptically connected pairs from pairs receiving common drive from a third 

neuron12,13,18,21, we validated Dyad using a previously published ground truth dataset22 with 

positively identified monosynaptic excitatory connections in vivo (see Methods). We computed 

the proportion of inferred connections that corresponded to true synapses (precision) and the 

proportion of inferred connections over the total number of true synapses (recall). In this dataset 

Dyad identified excitatory synapses without error up to a recall of 47% (Fig. 1d), perfectly 

recovering approximately half of the synapses. This indicates that connections inferred by Dyad 

very likely reflect true synaptic contacts. We note, however, that this ground truth dataset contains 

only thirty connected pairs.  

 

We therefore next evaluated the ability of Dyad to identify excitatory monosynaptic 

connections from simulated spike times produced by a network consisting of recurrently connected 

leaky integrate and fire neurons (Extended Data Fig. 1d). We found that Dyad’s precision exceeds 

0.99 up to a recall of 0.63 for a sparsely connected network (Fig. 1d). Thus Dyad recovered more 

than two thirds of the network’s synapses with near-perfect accuracy and outperformed state-of-

the-art approaches21–23 for inferring synaptic connectivity from spike trains (Fig. 1d). Both 

precision and recall increased with the number of spikes in our simulations, emphasizing the 
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importance of long recordings (Extended Data Fig. 1f).  Consistent with prior theoretical 

work24,25, we observed that precision also improved with recurrent network sparseness (Extended 

Data Fig. 1e, g). As connection probability falls, so does the prevalence of common inputs to a 

pair of neurons as well as polysynaptic chains, both of which introduce correlations in spiking that 

confound estimation of monosynaptic connectivity21,24–26. Thus, the piriform is likely to support 

reliable synapse inference owing to its exceptionally sparse recurrent connectivity. 

 

We employed Dyad to detect putative excitatory monosynaptic connections in our piriform 

recordings and obtained 2,946 connected pairs, or 0.067% of all pairs (Fig. 1b,e,f). This inferred 

connection probability is lower than anatomical estimates (~0.1%), in agreement with our 

simulations and analysis of ground-truth data in which Dyad is conservative and recovered only a 

fraction of all connections at high precision. We devised three independent analyses to estimate 

the rate of error in our piriform recordings (see Extended Data Fig. 1h,j,k). In the first analysis, 

we counted how often Dyad spuriously inferred an excitatory connection arising from a likely 

inhibitory neuron (see Methods). We found that Dyad identified only 2 such pairs out of 148,689 

total possible interactions (Extended Data Fig. 1h), indicating a false positive rate of 

approximately 1.3 x 10-5 and an estimated precision ~98% (see Methods). In the second analysis 

we determined the likelihood of finding correlograms with a sharp, asymmetric peak whose onset 

preceded rather than followed the zero time lag. Such a peak would necessarily be caused by 

common input rather than the spiking of the presynaptic neuron. We found that these spurious 

peaks occurred with a false-positive rate of 8.1 x 10-6 (Extended Data Fig. 1j, see Methods), 

providing a second, independent estimate of our precision >98%. Finally, we asked whether the 

connections we inferred reflected poly- rather than mono-synaptic input.  We studied all sets of 
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three single units in our data that Dyad identified as connected in a disynaptic chain. We then asked 

how often Dyad inferred a synaptic connection between the first and last single unit in these 

triplets. A detection rate greater than that expected by chance would imply spurious inferred 

connections due to disynaptic chains. However, Dyad identified such connections at a rate 

indistinguishable from chance when controlling for the connectivity statistics of the network (in-

degree and out-degree) (Extended Data Fig. 1k). Therefore, the connectivity we infer 

overwhelmingly reflects mono- rather than polysynaptic interactions. We note that weak 

connections, or connections onto postsynaptic neurons that have low input resistance or low firing 

rates are those most likely to evade our detection (Extended Data Fig. 1i). Nonetheless, we 

observe a broad distribution of efficacies indicating that our method can recover connections that 

span a wide range of strengths (Extended Data Fig. 1l). 

 

We also developed a similar approach for inferring inhibitory interactions. We trained a 

second deep neural network to find pairs of single units whose correlograms exhibit a sharp, 

downward peak at short latency, consistent with the presence of an inhibitory synapse12,13,18,19,22,27 

(Fig. 1c,e,f). We validated this approach using strategies similar to those applied above, although 

note that there is no comparable ground truth data set for inhibitory connections. We found that 

this second neural network identified inhibitory connections with a precision > 99% when 

considering only fast-spiking single units (Extended Data Fig. 1h,j, see Methods). However, 

validation of this method on recurrent network simulations showed a lower recall than our 

inference of excitatory connectivity (precision > 99% up to recall of ~ 55%, Extended Data Fig. 

1g, see Methods). 
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Finally, we asked whether Dyad successfully recovers key known properties of our circuit. 

We segregated the population into putative inhibitory neurons (fast-spiking single units, “I 

neurons”), and putative excitatory neurons (regular-spiking single units, “E neurons”) (Extended 

Data Fig. 1h, see Methods). First, we considered the sign of inferred connections and confirmed 

that I neurons tend to inhibit, and E neurons tend to excite their postsynaptic partners27 (Extended 

Data Fig. 1h). Second, we assessed whether the latency to peak in excitatory correlograms (1.8 ± 

0.5 ms, mean ± s.d.) scales with the distance between the pair (Fig. 1g, Extended Data Fig. 1m). 

The slope of this relationship yielded an estimate of axon conduction velocity of 1.2 ± 0.1 m/s 

(mean ± s.e.m., Pearson’s r = 0.26, R2 = 0.068, N = 2,954 pairs, Fig. 1g), in agreement with direct 

measurements of conduction velocity in this cortex28. Third, we found that I neurons that receive 

many connections also tend to form many outputs (Pearson’s r = 0.62, P < 10-10, N = 189 neurons, 

Extended Data Fig. 1n). We confirmed this correlation of inputs and outputs by quantifying the 

connectivity of basket cells in a volume electron microscopy reconstruction29 (Extended Data 

Fig. 1o). From the morphology and connectivity of these basket cells30,31, they most likely 

correspond to parvalbumin-positive fast-spiking inhibitory interneurons. We found a strong 

correlation between the number of excitatory inputs onto a basket cell and the number of inhibitory 

outputs from that cell onto excitatory neurons (Pearson’s r = 0.79, P = 4.49 x 10-13, N = 57 neurons 

from one mouse). Thus, our method for synapse inference recovers basic biophysical and 

anatomical properties. We conclude that Dyad detects excitatory and inhibitory monosynaptic 

connections with high confidence but recovers only a subset of synapses between the recorded 

neurons. 

  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 16, 2025. ; https://doi.org/10.1101/2025.01.16.633450doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.16.633450
http://creativecommons.org/licenses/by-nc/4.0/


Fink et al., Experience-dependent reorganization of inhibitory neuron synaptic connectivity 
 

7 

Like-to-like connectivity in piriform 

 

We next employed Dyad to examine the relationship between odor tuning and synaptic 

connectivity. We recorded piriform activity in response to eight chemically and perceptually 

distinct odorants of neutral valence (Fig. 2a, Extended Data Fig. 2). We presented each odorant 

25 times each to awake, head-fixed mice that had not received any prior experience with the 

stimuli. Consistent with prior reports, we observed odor-selective evoked responses, including in 

I neurons32–37 (Extended Data Fig. 2p-x). We inferred connectivity from stretches of spontaneous 

activity and measured odor responses during separate portions of the recording. This revealed a 

like-to-like connectivity motif: E-E neuron pairs that responded similarly to the panel of odorant 

stimuli exhibited enriched connectivity (Fig. 2b, P = 2.8 x 10-10, null models described in figure 

legend). The high precision with which Dyad recovers monosynaptic connectivity implies that this 

like-to-like motif is unlikely to reflect common input from the olfactory bulb. This organization 

resembles reports of superficial pyramidal neuron connectivity in the visual cortex of the mouse38–

40. In the piriform this basic pattern additionally holds for E-to-I and I-to-E pairs (Extended Data 

Fig. 3b,c, P < 0.001 for all panels). This stands in contrast to the visual cortex, where like-to-like 

connectivity between pyramidal and parvalbumin-positive inhibitory interneurons has been 

reported for connection strength but not connection probability41. This difference might be 

explained in part by our method’s bias towards strong synapses. 

 

It has been proposed that like-to-like connectivity is assembled by an experience-

dependent, Hebbian process42–44. However, to our knowledge the odors we employed were novel 

to the animals. We therefore asked whether this like-to-like connectivity may have emerged from 
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spatial organization in the piriform network. Indeed, connection probability was higher for nearby 

neurons, falling off steeply over the first 200 μm (Extended Data Fig. 3d–f). Above 200 μm, 

connection probability was approximately three-fold lower, exhibiting the slow spatial decay 

consistent with previous reports at these distances8,9. We also observed a weak dependence of 

response similarity on distance (Extended Data Fig. 3g,h). We reasoned that like-to-like 

connectivity might emerge without experience if nearby neurons are both more likely to be 

connected to each other and more similar in their tuning. However, a model in which connectivity 

was shuffled while preserving these distance dependencies failed to reproduce the data (Extended 

Data Fig. 3i–k). We conclude that the spatial structure we detect is not sufficient to explain like-

to-like connectivity in the piriform. 

 

Experience reorganizes piriform connectivity 

 

We therefore considered the hypothesis that like-to-like connectivity arises from 

experience-dependent plasticity42,43 and asked whether extensive exposure to odorants can further 

increase the probability of connections between similarly tuned neurons. This would be consistent 

with a Hebbian mechanism enhancing synaptic coupling between correlated neurons that are 

repeatedly co-activated by sensory stimuli44. Mice were afforded extensive experience with four 

neutral odorants over a period of two weeks: four odor ports were placed in the walls of the 

animals’ home cages such that they could sample the stimuli at will45 (Fig. 2c, Extended Data 

Fig. 4a). The animals had ad libitum access to food and water, and the stimuli were not explicitly 

reinforced. On average, the mice volitionally sampled each odor more than a thousand times over 

this two-week period (6,770 ± 3,354 samples, mean ± s.d.; range, 1,209 - 9,989 samples, Extended 
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Data Fig. 4a, center). We then recorded from these mice (“experienced animals”) and presented 

eight odors: the four familiar odors they had sampled over the previous two weeks and four novel 

odors. We performed the same analysis on data from the experienced animals as we had previously 

for the naïve cohort. Once again, we found that, for novel stimuli, connection probability scaled 

with response similarity. However, we did not detect any enhancement of this relationship for the 

familiar odors, as would have been expected from a Hebbian process (Fig. 2d, Extended Data 

Fig. 4b–d). We note that our conclusions are limited by the sensitivity of our assay: we do not 

detect all of the synaptic connections between the recorded neurons; and experience may alter 

synaptic weights in a way that we cannot observe since Dyad reports binary connections not 

strengths. It is also possible that the formation of Hebbian ensembles in the piriform requires odors 

to be paired with reinforcement46. However, our results demonstrate that regular experience with 

odorants does not measurably accentuate like-to-like connectivity in the adult piriform. 

 

We next examined whether experience alters the relationship between connectivity and 

response properties other than co-tuning. Specifically, we considered the properties of individual 

neurons rather than the relationship between pairs of neurons. We asked whether connection 

counts between E-to-E and E-to-I pairs covary with differences in evoked response amplitude, 

trial-to-trial variability, and odor tuning for novel versus familiar sets of stimuli. After correcting 

for multiple comparisons, we found only two significant effects. First, we found a weak (Pearson’s 

r = 0.06) relationship between the coefficient of variation of the odor response of E neurons across 

trials and their number of outgoing connections (Extended Data Fig. 5f). We also found a strong 

effect of experience on the relationship between the tuning of an I neuron and its connectivity, 

which we explore further (Fig. 3, Extended Data Fig. 5). 
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In experienced animals, I neurons that responded more differentially across familiar odors 

also received more excitatory inputs and produced more inhibitory outputs (Fig. 3a, Extended 

Data Fig. 5): we found a strong correlation between an I neuron’s selectivity across familiar 

stimuli and its number of inputs (in-degree, Fig 3b, top) and outputs (out-degree, Fig 3b, bottom). 

This pattern held when considering the sum of in- and out-degrees for each I neuron (Extended 

Data Fig. 5c, right), consistent with our observation that the number of inputs (in-degree) and 

outputs (out-degree) are correlated in I neurons (Extended Data Fig. 1n). Moreover, high-degree 

I neurons (normalized degree > 0.015) were more differentially modulated by familiar odors than 

low-degree I neurons (normalized degree < 0.015) (Extended Data Fig. 5d). Thus, in experienced 

mice, the I neurons most differentially responsive across odors in the animal’s recent history also 

tend to be densely interconnected in the piriform network. 

 

We asked whether this organization is experience dependent by performing the same 

analyses in our cohort of naïve mice, who had no prior experience with the “familiar” and “novel” 

odor sets. Each of the dependencies we observed in experienced mice differed significantly from 

those found in naïve animals, where in all cases we found no correlation between degree and odor 

selectivity (Extended Data Fig. 5c, bottom), including when we considered all possible ways to 

divide the 8 novel odors in two sets (Extended Data Fig. 5e). Moreover, in naïve animals the 

selectivity of both high- and low-degree I neurons did not differ significantly (Extended Data Fig. 

5d). Therefore, the relationship we observe between the connectivity and the tuning of I neurons 

depends on experience. 
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Notably, we detected no difference between naïve and experienced animals in the 

distributions of both degree and of odor selectivity across I neurons (Extended Data Fig. 6). 

Therefore, any gains in connectivity or selectivity in a subset of I neurons must be balanced by a 

proportional loss in other cells. These results suggest that in naïve animals, highly connected I 

neurons may be highly selective across odors in the animals’ home environment, rather than the 

novel stimuli we administered during our recordings. 

 

These population phenomena are robust (Extended Data Fig. 7). They were observed in 

each individual mouse (Extended Data Fig. 7a) and were only weakly sensitive to the choice of 

quantification window (Extended Data Fig. 7b) and synapse inference inclusion threshold 

(Extended Data Fig. 7e). We considered the possible confound that experience increases the 

excitability of selective I neurons, enhancing the detection of afferent synapses and consequently 

producing a spurious dependence of in-degree on selectivity. However, the firing rates of I neurons 

did not covary with selectivity (Extended Data Fig. 7c). We found only negligible effects of 

experience on the basic response properties of the piriform, including evoked firing rate, lifetime 

sparseness, population sparseness, and the sharpness of tuning (Extended Data Fig. 8). We also 

did not observe an effect of experience on Layer 1 feedforward interneurons or on likely 

Somatostatin-positive feedback interneurons but note that these were rare in our recordings (8 and 

15 single units, respectively, Extended Data Fig. 7d). Finally, we determined that these findings 

are unlikely to reflect spike sorting contamination for nearby neurons, as all of the results (Fig 2 

and Fig. 3) held when considering only connections between neurons recorded on different probe 

shanks (Extended Data Fig. 9). 
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Interestingly, for E/I pairs, neither the pre- nor the postsynaptic E neurons’ selectivity 

covaried with connection probability (Extended Data Fig. 7f,g). Thus, the experience-dependent 

reorganization of the network is a sole function of the I neuron’s selectivity and does not appear 

to obey Hebbian principles. This reordering of the relationship between connectivity and tuning 

may reflect an experience-dependent plasticity rule under which the selectivity of an I neuron to 

the odors in the environment determines the number of its inputs and outputs. Alternatively, 

experience may not alter the wiring of I neurons; rather the most densely connected ones may 

become more differentially responsive to the experienced odors. 

 

Effect of inhibitory wiring on network function 

 

Finally, we examined how this dependence between I neuron connectivity and odor 

selectivity influences the function of the piriform network. We developed a computational model 

consisting of a population of inhibitory neurons whose number of outgoing connections onto 

excitatory neurons spans a wide range (Fig. 4a). We compared the function of two networks: a 

naïve network with randomly initialized connectivity and an experienced network in which 

inhibitory neurons that were more differentially responsive to a set of “familiar” stimuli had a 

greater number of outgoing connections. Simulations of the experienced network revealed that the 

responses of excitatory neurons to the familiar stimuli were more discriminable than their 

responses to “novel” stimuli (Fig. 4b, Extended Data Fig. 10a). This effect was attributable to 

inhibitory currents onto excitatory neurons having higher variance across the set of familiar odors 

compared to the variance across the novel odors (Extended Data Fig. 10b). Larger current 

variance across a set of odors reduced the chance of two odors eliciting correlated responses, 
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thereby increasing the dimensionality of the model excitatory neuron responses (Fig. 4c). Higher 

dimensionality in turn increased the discriminability of different odorant stimuli47. None of these 

effects were observed in the naïve network (Fig. 4c, Extended Data Fig. 10a,b). 

 

We asked whether the phenomena predicted by the model are observed in our recordings. 

We estimated the variance of odor-evoked inhibitory currents onto E neurons based on our 

measurements of the tuning of presynaptic I neurons and of the connectivity of I to E neurons (see 

Methods). Consistent with model predictions, in experienced animals the estimated variance of 

inhibitory currents was higher across familiar than across novel stimuli (Extended Data Fig. 10d), 

and the dimensionality of population responses was higher for familiar than for novel stimuli (Fig. 

4e). Accordingly, piriform responses to familiar odors were more discriminable in each 

experienced animal (Fig. 4d, bottom, Extended Data Fig. 10c, top). Moreover, discriminability 

covaried with the amount of experience (Extended Data Fig. 10e). None of these effects were 

observed in the naïve cohort (Fig. 4d, top, and e; Extended Data Fig. 10c, bottom, and d, left). 

Together, these results indicate that the connectivity we measured is sufficient to drive the effects 

observed in the model, consistent with the hypothesis that feedback inhibition decorrelates 

responses to odors37. This suggests that the experience-dependent rewiring of I neurons we have 

observed leads to improved discriminability of odors that the animal has encountered in its recent 

history. 
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Discussion 

 

We identified monosynaptically connected pairs of neurons in the piriform cortex and 

examined the relationship between connectivity and odor-evoked neural activity. The sparseness 

of the piriform network minimizes the confounds that have historically hindered efforts to reliably 

infer monosynaptic connectivity from spikes21,24–26. However, such sparse connectivity required 

that we obtain hundreds of simultaneously recorded neurons in a single network. This was made 

possible by the use of a next-generation silicon probe11 and the cytoarchitecture of the anterior 

piriform cortex, which yielded millions of recorded pairs. 

 

Our analysis of connected pairs revealed that neurons with similar tuning to novel odors 

were more likely to be connected, raising the question of how this like-to-like connectivity 

emerges. Experience has been hypothesized to increase connections between similarly tuned 

neurons42–44. However, we found no evidence that repeated encounters with odors enhance like-

to-like connectivity in the piriform. In the visual cortex, like-to-like connectivity is refined by 

visual experience during development43,48. It therefore remains possible that like-to-like 

connectivity in the piriform is established during a critical period during development. 

Alternatively, this like-to-like connectivity motif may not arise from experience and instead may 

reflect predetermined network constraints49 that we are not observing. 

 

Experience nonetheless leaves a lasting effect on the piriform network. We discovered that 

the numbers of inputs to, and outputs from, inhibitory interneurons scale with how differentially 

they respond to odorant stimuli in the animal’s environment. How does this relationship between 

interneuron selectivity and connectivity emerge in the piriform network upon odor experience? 
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In one model, the subset of inhibitory neurons that happen to exhibit differential responses 

to recently encountered odors increases their numbers of inputs and outputs. This would imply the 

existence of an experience-dependent plasticity mechanism that depends only on the inhibitory 

neuron’s stimulus selectivity, rather than on the relationship between the activity of the inhibitory 

neuron and that of its excitatory pre- or postsynaptic partners. Such a cell-intrinsic, non-Hebbian 

learning rule would produce a network in which highly selective inhibitory neurons are more 

densely connected than other interneurons. These interneurons would need to maintain an estimate 

of how differentially they respond to recent stimuli. Differential responses would drive the 

formation or strengthening of both incoming and outgoing synaptic connections50,51, while uniform 

responses would result in a reduction in connectivity. We speculate that a mechanism for such a 

rule could include a factor whose concentration depends on this variance in the inhibitory neuron’s 

responses across stimuli, and whose presence determines the growth and retraction of axon and 

dendrite. 

 

In an alternate model, the number of inputs and outputs of inhibitory neurons do not vary 

with odor experience. The reorganization we have observed may instead reflect changes in the 

selectivity of inhibitory interneurons rather than changes in their connectivity. Under this model 

experience results in the development of differential responses to familiar odors among those 

inhibitory neurons that are already highly interconnected. However, I neuron selectivity was no 

different between naïve and experienced animals and so any increases in selectivity among some 

neurons would have to be counterbalanced by proportional reductions in the selectivity of others. 

Ultimately, distinguishing between these two alternatives will require longitudinal observation of 

synaptic connectivity over the course of experience. 
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Experience enhances an organism’s ability to discriminate the sensory features of its 

environment1–3. Prior reports have shown that stimulus responses decorrelate with experience52–

59. However, Hebbian plasticity, which is based on positive correlations between pre- and post-

synaptic excitatory neuron firing rates, tends to correlate a network’s responses60,61, thus reducing 

discriminability. We find evidence of a process that produces the opposite effect: decorrelation 

and improved discriminability of commonly encountered stimuli. An experience-dependent 

reorganization of the network, in which the most selective inhibitory interneurons are also the most 

densely connected, may confer to the organism the capacity to better discriminate, recognize, and 

respond to the features of its environment.  
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Methods Summary 

 

Procedures performed in this study were conducted according to US National Institutes of 

Health guidelines for animal research and were approved by the Institutional Animal Care and Use 

Committee of Columbia University. See Full Methods. 
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Figure 1 | Reliable inference of monosynaptic connections in the piriform cortex 

a, Spike waveforms of a pair of cells (black and red traces, top), aligned to the spike times of cell 

1. The increased spiking probability of cell 2 after a cell 1 spike is captured in the spike-time cross-

correlogram (CCG) of the pair (bottom), which measures the probability that cell 2 fires an action 

potential at a range of time lags relative to cell 1. For a synaptically connected pair of neurons, a 

presynaptic spike produces an asymmetric peak on the causal side of the correlogram, whose shape 

reflects the underlying excitatory postsynaptic potential: a sharp rise at short latency followed by 

a slower decay to baseline13–20. Precise measurement of this shape requires several hours of 

continuously recorded spike trains (6.1 ± 0.9 hours, mean ± s.d., min = 5.3 hours, max = 7.1 hours). 

b, Summary of the number of recorded single units and inferred connections (and corresponding 

connection probabilities). E to E: 1,297 connected out of 4,107,263 total pairs from 7 recordings; 

E to I: 1,649 connected out of 144,056 pairs; I to E: 1,162 connected out of 144,056 pairs; I to I: 8 

connected out of 5,798 pairs. 

c, Examples CCGs for excitatory (top) and inhibitory (bottom) monosynaptic connections 

identified by Dyad. The two rightmost examples correspond to reciprocally connected E-I pairs.  

d, Dyad validation. Top: Precision-recall curve on an in vivo ground-truth dataset with positively 

identified excitatory synaptic connections22. Bottom: Precision-recall curve on simulated ground-

truth data (see Methods) for Dyad (blue) and previously published connectivity inference 

methods: English22 (orange, peak-detection algorithm); Das21 (green, GLM-based inference); 

Endo23 (red, deep learning approach). These results are for a simulated network with 2.5% 

connection probability. 

e, Estimated single unit locations (black circles) and inferred connectivity excitatory (red lines, 

top) or inhibitory (blue lines, bottom) for one example dataset. The contour of the circle indicates 

whether the single unit was classified as an E neuron (red) or an I neuron (blue). 
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f, Heatmap of normalized CCGs for all pairs connected by an excitatory (top) or inhibitory 

(bottom) synapse identified by Dyad. CCGs were normalized for visualization purposes. 

g, Peak latency as a function of distance between the pair. Black markers: mean latency ± 95% 

confidence intervals at 10 equally-spaced bins of distance; red dashed line: linear fit to all the 

connected pairs (i.e. prior to binning). r, P: Pearson’s correlation coefficient and corresponding P-

value. (N = 2,946 pairs) The axon conduction velocity v was estimated from the slope of the red 

dashed line.  
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Figure 2 | Like-to-like connectivity in the piriform is not enhanced by experience 

a, Recording session timeline. The first odor stimulus (t = 0) is presented ~2 hours after the start 

of the recording. Eight odorant stimuli were presented in 25 blocks, in pseudorandom order in each 

block. Each odor was delivered for 4 seconds, with 1 minute inter-stimulus interval. After the last 

odor stimulus, spontaneous activity was recorded for additional ~2 hours. 

b, Left: probability of E-to-E connections as a function of signal correlation (see Methods). Black 

markers at the top show the signal correlation of connected pairs, jittered among the y-axis for 

visualization purposes. The heatmap at the bottom shows the density of unconnected pairs. Dotted 

line: logistic regression fit; shaded area: 95% confidence interval. Gray dashed line and shaded 

area: logistic regression on a null model obtained by shuffling odor stimulus identities 

independently for each E neuron. This null model was used to compute both P-values in this panel. 

Right: mean connection probability and 95% confidence intervals (Clopper-Pearson) of pairs in 

the lower and top quartiles of signal correlation (148 and 263 connected pairs in the lower and top 

quartile respectively, out of 577,376 pairs). 

c, Odor familiarization paradigm45. Four odor ports (orange) were inserted into the wall of a 

modified homecage. Animals underwent this familiarization protocol for approximately two 

weeks, then recorded from as in a. The panel of odorant stimuli consisted of the four familiar 

odorants that were administered in the home cage along with four novel stimuli. 

d, Same as b, but for experienced animals and where signal correlations were computed either 

across novel (blue) or familiar (orange) stimuli. Significance was tested with respect to a null 

model in which we constructed pseudo-novel and pseudo-familiar odor sets, each containing two 

random odors from the novel set and two from the familiar set.  
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Figure 3 | Effect of experience on the connectivity of inhibitory interneurons 

a, Example I neuron in an experienced animal. Top: evoked response amplitudes for the 4 familiar 

and 4 novel odors (trial average ± s.e.m.); bottom: connectivity (black circles: estimated unit 

locations; inferred excitatory inputs: red arrows; inferred inhibitory outputs: blue arrows; blue 

circles: estimated position of example I neuron). 

b, In degree (top) and out degree (bottom) of I neurons in experienced animals as a function of the 

I neurons’ index (SI). Black markers: the means and 95% confidence intervals in equally-spaced 

bins of SI. Blue dotted line: linear fit to the individual data points (i.e. prior to binning); blue 

shaded region: 95% confidence interval on this fit. P-values were obtained with respect to a null 

model in which S.I. and in/out degrees were independently shuffled. 𝑆. 𝐼. = 	 !!"!"	
!!$!"

 where 𝜎% , 𝜎& 

are the standard deviation of the trial-averaged odor response across novel or familiar odors, 

respectively (see Methods). 
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Figure 4 | Effect of inhibitory wiring on network function 

a, Architecture of the computational model, with inhibitory neurons (blue) projecting to excitatory 

neurons (red). In the experienced model, inhibitory neurons selective to familiar odors form more 

connections than neurons selective to novel odorant stimuli. 

b, Fraction of errors of a Hebbian linear classifier trained to perform odor discrimination based on 

the responses of excitatory neurons in the model (see Methods), plotted against the number of 

neurons considered. The curves are averaged across 100 model realizations, 10 cross-validation 

folds and separately across novel (blue) and familiar (orange) odorant stimuli. 

c, Percent difference in dimensionality between the familiar and novel odor responses in the 

experienced and naïve models (see Methods). Error bars represent 95% confidence intervals 

across 100 model realizations. 

d, Same as b, but when the classifier is trained on the responses of E neurons in our recordings. 

Top: naïve cohort; bottom: experienced cohort. For each value of N, the fraction of errors is 

averaged across 200 random E neuron subsamples. Light curves indicate individual animals, dark 

lines are averages across animals.  

e, Same as c, but for the dimensionality of the E neuron odor responses in the data. Each marker 

indicates a different animal, with error bars indicating 95% confidence intervals computed across 

different random subsampling of 500 E neurons for each dataset. 
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Extended Data Figure 1 | Validation of synapse inference method 

a, Top: Simplified diagram illustrating the architecture of the mouse olfactory system. Bottom: 

Nissl stain from Allen Brain Atlas. Yellow marks, probe shanks drawn to scale. Green shading, 

anterior piriform cortex. The cell dense layer 2 and layer 3 span the four shanks of a Neuropixels 

2.0 probe. 

b, Representative examples of CCGs corresponding to pairs identified by Dyad as being 

monosynaptically connected via an excitatory (left) or inhibitory (right) synapse. 

c, Dyad architecture. Dyad consists of two convolutional layers followed by three fully-connected 

layers and it was trained to classify pairs as connected based on their correlogram (see Methods). 

The convolutional layers enabled Dyad to learn the distinctive features of cross correlograms of 

monosynaptically connected pairs, while maintaining flexibility, within a narrow window, with 

respect to the exact latency of the peak that characterizes such correlograms. 

d – g, Validation of Dyad on Synthetic ground-truth data. 

d, Illustration of the model used to generate synthetic data (see Methods). 

e, Left: Precision of Dyad compared to previously-published methods in detecting 

monosynaptically connected pairs in simulated ground truth data (see Methods and full precision-

recall curves in Fig. 1d-bottom), when the detection threshold is set to obtain 70% recall.  Right: 

Precision at 70% recall for different values of connectivity density of the simulated ground truth 

network. The left and center panel show results obtained for a simulated network with 2.5% 

connection probability. Previously published methods: English22 (peak-detection algorithm); 

Das21 (GLM-based inference); Endo23 (deep learning approach). 

f, Precision (left) and recall (right) at a fixed threshold, as a function of simulation time in a 

simulated network with 2.5% connection probability. For all the other panels, 14,400 seconds of 

simulated time were used. 
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g, Precision-recall curves for excitatory (left) and inhibitory (right) connections, for various levels 

of connectivity density, averaged over three network realizations and three random subsampling 

of the single units. The connection probability in the legend indicates the connection probability 

of excitatory (left) or inhibitory (right) connections. 

h, Identification of E and I neurons. For all recorded single units, we plot their firing rate across 

the whole session, against their waveform width (trough-to-peak, see inset). The red dashed line 

in the right panel indicates the boundary used to classify single units as E or I (see Methods): 

single units that lie to the left of it are classified as I and those that lie below are classified as E. 

This boundary is defined by a nonlinear SVM trained using the labels shown in the right and 

bottom panels (see Methods). The colored circles overlaid indicate whether at least one excitatory 

(left, red circles) or inhibitory (right, blue circles) connection was found outgoing of that single 

unit. Points were jittered along the x-axis to ease visualization. The dashed cyan box illustrates the 

definition of I neurons used to estimate Dyad’s precision in inferring excitatory synapses: firing 

rate > 5 spikes per second, trough-to-peak < 0.5 ms (see Methods). Yellow-filled circles indicate 

putative false positives (see Methods). 

i, Dependance of connection probability on firing rate, separately for E-to-E, E-to-I, and I-to-E 

neuron pairs. The firing rate was calculated over the course of the entire session, either for the 

presynaptic neuron of the pair (left column), the postsynaptic neuron (right column), or the 

geometric mean of the two (right column). 

j, Assessing Dyad’s precision using CCG peaks on anticausal side (see Methods). Top: 

asymmetric peaks skewed to the right in the anti-causal window (top) are considered false 

positives. Bottom: Detection rate (connections found divided by the total number of pairs) of Dyad 

in the anticausal window compared to causal one, for excitatory (left) and inhibitory (right) 
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connections. Dyad detected 12 excitatory and 7 inhibitory false positives out of 1,490,149 total 

pairs (N = 2 mice). 

k, Assessing the prevalence of disynaptic chains (see Methods). Red dashed line: probability of 

triplet motifs, in which the first single unit of a disynaptic pathway also connects to the last; gray 

histogram: the same connection probability for a null model in which connections are shuffled 

while preserving the in- and out degrees of individual single units; blue dashed line: median of the 

null model. 

l, Distribution of efficacies for all excitatory synapses detected by Dyad. The efficacy is defined 

as the probability of the postsynaptic single unit emitting a spike between 0.5 and 3 milliseconds 

after the presynaptic spike. Red dashed line: median. 

m, Cumulative fraction of connected pairs, against the distance between the single units in the pair. 

n, Left: Number detected excitatory inputs to, and excitatory outputs from, E neurons. In this plot 

the points were jittered to ease the visualization. Right: incoming excitatory connections against 

detected outgoing inhibitory connections in I neurons. r, P: Pearson’s correlation coefficient and 

corresponding P-value. Top, distributions of the number of excitatory inputs to (right), and 

inhibitory outputs from (top) these I neurons. 

o, Connection counts for full-cell reconstructions of neocortical (inhibitory) basket cells imaged 

under large-scale serial electron microscopy29,31. The number of excitatory inputs onto a basket 

cell is strongly correlated with its number of inhibitory outputs onto excitatory neurons (Pearson’s 

r = 0.79, P < 10-10, N = 57 neurons from one mouse). r, P: Pearson’s correlation coefficient and 

corresponding P-value. 
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Extended Data Figure 2 | Odor-evoked response properties of E and I neurons in the piriform 

a–d, Response properties of an example E neuron. 

a, Spike time autocorrelogram. 

b, Mean action potential waveforms recorded on the 8 electrode sites of the probe that detected 

the highest-amplitude signals. 

c, Top: spike raster of odor-evoked responses, aligned to the valve opening time. Trials are sorted 

by odorant stimulus then trial number, and spikes (markers) are colored according to odorant 

stimulus. Bottom: Peristimulus time histograms, same color scheme as above. 

d, Trial-averaged, baseline-subtracted evoked firing rates in a two-second window following 

stimulus onset, sorted in descending order. 

e, Distribution of the percentage of spikes violating the refractory period (inter-spike interval < 1.5 

msec, see Methods) across the population of E neurons. 

f, Heatmap showing z-scored trial-averaged stimulus-evoked responses of 500 randomly-selected 

E neuron-odor pairs, sorted from high increase in evoked rate (red) to high decrease in rate (blue). 

The z-score was computed based on a 2-sec window preceding stimulus onset to estimate the mean 

and standard deviation. The black bar indicates the time window in which odors are presented. 

g, Fraction of E neurons responsive to a given number of odor stimuli. Responsiveness was 

assessed using a paired Wilcoxon signed-rank test between the number of spikes in the two seconds 

preceding and following odor presentation, with a threshold of 10-4 on the P-value. 

h, Same as g, but separating neurons whose activity increased after odor delivery (red) from those 

whose activity decreased (blue). 

i, Cumulative distribution of spontaneous (black) and stimulus-evoked (green) firing rates; 

medians indicated in dashed lines. The stimulus-evoked rate was computed using a 2-sec window 

following stimulus onset. 
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j–m, Same as a–d, but for an example I neuron. 

n–r, Same as e–i, but for the population of I neurons. 

s, Odorants employed and their molecular structure. 

t, Cumulative distributions of lifetime sparseness, for E and I neurons. In panels t–y, red and blue 

correspond to E and I neurons, respectively. See Methods for details about how each statistic was 

computed. 

u, Population sparseness. The box indicates the 1st and 3rd quartile (horizontal line: median), and 

the whiskers indicate the full range of the data. Each marker corresponds to one odor stimulus and 

one animal. 

v, Cumulative distributions of the coefficient of variation of single-neuron responses across trials. 

w, Cumulative distributions of the standard deviation of trial-averaged responses. 

x, Cumulative distributions of maximum selectivities. For each neuron-odor pair, the selectivity 

was defined as the average one-vs-one classification performance on a trial-by-trial basis. The 

maximum selectivity was obtained for each neuron by taking the maximum across odors. 

y, Cumulative distributions of signal correlation, for E/E, E/I, and I/I pairs.  
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Extended Data Figure 3 | Like-to-like connectivity and spatial structure in the piriform 

cortex 

a–c, Connection probability as a function of signal correlation, as in Fig. 2b, separately for a, (E-

to-E, reproduced from Fig. 2b to permit comparison), b, E-to-I, and c, I-to-E. 

d–f, Connection probability as a function of distance between the pair, separately for E-to-E (d), 

E-to-I (e) and I-to-E (f) connections. Pairs were divided into 10 distance bins so that each bin 

included the same number of pairs. Markers: connection probability in each distance bin, error 

bars: 95% confidence intervals obtained via bootstrapping; dashed lines: double exponential fit to 

the binned data. To assess whether the spatial structure we found is consistent with previous 

findings, we fixed the spatial scale of one exponential to 2 mm, as reported in prior measurements 

over longer distances8,9. For I to E connections, the fit returned zero for the coefficient 

corresponding to the 2mm-wide exponential, indicating that the spatial is best fit by a single 

exponential. This was not the case for E to E and E to I connections, indicating that our findings 

are compatible with previous reports, and capture an additional, fast decay component that was 

not resolvable by the methodology in previous reports. 

g,h, Signal correlation as a function of distance between the pair, separately for E/E (g) and E/I 

(h) pairs. Pairs were separated in 40 equally spaced bins and for each bin the median across pairs 

of the signal correlation was measured. Dashed lines indicate an exponential fit to the binned data, 

with spatial scale reported as λ in the figure. r and corresponding P-values indicate Pearson’s 

correlation coefficients of the non-binned data.  
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i–k, Connection probability as a function of signal correlation for a null model that preserves the 

spatial structure of the piriform (see Methods), for E-to-E (i), E-to-I (j), and I-to-E (k) connections. 

Blue dashed lines and shading indicate logistic fits and 5th and 95th percentile of the fit to such 

null model.  Black dotted lines and shading are reproduced from a-c to permit comparison.  
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Extended Data Figure 4 | Experience does not enhance like-to-like connectivity in the 

piriform cortex for E-to-E, E-to-I, or I-to-E pairs 

a, Left: Diagram of the apparatus for familiarization with odors and the four odorants used in that 

protocol. Center: Cumulative number of times that a mouse sampled the odor ports, averaged 

across N = 4 mice. Right: experiment timeline. Animals underwent this familiarization protocol 

for approximately two weeks (orange bar) followed by a single recording session to measure 

synaptic connectivity and odor responsiveness. During this recording the animals were presented 

both the four familiar odorants they had sampled in their home cage as well as four novel stimuli. 

b-d. Connection probability as a function of signal correlation across novel or familiar odorant 

stimuli separately for b, E-to-E (reproduced from Fig. 2d to permit comparison), c, E-to-I, and d, 

I-to-E.  
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Extended Data Figure 5 | The effect of experience on the relationship between the 

connectivity and selectivity of I neurons 

a, Connectivity maps (left) and evoked response amplitudes (right) of the three I neurons with the 

highest positive selectivity index, after the example shown in Fig. 3. Black circles: estimated single 

unit locations; red lines: incoming excitatory connections; blue lines: outgoing inhibitory 

connections; grey masks: the four silicon probe shanks. 

b, Same as a, but for the three I neurons with the highest negative selectivity index. 

c, Top row: In degree (left), out degree (center), and degree (right) of I neurons in experienced 

animals as a function of their selectivity; degrees are normalized by the number of single units in 

each recording to permit pooling of multiple datasets. A single unit’s selectivity was computed 

using a standard difference index (𝑆. 𝐼. = 	 !!"!"	
!!$!"

, where 𝜎% , 𝜎& are the standard deviation of the 

trial-averaged odor response across novel or familiar odors, see Methods). Statistics report 

Pearson’s correlation coefficients and corresponding P-values with respect to a null distribution in 

which the single unit’s selectivities and degrees were independently shuffled. The blue dotted lines 

show a linear fit and shaded regions indicate the 95% confidence interval of the fit. Bottom row: 

Same as top, but for naïve animals. Each of the dependencies we observed in experienced mice 

(panel c)  differed significantly from those found in naïve animals (panel e):  in-degree: t = 3.13 P 

= 1.0 x 10-6, N = 101, 88 I neurons (experienced, naïve), out-degree: t = 1.8, P = 1.15 x 10-3, N = 

101, 88 I neurons (experienced, naïve), degree: t = 2.71, P = 1.4 x 10-5, N = 101, 88 I neurons 

(experienced, naïve). 

d, Top: cumulative distributions of S.I.s for I neurons that are high degree (> 0.015, purple), and 

low degree (< 0.015, green), for experienced (top) and naïve (middle) animals. Statistics result 

from a Wilcoxon rank-sum test. Bottom: mean S.I. and 95% confidence intervals (assuming 
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normality) for high- and low-degree I neurons, for experienced and naïve animals. Significance 

was tested using the T-test (when comparing means to zero) and the Wilcoxon rank-sum test (when 

comparing two different single unit groups). Experienced, high degree vs zero: P = 0.0037; t = 

3.14, N = 31 I neurons; low degree vs zero: P = 0.016, t = -2.50, N = 57 I neurons. High degree, 

experienced vs naïve: P = 0.0069; U = -0.52, N = 31, 44 I neurons (experienced, naïve). Low 

degree, experienced vs naïve: P = 0.055, U = 0.07, N = 57, 57 I neurons (experienced, naïve). 

e, Distribution of Pearson’s r correlation coefficients between SI and in degree (top), out degree 

(middle) and degree (bottom) obtained when considering all 70 ways to split the eight odorant 

stimuli in a set of “novel” and a set of “familiar” odors, in naïve mice. The black lines show 

Gaussian fits to these distributions, the gray dashed lines indicate the maximum r across all 

possible partitions, and the red dashed line indicates the r value obtained in experienced mice 

(same value as shown in c-top). 

f, Pearson’s r correlation coefficients (top) and corresponding P-values (bottom) between the 

degree and difference index q(x) of single-neuron response properties in experienced animals. 

𝑞(𝑥) = '#$%&'&$("')$&*+
'#$%&'&$(	$	')$&*+

 , where x can be the trial-averaged response (“response”), the standard 

deviation across odors of the trial-averaged response (“selectivity”), or the coefficient of variation 

across trials (“CV”). Bars in both panels are sorted according to r. The black dashed line indicates 

the threshold for significance after Bonferroni correction for 9 comparisons (α = 0.0055).  
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Extended Data Figure 6 | Distributions of odor selectivity and degree are unaffected by 

experience 

a, Distribution of SIs across all I neurons in all animals. 

b, Cumulative distributions of S.I.s for I neurons in experienced (red) and naïve (black) animals. 

The P-value was computed using the Kolmogorov-Smirnov test (Nnaïve = 101; Nexperienced = 88).  

c, Distributions of I neuron in degrees (left), out degrees (center), and degrees (right), each 

normalized by the number of single units in each recording to permit pooling across recordings. 

The distributions are plotted separately for naïve (black) and experienced (red) mice, and P-values 

are computed using the Kolmogorov-Smirnov test (Nnaïve = 101; Nexperienced = 88).  
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Extended Data Figure 7 | Robustness of this study’s principal findings 

a, Degree as a function of S.I., separately for each mouse, as in Extend Data Figure. 5c. 

b, Effect of varying the size of the quantification window used to compute odor responses. Left: 

Pearson’s correlation coefficient (blue) and corresponding P-value (black) between I neuron out 

degree and S.I. in experienced animals as a function of quantification window size. Grey dashed 

line: P = 0.05. Right: same but for in degree. In all the analyses in this study we employed a 2-

second quantification window.  

c, Odor-evoked firing rate as a function of S.I. for all I neurons in experienced animals. 

d, Normalized in-degree of layer-1 interneurons and putative somatostatine-positive (SST) 

neurons, as a function of their selectivity index. 

e, Robustness of results with respect to the choice of the threshold employed to consider a pair 

connected. The only inclusion criteria was the threshold without any further manual curation. Top: 

The normalized in-degree of I neurons increases with the selectivity index, for three different 

values of the connectivity threshold. Bottom: Pearson’s r and corresponding P-value between 

selectivity index and  the normalized in-degree (left) and out-degree (right), as a function of the 

connectivity threshold. 

f, g, Connection probability did not depend on the selectivity of E neurons. f, Connection 

probability as a function of the selectivity index of the E neuron of the pair for E-to-I (left) and I-

to-E (right) neurons. g, E-to-E connection probability, as a function of either the pre-synaptic (left) 

or post-synaptic (right) E neuron’s selectivity.  
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Extended Data Figure 8 | Odor-evoked response properties of E and I neurons in experienced 

animals 

Throughout this figure blue indicates novel and orange familiar odors. Unless stated otherwise, all 

P-values were computed using a Wilcoxon rank-sum test. See Methods for details about how the 

other statistics were computed. a–f, Odor-evoked responses of E neurons (N = 2,672).  

a, Cumulative distributions of trial-averaged evoked firing rates. 

b, Cumulative distributions of the standard deviation of trial-averaged evoked firing rates. 

c, Fraction of E neurons responsive to a given number of odors in the novel or familiar set. 

Responsiveness was quantified by comparing the number of spikes in the two-second window 

after valve opening to the number of spikes in the two-second window before valve opening. A 

single unit was considered responsive to an odor if the corresponding P-value was smaller than 10-

4. The difference between the two distributions was assessed using the Mann–Whitney U test. 

Although the distribution is only marginally higher for familiar odors, the effect was significant 

(P = 0.00182). 

d, Cumulative distributions of the coefficient of variation (CV) of individual E neurons across 

trials. 

e, Cumulative distributions of lifetime sparseness of individual E neurons. Although the lifetime 

sparseness was only marginally larger for familiar odors, the effect was significant (P = 0.00178). 

f, Population sparseness (see Methods) across the population of E neurons. The box indicates the 

1st and 3rd quartile (horizontal line: median), and the whiskers indicate the full support of the 

distribution of sparsities across odors and animals. 

g-l, Same as a-f, but for the odor-evoked responses of I neurons (N = 88).  
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Extended Data Figure 9 | Principal findings hold when considering only cross-shank 

connections 

a, Example of excitatory (left) and inhibitory (right) connectivity for one dataset, as in Fig. 1e but 

considering only connections across different probe shanks, which are separated by 250 µm center-

to-center. 

b, Connection probability as a function of signal correlations for E-to-E (left), E-to-I (center) and 

I-to-E (right) pairs, when considering only cross-shank connections. Plots and quantifications are 

as in Fig 2b and Extended Data Fig. 3a–c. 

c, Normalized in degree (left), out degree (center), and degree (right) for I neurons in experienced 

animals as a function of their selectivity index, when considering only cross-shank connections. 

Plots and quantifications are as in Extended Data Fig. 5.  
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Extended Data Figure 10 | Increased variance of inhibitory input onto E neurons 

decorrelates their responses 

a, Fraction of error of a Hebbian linear classifier, as in Fig. 4a, but showing the results for both 

the experienced (top, reproduced from Fig 4a to permit comparison) and the naïve (bottom) model. 

b, Variance across odors of the total inhibitory current onto excitatory neurons in the model, for 

both the experienced (left) and naïve (right) model. The variance is computed separately across 

novel and familiar odors, and averaged across 100 model realizations. Error bars: 95% confidence 

intervals for the mean variance. 

c, Fraction of errors of a Hebbian classifier trained on the odor responses of E neurons, as in Fig. 

4d, for each individual mouse for novel (blue) and familiar (orange) stimulus set. Solid curves: 

mean; shaded area: standard deviation across odors and subsamples. 

d, Percent change in variance estimated from our electrophysiological recordings (dashed red line, 

see Methods), for naïve (left) and experienced (right) mice. Gray histogram: percent change in 

variance that the same estimation yields when connectivity is shuffled. The reported P-values are 

obtained with respect to this null model. 

e, Difference in classification performance between novel and familiar odorant stimuli (differences 

from panel c, averaged across N), as a function of the amount of experience (number of nose port 

pokes) the mouse had with the set of odors (Pearson’s r = 0.99, P = 0.014, N = 4 mice).  
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Methods 

 

Ethical compliance All procedures were approved by the Columbia University Institutional 

Animal Care and Use Committee (protocol AC-AABH6557) and were performed in compliance 

with the ethical regulations of Columbia University as well as the Guide for Animal Care and Use 

of Laboratory Animals. 

  

Animals We employed 7 male C57BL/6J adult mice (Jackson laboratories, Bar Harbor, ME) aged 

15 to 34 weeks (26.0 ± 9.6 weeks, mean ± s.d.). Animals had free access to food and water and 

were acclimated to the reversed light/dark cycle for at least two weeks before recordings or 

behavioral experiments were initiated. Mice were group-housed before acquiring odor experience 

and housed singly thereafter. 

 

Stereotactic targeting and head plate attachment surgery As previously described62, briefly: 

Animals were anesthetized with isoflurane (3% induction, 1.5-2% maintenance); carprofen (5 

mg/kg) and bupivacaine (2 mg/kg) were administered for preoperative analgesia and numbing, 

respectively before exposing the skull. The head was aligned as previously described, and 

photographs of landmarks were taken to ensure subsequent reliable targeting of the anterior 

piriform cortex at 1,500 µm (medial-most shank) and 2,250 µm (lateral-most shank) lateral to the 

midline and 1,150 µm posterior to the rostral confluence of the sinus (pRCS). A titanium head 

plate (G. Johnson, Columbia University) was secured to the using a thin layer of cyanoacrylate 

adhesive (Krazy Glue, Elmer’s Products, Atlanta, GA) applied to the skull followed by adhesive 

luting cement (C&B-Metabond, Parkell, Inc., Edgewood, NY). Two bone screws were then 
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applied bilaterally and secured with the luting cement above the cerebellum to serve as ground and 

reference electrodes. The incision was closed with sutures and mice recovered for at least 14 days 

before behavioral or physiological experiments. 

 

Craniotomy As previously described62, briefly: On the day before the recording, A craniotomy 

and durotomy were performed using a dental drill (Osada Success 40, Osada Electric Co., Ltd., 

Tokyo, Japan) and a fine scalpel blade (Fine Science Tools #11), targeted to the location based on 

the previously photographed landmarks. The animal was then allowed to recover overnight. In the 

event of pial bleeding, edema, or other signs of damage to the brain the experiment was aborted.  

 

Neurophysiological recordings As previously described62, briefly: Experiments were conducted 

in dark, sound-attenuated conditions, with bandpass filtered acoustic white noise (1,000–45,000 

Hz; approximately 7 dB). The animal was administered 1.0 mL of saline and then maintained 

awake and head-restrained with its body in a tube designed to promote calm63. Recordings were 

performed using 4-shank Neuropixels 2.0 probes11 aligned to the vertical axis of travel of the 

micromanipulator (Patchstar, Scientifica, East Sussex, United Kingdom) using a custom 2-axis 

gimbal (G. Johnson, Columbia University). Following penetration, in the event of dimpling of the 

craniotomy or bending of one of the probe shanks, the issue was either resolved on the spot or the 

recording was aborted. Based on previous calibration experiments62, which yielded unambiguous 

physiological signatures to establish correct targeting, the probe was targeted to approximately 

3,500 µm of depth, and then fine adjustments in the vertical axis were made based on real-time 

monitoring of neural signals. In the anterior-most portion of the cortex the cell-dense layer folds 

over itself (Extended Data Fig. 1a). Proper targeting was achieved when spike waveforms 
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emanating from both the dorsal and the ventral portions were visible on the probe. Failure to reach 

this target resulted in the recording being aborted, as we never made more than a single penetration 

to maximize tissue health. The final depth from the pial surface for successfully targeted 

preparations was 3,772 ± 291 µm (N = 7 mice, mean ± s.d.). The probe was allowed to settle for 

approximately one hour, after which recording was initiated. The duration of recordings ranged 

from 5.3 to 7.1 hours (6.1 ± 0.9 hours, mean ± s.d., N = 7 mice). These recordings comprised three 

phases (Fig. 2a): two stretches of spontaneous activity lasting approximately two hours each at the 

beginning and at the end, to collect a sufficient number of spikes to infer synaptic connections; 

and a middle phase lasting approximately 3 hours during which odorant stimuli were administered, 

to measure odor responses.  

 

Odorant stimuli During this middle phase we administered 8 distinct monomolecular odorants 25 

times each in pseudorandom order. Each trial included a 4-second odorant pulse followed by a 

mean 60 sec inter-trial interval (ITI), drawn at random from a uniform distribution between 50 and 

70 seconds. Odorant stimuli were administered as previously described62 using a custom built, 

flow-equalized olfactometer. Odorant kinetics were measured using a photoionization detector 

(miniPID, Aurora Scientific, Aurora, ON, Canada) sampling between the nose and the exhaust line 

to confirm post-hoc that stimulus delivery was well controlled.  

The odorants employed were: 2%  anisole (Sigma cat. no. W209708), 2%  octanal (Sigma 

cat. no. O5608), 20% (±)-4-methyloctanoic acid (Sigma cat. no. W357502), 2%  cis-3-hexen-1-ol 

(Sigma cat. no. W256307), 2%  isopentyl acetate (Sigma cat. no. 306967), 4% (+)-α-pinene (Sigma 

cat. no. 268070), 6%  linalool oxide (Sigma cat. no. 62141), 4% 5-methyl-5-hexen-2-one (Sigma 

cat. no. 364479), dissolved (% v/v) in 15 ml Dipropylene Glycol (DPG). The odorants had diverse 
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functional groups and organoleptic properties, and were not known to release innate attractive or 

aversive behaviors. In preliminary experiments they were titrated to activate responses in 

comparable fractions of piriform neurons.  

 

Data acquisition and spike sorting  Neural signals were acquired at 30 kHz with a PXI base 

station (imec, Leuven, Belgium) using the SpikeGLX acquisition software 

(https://billkarsh.github.io/SpikeGLX/). Spike sorting was performed using the ecephys pipeline 

(Janelia fork: https://github.com/jenniferColonell/ecephys_spike_sorting) with Kilosort 2.564. The 

output of Kilosort was manually curated using Phy (github.com/cortex-lab/phy). We excluded 

from analysis any templates corresponding to electrical noise, templates that ran down or appeared 

mid-recording, as well as any templates for which refractory period violations exceeded 2%. The 

refractory period was defined as an inter-spike interval < 1.5 msec (Median 0.048% refractory 

period violations, Q1=0.011%, Q3=0.12%). The percentage of templates that had zero refractory 

period violations was 13.7% (full distributions for E and I neurons in Extended Data Fig. 2e,n). 

 

Odor familiarization A subset of animals acquired experience with 4 out of the 8 odorants prior 

to the recording session. These 4 odorants, cis-3-hexen-1-ol, octanal, 5-methyl-5-hexen-2-one, 

isopentyl acetate, were diluted in DPG at the same concentration as that used in the recordings. 

The animals acquired experience with the stimuli in a modified home cage as previously 

described45. Briefly, four BPod poke ports (Sanworks, Rochester, NY) were placed in the wall of 

the home cage, with each one delivering one of the 4 odorants conditional on the animal’s nose 

breaking the port’s infrared beam. The animals had ad libitum access to food and water and could 

volitionally sample the stimuli over a period of approximately two weeks. The diluted odorant 
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solutions were bubbled with air at 0.25 L per minute, and fresh stocks were switched in every one 

to three days to prevent depletion. Recordings were performed immediately following removal of 

the mice from the apparatus. 

 

Inference of Synaptic Connections (Dyad) We computed spike-time cross correlograms (CCGs) 

for all pairs of neurons for each recording using a time bin of 0.1ms and time lags between -20 and 

+20 milliseconds. CCGs were pre-processed for synapse inference as follows: first, CCGs were 

linearly interpolated between -0.3 and 0.3ms to remove artifacts introduced by the spike-sorting 

software. Then, CCGs were smoothed using a 0.5ms-wide boxcar function. Finally, CCGs were 

normalized by the product of the firing rate of the two neurons in the pair. A small regularization 

constant λ = 2 Hz2 was used to prevent such normalization to overly weigh pairs of low-firing-rate 

neurons. 

 

We trained two deep convolutional networks (Dyad) to recognize CCGs that exhibited the 

characteristic features of excitatory and inhibitory connections (see below). One network was 

trained for excitatory and one for inhibitory connections. After preprocessing the CCGs, Dyad’s 

input features were constructed by considering the portion of the CCG between -10 and 10 

milliseconds and performing z-scoring across time lags. Each Dyad network comprised two 

convolutional layers (16 channels each, kernel size: 9, stride: 3 and 1 respectively), followed by 

three fully-connected layers of ReLU units (512, 256, and 128 units from early to late in the 

network). The network readout received input only from the last layer and had a sigmoidal 

activation function to obtain a network output between 0 and 1. The network was trained by 

minimizing the binary cross-entropy loss using Adam65 (learning rate: 10-5, weight decay: 0.01) 
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for 200,000 epochs. To deal with our imbalanced dataset (unconnected pairs are ~1,000 times more 

common than connected ones), each epoch we sampled an equal number of positive and negative 

examples. The model that exhibited the lowest loss on the validation set was selected and its 

performance was assessed on the test set. 

 

To obtain the training dataset, we used a custom peak-detection algorithm based on 

thresholding the derivative of the CCG, followed by manual curation, to obtain two initial dataset 

that comprised approximately 300 positive examples each (one for putative excitatory connections, 

one for putative inhibitory connection). All the other pairs in the dataset were assigned a negative 

label. 

 

After training, we fed the CCGs for all the pairs to Dyad and used the value of the network 

readout to rank all pairs. All pairs with a score smaller than 10-4 were considered not connected, 

while those above such value were manually curated. 

 

Manual curation was based on three criteria: 1) symmetry: sometimes Dyad assigned a 

high-rank to CCGs which had a sharp peak exhibiting all features of a monosynaptic connection 

but was symmetric. Such pairs were considered not connected in this study; 2) rise-time: pairs 

whose peak started to rise before a lag of 0.5 milliseconds were also considered not connected; 3) 

near-zero fluctuations: pairs that exhibited large fluctuations for near-zero lags (-1 to 1 ms) of 

magnitude comparable to the main causal peak were also considered not connected. This was to 

exclude cases in which spike-sorting artifacts, more common for nearby units, might distort the 
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shape of a larger peak due to common input to resemble one resulting from monosynaptic 

connectivity. 

 

Our results did not depend on the details of the manual curation and also held when using 

the score assigned by Dyad to classify neuron pairs without any manual curation, across a large 

range of score thresholds (Extended Data Fig. 7e). 

 

Validation of Dyad on Ground Truth Data We tested Dyad using a ground truth dataset with 

positively identified monosynaptic connections. This dataset, previously published in English et 

al.22, was generated using a combination of extracellular silicon probe recordings and juxtacellular 

stimulation in the hippocampal area CA1 of the mouse brain. The methods are described in detail 

in the original publication. Briefly, to decouple the spiking of the presynaptic neuron from the 

network dynamics, the juxtacelllularly-recorded neuron was stimulated at random times, reliably 

evoking spikes at every stimulation. We computed evoked CCGs using only the first spike evoked 

by the stimulation for each juxtacellularly-stimulated neuron. Peaks detected in such correlograms 

are decoupled from the network dynamics and therefore cannot be due to common input. We  

applied the same method described in the original publication22 to these evoked CCGs to identify 

monosynaptic connections outgoing from juxtacellularly-stimulated neurons, obtaining 30 

connected pairs and 274 unconnected pairs. 

 

We then computed spontaneous CCGs for all pairs of one juxtacellularly-stimulated neuron 

and one neuron recorded using a silicon probe, using all spikes occurring at least 10 milliseconds 
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after the end of the stimulation. We used Dyad to assign a score to all the spontaneous CCGs, and 

varied the threshold applied to the output of Dyad to generate the precision-recall curve in Fig 1d. 

 

Validation of Dyad on Synthetic Data We tested Dyad on synthetic data generated by a spiking 

neural network model consisting of two interacting populations of excitatory and inhibitory 

neurons. We considered a network of LIF neurons (indexed by i=1, … , N) that receive input from 

other neurons in the network and from an external population of NExt neurons. Neurons emit a 

spike at time t if the membrane potential Vi reaches the firing threshold θ. Between spikes, for all 

t > tf +tref, where tf is the last spike time and  tref is the duration of the refractory period, the voltage 

dynamics follows 

𝜏 𝑑𝑉𝑖(𝑡)𝑑𝑡 = −𝑉𝑖 (𝑡)+ 	𝑈	 + ∑𝑁𝑗=0 𝐽𝑖𝑗𝑦𝑗&𝑡 − 𝛥𝑖𝑗'+ ∑					𝑁
𝐸𝑥𝑡

𝑗=0 𝑊𝑖𝑗𝑦𝑗(𝑡 − 𝛥 ) , 

Where 𝛥𝑖𝑗 is the synaptic delay of from neuron j to neuron i, U is the resting potential, and 𝑦/(𝑡) 

is the spike train of neuron j filtered using an exponential kernel with time scale 𝜏012. To reduce 

simulation time, we considered 𝛥3/ = 1ms for our analyses. However, we also verified that 

introducing heterogeneous delays (𝛥3/ = 𝛥/ sampled i.i.d. from a uniform distribution between 0.5 

and 2.5 ms) does not materially alter our main results. After every spike, the membrane potential 

is reset to zero and held at zero for the duration of the refractory period. Neurons in the external 

population fire as Poisson processes at a constant rate of AExt spikes per second. The network was 

simulated by discretizing time in steps of dt = 0.2ms. 

 

Parameter Value Parameter Description 

𝑑𝑡 = 0.2	ms Simulation time step 

𝜃 = 1 a.u. Firing threshold 
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U = 0 Resting potential 

𝜏 = 10 ms Membrane time constant 

tref  = 2 ms Absolute refractory period 

𝜏012 = 1 ms Synaptic time constant 

JEE = 0.21 Synaptic weight from E to E neuron 

JIE = 0.14 Synaptic weight from E to I neuron 

JEI = -0.21 Synaptic weight from I to E neuron 

JEE = -0.14 Synaptic weight from I to I neuron 

JE in = 0.17 Synaptic weight external input to an E neuron 

JI in = 0.14 Synaptic weight external input to an I neuron 

Ain = 58.3 Hz Mean firing rate of external neurons 

 

The network is divided into excitatory and inhibitory populations of size NE and NI 

respectively, with excitatory neurons constituting 80% of the population.  The connectivity of the 

network is sparse and generated by sampling each connection as an independent Bernoulli variable 

with probability 𝑝45 = 601

%1
 where 𝛼 ∈ {𝐸, 𝐼} and 𝛽 ∈ {𝐸, 𝐼, 𝐸𝑥𝑡}. Nonzero synaptic weights 

between two populations all have the same value, i.e. if 𝐽𝑖𝑗
𝛼𝛽 is nonzero then 𝐽𝑖𝑗

𝛼𝛽 = 1
#𝐾𝛼𝛽

𝐽𝛼𝛽 where 

𝛼, 𝛽 ∈ {𝐸, 𝐼} (see Table 1). The average number of incoming per neuron was independent of the 

neuron type, i.e.	𝐾:: = 𝐾:; =	𝐾;: = 𝐾;; = 100. To vary the sparsity of the network 

connectivity, we varied the number of neurons in the network while keeping the number of 

incoming and outgoing connections constant. In this way, we generated networks with connection 

probabilities 𝑝:: ∈ {2.5%, 5%, 10%, 12.5%, 25%}. Notice that connection probabilities from 

inhibitory neurons were 4 times larger. 
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We simulated 3 synthetic ground truth networks for T  = 14,400 seconds of simulated time 

for each sparsity level. We then randomly sampled 3 sets of 100 inhibitory and 400 excitatory 

neurons to generate synthetic ground truth datasets of connectivity and activity for each network 

realizations. 

 

Assessing Dyad’s precision using putative neuron type To estimate Dyad’s precision in 

identifying pairs connected by an excitatory synapse in our own data, we took advantage of the 

fact that narrow-spike, high-firing rate units are overwhelmingly inhibitory27,66–70. We therefore 

obtained a conservative estimate of Dyad’s precision by assuming that any detected excitatory 

connection outgoing from one such neuron was a false positive. 

 

For this analysis, we considered only units that had a narrow waveform (trough-to-peak 

distance < 0.5ms) and firing rate larger than 5Hz. We then counted how many outgoing excitatory 

connections from these units were detected by Dyad (2), resulting in a false-positive rate (FPR) of 

1.3 x 10-5. To obtain an estimate of precision, we then used the expression: 

 Precision = 1	–	&%=

1	–	&%=	$	1(&>=
 

where FNR and FPR are the false-negative and false-positive rate, respectively, and r is the class 

imbalance i.e. the ratio of positive over negative pairs in the dataset. Thus, to obtain the precision 

we had to assume a value for the FNR (note that r  can be derived from our measurements given 

FPR and FNR). However, the precision estimate depended very weakly on FNR and was 

approximately 0.98 for most values of the FNR. 
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We used an analogous approach to estimate the precision of Dyad in detecting neuron pairs 

connected by an inhibitory synapse. Because we could not use spike waveform features or firing 

rate to identify a population of neurons that are overwhelmingly excitatory, we considered as false 

positive any pair having an inhibitory connection outgoing from an E neuron for which Dyad 

identified an excitatory connection as well. We obtained a FPR of 9.0 x 10-6 (13 false positives out 

of 1,448,637 potential pairs). Using the above expression to relate FPR to the precision, we 

obtained a precision > 0.99 when considering only I neurons as pre-synaptic, for a broad range of 

FNR. We note that if we were to consider all possible neurons as pre-synaptic the dataset would 

be much more imbalanced (smaller r) and the precision would be lower (0.93). 

 

Assessing Dyad’s precision using CCG peaks on anti-causal side We also estimated Dyad’s 

precision by measuring how many times our pipeline would detect synapses on the anti-causal side 

of the CCG. Indeed, peaks induced by confounding factors are not necessarily on the causal side 

(in contrast to those caused by synaptic connections). We used Dyad (without retraining) to rank 

CCGs based on an anti-causal window that extends from -15 to 5 milliseconds. Because this 

window is shifted by 5 milliseconds compared to the one used to train Dyad, it will tend to look 

for peaks between -4.5 and -1.5 millisecond lags. Applying the same criteria for synaptic 

connectivity as described above, we found only 12 false positives, yielding an estimated FPR of 

8.1 x 10-6. Using the same method described above, we obtain an estimate of the precision above 

0.98. 

 

We used the same approach to estimate the precision of the inhibitory version of Dyad. In 

this case, we detected 7 false positives out of 1,490,149 (N = 2 mice) potential interactions, 
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resulting in an estimated FPR of 4.7 x 10-6. Using the method described above to relate FPR to the 

precision, we obtained a precision > 0.99 when considering only I neurons as pre-synaptic, for a 

broad range of FNR. If instead we were to consider all possible neurons as pre-synaptic the dataset 

would be more imbalanced, resulting in a lower precision (0.97). 

 

Assessing the Effect of Disynaptic Chains To estimate the extent to which the excitatory CCG 

peaks detected by Dyad might reflect disynaptic chains instead of monosynaptic connections, we 

took advantage of the units for which Dyad had identified at least one incoming and one outgoing 

connection. In these cases, we had that neuron i  connects to neuron j which connects to neuron k, 

resulting in a disynaptic chain from i to k. We then asked whether Dyad detected a connection 

from i to k more than expected based on a null model. To take into account the fact that some 

neurons make more connections than others, we constructed a null model that preserved the 

number of incoming and outgoing connections of each neuron but shuffled the identity of pre and 

postsynaptic partners. 

 

Identification of E and I Neurons Inhibitory neurons are characterized by thin spike waveforms 

and high baseline firing rates27,66–70. To identify putative excitatory and inhibitory neurons, we 

trained a support vector machine classifier with polynomial kernel (degree = 5) on two features of 

individual units: the firing rate and the waveform trough-to-peak distance. To train the classifier, 

excitatory (inhibitory) labels were assigned based on whether the unit was the presynaptic neuron 

in an excitatory (inhibitory) connected pair identified by Dyad. The trained SVM identifies a 

nonlinear boundary separating E from I neurons in the trough-to-peak – firing rate plane 

(Extended Data Fig. 1h). Such boundary reflects the fact that inhibitory neurons tend to have 
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narrower waveform and higher firing rate, both of which are known physiological properties of 

the majority of inhibitory neurons in the piriform cortex67–70. 

 

We found 189 I neurons out of 5,478 total single units (3.5% of the population), consistent 

with the low fraction of inhibitory neurons in the piriform69,71,72. We note that the population we 

define as E neurons contains a small minority of inhibitory cells with broad spike waveforms, 

which likely correspond to somatostatin-positive neurons70. We then identified superficial Layer 

1 feedforward inhibitory neurons in the I neuron population by the estimated spatial location. 

These cells receive input from the olfactory bulb but negligible recurrent input from cortex73 and 

were excluded from further analysis. The remaining I neurons, which were included in our 

analyses, correspond predominantly to feed-back interneurons and receive little to no direct input 

from the olfactory bulb73. 

 

The E-to-E connection probability was 0.032% (Fig. 1b), lower than the expected 0.1% 

and consistent with our network simulations in which Dyad recovers only a subset of the connected 

pairs of the network. The E-to-I and I-to-E connection probabilities were higher: 1.1%, and 0.81% 

respectively (Fig. 1b). As we only detected 8 I-to-I connections (0.13%) we did not consider these 

further. The relatively elevated connection probability of E-to-I compared to E-to-E is consistent 

with a previous report of extensive excitatory convergence onto local inhibitory neurons in the 

piriform73. We note that this higher E to I connectivity may also reflect a detection bias favoring 

the relatively high firing rates and input resistances of inhibitory neurons. 
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Computational Model We developed a simplified model to study the effect of inhibitory rewiring 

on the odor responses of excitatory neurons in the piriform cortex. In the model, the responses of 

NI = 2,000 inhibitory neurons to odorant stimuli are sampled from a log-normal distribution 

independently for each neuron but with correlations among different odors, i.e. 

 	𝑟3; = exp(𝑥3;)	, 

Where 	𝑟3; is a vector of length P, the number of odors, containing the responses of inhibitory 

neuron i to the odorant stimuli. 𝑥3; is a vector of the same length sampled from a multivariate 

normal distribution with mean zero and covariance matrix  

, 

where I is the P-dimensional identity matrix and 1 is a length-P vector of all ones. The parameter 

𝜖 controls the strength of correlations among different odorant stimuli. For all the analyses, we set 

𝜖 = 0.6 and P = 8. Among the eight simulated stimuli, the first four were assumed to be the familiar 

and the second four the novel ones.  

 

We considered two models for generating the connectivity matrix 𝑊 between inhibitory 

and excitatory neurons. In the first model we sampled the probability of forming outgoing 

connections 𝑝3?@A	from a log-normal distribution with mean 0.05 and variance 0.0095, 

independently for each inhibitory neuron. Synaptic weights from inhibitory neuron i to excitatory 

neurons are either equal to -1 with probability  𝑝3?@A	or 0 otherwise. We refer to this model as 

naïve, because there is no relationship between the probability of inhibitory neurons to form 

outgoing connections and their odor responses. 
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The second model was obtained from the first by assigning the previously sampled output 

probabilities based on the sampled odor responses of the inhibitory population: inhibitory neurons 

were ranked based on their selectivity index (S.I.) for the set of familiar odors and were assigned 

the output probabilities in decreasing order based on such ranking. We note that because of the 

stochasticity of the process that generates connections from output probabilities, it is not certain 

that inhibitory neurons with the largest S.I. will form the most output connections. 

 

In addition to input from inhibitory neurons, excitatory neurons received another source of 

input representing other potential sources of inputs such as the olfactory bulb, recurrent excitation 

from the piriform, and input from other brain regions. Such input was sampled from the same 

distribution as the inhibitory neuron responses, i.e. log-normal with correlations among odorant 

stimuli, but in this case independently for each excitatory neuron. The strength of such input was 

set to 0.3 times the strength of the inhibitory input. To account for trial-by-trial variability, we 

added 25 independent Gaussian noise realizations to both the inhibitory responses and the external 

input, independently for each neuron, resulting in 25 trials. The strength of such noise was set to 

20% of the signal that it was applied to. 

 

To summarize, the total input excitatory neuron i in response to odor 𝜇 in a given trials was 

ℎ𝑖𝜇 = − 1
#𝐾𝑖

∑𝑁𝐼𝑗=1 𝑊𝑖𝑗 1𝑟𝑗𝐼,𝜇 + 𝜉𝑗
𝐼,𝜇2+ ℎ𝑖𝑒𝑥𝑡,𝜇 + 𝜉𝑖

𝑒𝑥𝑡,𝜇 , 

where hiext is the external input, 𝜉; and 𝜉G'A are the inhibitory and external response noise. The 

factor 1
H6&

, where KI is the in-degree of excitatory neuron i, was added to make the variance of 

the total inhibitory input of order one74. Finally, to mimic a recurrent balance mechanism in our 

simplified model, we assumed that for each odor the total input current to excitatory neurons was 
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on average zero75. The odor responses of excitatory neurons were obtained by passing the 

balanced input ℎ4 𝑖
𝜇	through a ReLU nonlinearity, with threshold 𝜃 = 2.5. All our results were 

obtained using the responses of 500 model excitatory neurons and averaged across 100 

realizations of the model. 

 

Data Analysis We defined the response of a neuron to an odor in a trial as its number of spikes 

in a two-second window after the time of valve opening. We found that our results were robust 

when the length of this window was changed between 1 and  4 seconds (Extended Data 

Fig. 7b, not shown for other results). Most of our analyses were based on trial-averaged 

responses. However, for measuring cross-validated signals correlations, coefficient of variation 

across trials, and classifications performance we used odor responses in individual trials. 

 

Unit Location As previously described62, briefly: We computed a spatial average across electrode 

site locations, estimating each single unit’s position (x,y) as: 

(𝑥, 𝑦) = 	B∑ '&J&25
&61
∑ J&25
&61

, ∑ 1&J&25
&61
∑ J&25
&61

	C , 

where E is the number of electrode sites, xi and yi are the lateral and vertical position of electrode 

site i, and ai is the peak-to-peak amplitude of the mean spike waveform recorded at the electrode 

site i. The choice to square the peak-to-peak waveform amplitude was to mitigate the effect of very 

low-amplitude waveforms registering on all of the probe’s electrode sites.  

 

Signal Correlations Signal correlations between two neurons were measured using the Pearson’s 

correlation coefficient between the odor responses. To mitigate the problem of spurious 

correlations arising from the small number of odors considered, we used a cross-validated 
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approach. The correlation coefficient was measured based on responses averaged across a different 

subset of trials for the two neurons. This operation was repeated for five cross-validation folds, 

and the resulting correlation coefficients were averaged to get a cross-validated quantity. When 

computing signal correlations across only familiar or novel odors the number of cross-validation 

folds was increased to ten to obtain a distribution of signal correlations with the same support as 

when computing signal correlations across all 8 odors. All our results are robust to varying the 

number of cross-validation folds and hold when using standard, non cross-validated correlation 

coefficients as well. 

 

Lifetime and Population Sparseness We defined the population sparseness of an odor 𝛼 

measured across a population of N neurons as 

𝑠𝑝𝑜𝑝𝛼 =
1

1	−	1𝑁
51	 −	

$∑ 𝑟𝑖𝛼𝑁
𝑖=1 &

2

∑ (𝑟𝑖
𝛼)2𝑁

𝑖=1
6 , 

Where 𝑟𝑖𝛼 is the response of neuron i to odor stimulus 𝛼. 

Similarly, the lifetime sparseness of a neuron measured across a set of P odors was 

 𝑠QR3 =
1

1	–	19
E1	–	S∑ T&09

061 U
2

∑ (T&
0)29

061
G . 

 

Spatially-structured null model of like-to-like connectivity We separated all pairs of 

simultaneously recorded units in our dataset in 50 groups based on the estimated unit distance, and 

measured the connection probability for each group. The distance bins were set in such a way to 

have an equal number of pairs in each bin. We then used these quantities to generate a null model 

in which the observed spatial organization of the piriform was preserved, i.e. nearby pairs were 

more likely to be connected and slightly more correlated than more distant ones, but connection 
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probability was independent of response properties. For each realization of this null model, we 

sampled each connection independently based on the pair distance; we sampled the pair signal 

correlation also based on the distance by sampling with replacement from the correlations of the 

pairs in the same distance group. For each null-model realization we measured the relationship 

between connection probability and signal correlation across the population, and computed 

statistics across 100 null model realizations. 

 

Single neuron selectivity In Extended Data Fig 2x we quantified single neuron odor selectivities 

using decoding performance on a trial-by-trial basis. For each neuron and each odor, we trained a 

linear SVM to distinguish responses to the odor from the other stimuli using a one-vs-one scheme 

and leave-one-out cross-validation across trials. This approach yielded eight numbers for each 

neuron, corresponding to the average classification performance of each odor stimulus against the 

others. The maximum selectivity quantifies the selectivity of a neuron to the odor it was most 

selective to and was then obtained for each neuron by taking the maximum of the classification 

performance across odors. 

 

Predicting connectivity from changes in single-neuron response properties To investigate 

whether single-neuron properties might affect connectivity in an experience-dependent manner, 

we asked whether there was a significant relationship between the number of incoming or outgoing 

connections and the indices 

𝑞(𝑥) = 	 '!"'"
'!$'"

 , 

Where x is a scalar function of single-neuron response properties that can be computed for either 

novel (xN) or familiar (xF) responses. 
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We tested three choices for x: the odor response, averaged across odors in a set; the 

coefficient of variation of the response across trials, and the standard deviation of the response 

across odors in a family. The significance of a relationship between q and in- or out-degrees was 

assessed using Pearson’s correlation coefficients, although our results also hold when considering 

Spearman’s correlations instead. In total, we tested three connectivity features (in-degree of E 

neurons, out-degree of E neurons, in-degree of I neurons) against three possible predictors, 

resulting in nine comparisons. To correct for multiple comparisons artifacts, we applied the 

Bonferroni correction. 

 

Dimensionality of Odor Responses The dimensionality of excitatory neuron odor responses was 

measured by the participation ratio of the eigenvalues 𝜆 of the neuron-by-neuron covariance matrix 

of odor responses47, i.e. 

dim = S∑ λ𝑖& U
:

∑ λ𝑖
2

&
  . 

 

Odor Response Discriminability We assessed the discriminability of different odorant stimuli 

based on the odor responses using a linear classifier on single-trial responses. To avoid that the 

classifier accuracy approached 1, making comparisons between novel and familiar odorant stimuli 

more difficult, we measured the classifier accuracy as a function of the number of neurons 

considered, ranging from 15 to 300, in intervals of 15. For each of these values, we considered 200 

random subsets of neurons. For each subset, trials were randomly separated into training and 

testing using two-fold stratified cross-validation. Multi-class accuracy was assessed using a one-
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versus-rest approach and the mean and variance of the classifier performance was measured across 

odors, cross-validation folds, and neuron subsets. 

 

We used a Hebbian classifier, which mimics a downstream neuron which receives input 

from the excitatory population and can learn to discriminate odors based on a biologically-

plausible Hebbian rule. In this classifier, readout weights are set by 

𝑤3 = ∑ J𝑧3V 	− 	𝑚𝑒𝑎𝑛V(𝑧3V)P 𝑦VV  , 

Where 𝑦V is the label of odor 𝜇 and 𝑧𝑖𝜇 is the response of the excitatory neuron i to odor 𝜇 averaged 

and z-scored across all trials in the training set. Test accuracy was then assessed by computing the 

predicted labels as 

𝑦𝜇8 = 𝛩 1∑ 𝑤𝑖 1𝑧𝑖𝜇 	− 	𝑚𝑒𝑎𝑛𝜇(𝑧𝑖𝜇)2𝑁
𝑖=1 2 , 

where 𝛩 is the Heaviside step function and 𝑧𝑖𝜇 was computed using trials in the test set. Similar 

results were obtained using a linear support vector machine classifier, although the difference 

between novel and familiar stimuli was reduced. 

 

Estimation of the Effect of Experience on Inhibitory Currents We used both measured 

inhibitory responses and connectivity to estimate the effect of the observed experience-dependent 

organization on total inhibitory currents onto excitatory neurons. First, because the number of 

inhibitory neurons per dataset was relatively small, we concatenated all the inhibitory neurons, 

forming an inhibitory pseudopopulation. Each inhibitory neuron in the data was then assigned a 

probability of forming outputs to excitatory neurons based on the measured number of detected 

outputs Kiout as 𝑝3?@A =
6&;<=

%5
, where NE is the number of excitatory neurons in the dataset in which 

inhibitory neuron i was recorded. 
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These probabilities were used to sample the connections 𝑤3 between the population of 

inhibitory neurons and an example excitatory neuron as independent Bernoulli variables. Because 

excitatory neurons in the piriform can receive inputs from a much larger pool of inhibitory neurons 

than the recorded ones, using the measured probability might result in undesired effects due to 

small-sample-size. To prevent this, we scaled all connection probabilities by a factor 10. The 

resulting connectivity was then used to estimate the inhibitory input current ℎ; onto the excitatory 

neuron, assuming that currents from different neurons sum linearly and that all synaptic efficacies 

are equal: 

ℎ; = −∑ 𝑤3𝑟3;%>
3W1  .  
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