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Abstract: The adipokine leptin, which is best-known for its role in the control of metabolic function,
is also a master regulator of cardiovascular function. While leptin has been approved for the
treatment of metabolic disorders in patients with congenital generalized lipodystrophy (CGL), the
effects of chronic leptin deficiency and the treatment on vascular contractility remain unknown.
Herein, we investigated the effects of leptin deficiency and treatment (0.3 mg/day/7 days) on
aortic contractility in male Berardinelli-Seip 2 gene deficient mice (gBscl2-/-, model of CGL) and
their wild-type control (gBscl2+/+), as well as in mice with selective deficiency in endothelial leptin
receptor (LepREC-/-). Lipodystrophy selectively increased vascular adrenergic contractility via NO-
independent mechanisms and induced hypertrophic vascular remodeling. Leptin treatment and
Nox1 inhibition blunted adrenergic hypercontractility in gBscl2-/- mice, however, leptin failed to
rescue vascular media thickness. Selective deficiency in endothelial leptin receptor did not alter
baseline adrenergic contractility but abolished leptin-mediated reduction in adrenergic contractility,
supporting the contribution of endothelium-dependent mechanisms. These data reveal a new direct
role for endothelial leptin receptors in the control of vascular contractility and homeostasis, and
present leptin as a safe therapy for the treatment of vascular disease in CGL.
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1. Introduction

Lipodystrophy is a heterogeneous metabolic disease of congenital or acquired origin
characterized by a total or partial absence of adipose tissue [1–4] at the origin of major
metabolic derangements including severe insulin resistance, type 2 diabetes, hypertriglyc-
eridemia, and steatohepatitis [2,4–6]. Lipodystrophy is not only a metabolic disease, but
also a major risk factor for cardiovascular disorders. The prevalence of hypertension,
cardiac hypertrophy, left ventricle dysfunction, aortic valve calcification, and heart failure
is high in patients with any form of lipodystrophy [2,7–14]. However, the etiopathology of
cardiovascular disorders remain ill-defined in patients with lipodystrophy.

One of the hallmarks of lipodystrophy is a marked decrease in adipose mass. As the
adipose tissue is the primary source of the hormone leptin, lipodystrophy is characterized
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by a striking reduction in circulating leptin levels [4,5,15]. Leptin has initially been identi-
fied as a key regulator of metabolic function. Leptin regulates glucose tolerance, insulin
sensitivity, and ultimately body weight via central and peripheral mechanisms involving
activation of the sympathetic nervous system, and control of food intake and energy ex-
penditure [4,5,11,15–17]. Leptin receptors are ubiquitously expressed and its involvement
extends beyond the metabolic system, especially to the reproductive [18], immune [19],
bone [20] and cardiovascular system [11,15,21–26]. Leptin is notably a key regulator of
vascular function [15,21,22,27]. Recent work by our group showed that selective reduction
in endothelial leptin signaling reduces nitric oxide (NO) bioavailability and contributes
to vascular inflammation, whereas selective increases in endothelial leptin signaling and
leptin supplementation fully restore endothelial function via direct regulation of vascu-
lar redox signaling [15,21,28,29]. However, whether reduced leptin levels contribute to
alteration in vascular contractility remains unknown. The goal of the present study is to
analyze the effects of lipodystrophy and leptin deficiency on vascular contractility in the
Bscl2 deficient mouse, a unique mouse model of congenital generalized lipodystrophy
(CGL).

2. Results
2.1. Lipodystrophy Specifically Increases Vascular Adrenergic Contractility

To determine the effects of lipodystrophy on vascular contractility, aortic rings were
submitted to KCl and concentration response curves to phenylephrine (Phe) and serotonin
(5HT). As reported in Figure 1, lipodystrophy markedly increased Phe-induced constriction
in aortas from gBscl2-/- mice, but did not alter vascular responses to either KCl or 5HT.
Previous work by our group demonstrated that reduced leptin levels and endothelial leptin
signaling lead to endothelial dysfunction in gBscl2-/- mice, which is reversed by leptin sup-
plementation [15,21,28,29]. Therefore, we investigated the effects of restoring leptin levels
via leptin infusion on vascular contractility. Remarkably, leptin treatment significantly
reduced Phe-mediated constriction in both gBscl2-/- and gBscl2+/+ mice and almost restored
vascular Phe-contractility to baseline in gBscl2-/- mice (Figure 1A). However, chronic leptin
infusion was without effects on KCl- and 5HT-induced constriction (Figure 1B,C).
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2.2. Lipodystrophy Increases Arterial Media Thickness And collagen Deposition  
To investigate the potential origin of increased vascular adrenergic contractility, we 
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Figure 1. Leptin treatment reduces vascular adrenergic contractility in aortas from lipodystrophic mice. Concentration
response curves to phenylephrine (A), serotonin (B) and KCl (C) in aortic rings from wild type (gBscl2+/+) or Bscl2 deficient
mice (gBscl2-/-) treated or not with leptin (0.3 mg/kg/day for 1 week, via osmotic mini-pump). Data are presented as
mean ± S.E.M. N = 4–7; * p < 0.05 gBscl2+/+ vs. gBscl2-/-; ** p < 0.05 gBscl2+/+ vs. gBscl2+/+ + leptin; # p < 0.05 gBscl2-/- vs.
gBscl2-/- + leptin.
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2.2. Lipodystrophy Increases Arterial Media Thickness and Collagen Deposition

To investigate the potential origin of increased vascular adrenergic contractility, we
obtained indices of vascular remodeling. As reported in Figure 2A,B, lipodystrophy is
associated with an increase in arterial cross-sectional area (CSA) which remains elevated
under chronic leptin treatment in gBscl2-/- mice. Similarly, lipodystrophy is associated
with increased vascular fibrosis as illustrated by elevations in Masson’s trichrome staining
(Figure 2C,D) and measurements of collagen content (Figure 2E). Leptin treatment did
not alter vascular fibrosis or Col3α1 level, indicating that leptin supplementation reduces
vascular contractility independent of changes in vascular structure.
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Figure 2. Leptin treatment does not restore vascular remodeling and fibrosis in lipodystrophic mice. Hematoxylin and
Eosin staining (A), cross-sectional area quantification (B), Masson’s trichrome staining (C), fibrosis quantification (D), and
collagen 3α1 (Col3α1) gene expression (E) in thoracic aortas from wild-type (gBscl2+/+) or Bscl2 deficient mice (gBscl2-/-)
treated or not with leptin (0.3 mg/Kg/day for 1 week, via osmotic mini-pump). Data are presented as mean ± S.E.M.
N = 3–5. p < 0.05 is considered statically different between groups.

2.3. Lipodystrophy Increases Vascular Adrenergic Contractility via Nox1-Dependent Mechanisms

We, and others, have shown that leptin has the capacity to increase NO bioavailabil-
ity in endothelial cells by activating NO synthase (NOS) or reducing NADPH oxidase
1-derived reactive oxygen species (ROS) production [15,22]. Therefore, to investigate the
potential contribution of the endothelium and ROS in the increase in Phe-mediated constric-
tion, we repeated the concentration response to Phe in the presence of either L-NAME or the
selective Nox1 inhibitor GKT771 [15,30]. L-NAME significantly increased Phe-mediated
vasoconstriction in both gBscl2+/+ and gBscl2-/-, but preserved the difference between
groups, likely ruling out alterations in NOS activity as a cause of increased adrenergic
contractility in gBscl2-/- mice (Figure 3A). On the other hand, Nox1 inhibition with GKT771
markedly reduced Phe-mediated constriction and restored it to baseline levels (Figure 3B),
suggesting that lipodystrophy increases adrenergic contractility via elevated Nox1 activity.
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Figure 3. Lipodystrophy-associated increases in vascular adrenergic contractility are eNOS-
independent but Nox1-mediated. Concentration response curves to phenylephrine in aortic rings
from wild-type (gBscl2+/+) or Bscl2 deficient mice (gBscl2-/-) in the presence of N-nitro-l-arginine
methyl ester [L-NAME; (100 µmol/L)] (A) or GKT771 (10 µmol/L)] (B). Data are presented as
mean ± S.E.M. N = 3–6. * p < 0.05 vs. gBscl2-/-. p < 0.05 gBscl2+/+ vs. gBscl2-/- in presence of
L-NAME.

2.4. Leptin Reduces Vascular Adrenergic Contractility via NOS-Dependent Mechanisms in
gBscl2+/+ Mice

In order to understand the mechanisms whereby leptin reduces Phe-mediated con-
striction, we repeated the L-NAME curves in aortic rings from leptin treated animals.
Remarkably, L-NAME abolished leptin-mediated reduction in Phe-induced constriction
in gBscl2+/+ but not in gBscl2-/- mice (Figure 4), suggesting that leptin treatment reduces
vascular adrenergic contractility by increasing NO bioavailability in gBscl2+/+ only, but via
different mechanisms in gBscl2-/- mice.
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Figure 4. Leptin improves vascular adrenergic contractility in arteries from wild-type mice by
regulating nitric oxide bioavailability. Concentration response curves to phenylephrine in aortic
rings from wild-type (gBscl2+/+) and Bscl2 deficient mice (gBscl2-/-) treated with, or without, leptin
(0.3 mg/Kg/day for 1 week, via osmotic mini-pump), and in the presence or absence of N-nitro-
l-arginine methyl ester [L-NAME; (100 µmol/L)]. Data are presented as mean ± S.E.M. N = 4–6.
* p < 0.05 gBscl2+/+ vs. gBscl2-/- and gBscl2-/- + L-NAME pre-incubation.
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2.5. Leptin-Mediated Decreases in Adrenergic Contractility Requires Intact Endothelial Leptin
Signaling

Leptin receptors are ubiquitously expressed [15,16,24]. Therefore, to identify the cell
type responsible for the effects of leptin on vascular adrenergic response, we utilized mice
deficient in endothelial leptin receptor (LepREC-/-).. These mice showed no alterations in
baseline vascular adrenergic contractility or KCL-mediated constriction (Figure 5), but
blunted leptin-mediated reduction in Phe-induced constriction, supporting a role for
endothelial leptin receptor in leptin-mediated reduction in adrenergic contractility.
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gBscl2-/- mice and abolished the difference between gBscl2+/+ and gBscl2-/- mice while L-

Figure 5. Leptin-mediated reduction in adrenergic vascular contractility requires intact endothelial-
leptin signaling. KCl-induced vascular contractility (A), and concentration response curves (CRC) to
phenylephrine (B) in aortic rings from wild type (LepREC+/+) and endothelial leptin receptor deficient
mice (LepREC-/-) treated or not with leptin (0.3 mg/Kg/day for 1 week, via osmotic mini-pump) (B).
Data are presented as mean ± S.E.M. N = 4. * p < 0.05 WT vs. LepREC-/- mice.

3. Discussion

Patients with CGL deficient in adipose tissue and leptin present with severe car-
diovascular alterations including hypertension, coronary artery disease, hypertrophic
cardiomyopathy and autonomic impairment. Despite numerous studies [2,7–14,31], the
consequences of a generalized deficiency in adipose tissue and the subsequent decrease
in circulating leptin levels on vascular function remains ill-defined. In the present study,
we used a mouse model replicating the human Berardinelli-Seip congenital lipodystrophy
syndrome, the Bscl2 deficient mouse [1,15], to characterize their vascular contractile phe-
notype, and studied the effects of chronic leptin supplementation as patients with CGL
would receive [6,11]. Using this approach, we demonstrated that CGL induced a marked
increase in vascular adrenergic contractility that is reduced by chronic leptin treatment. We
furthered our findings by demonstrating that CGL-mediated increases and leptin-induced
reduction in adrenergic contractility are independent of NOS activity, but likely dependent
on Nox1. Finally, we showed that the protective effects of leptin treatment require intact
endothelial leptin signaling. Relevant to these observations are the mechanisms of im-
pairment of vascular adrenergic reactivity and the mechanisms whereby leptin improves
endothelial function.

Herein, we reported, for the first time, that CGL specifically increases vascular adren-
ergic contractility. Based on the reported increases in arterial CSA, a global increase in
vascular contractility in gBscl2-/- mice could have been expected. However, KCl- and
5HT-mediated constrictions remained intact ruling out morphological changes and vas-
cular remodeling as causes of increased contractility. Similarly, lipodystrophy-associated
metabolic alterations, notably hyperglycemia, can likely be excluded as well despite di-
abetes and hyperglycemia being shown to raise vascular contractility indistinctly of the
pathway [32,33]. Therefore, impairment in α-adrenergic signaling within vascular smooth
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muscle cells (VSMCs) [34,35] or loss of the blunting effects of endothelial cells on α-
adrenergic constriction [36,37] may contribute the enhanced vascular adrenergic tone.
Using the same animals, we previously investigated the effects of CGL on endothelial
function. We initially reported marked impairment in endothelial function caused by a
decrease in NO bioavailability. We demonstrated that the reduced NO bioavailability re-
sulted from an increase in Nox1-derived ROS production [15]. Herein, using L-NAME, we
ruled out reduced NO bioavailability as a potential contributor to enhanced α1-adrenergic
contractility but identified increased Nox1 activity as a potential player. Indeed, Nox1
inhibition with the selective Nox1 inhibitor GKT771 [15] fully restored adrenergic contrac-
tility in gBscl2-/- mice and abolished the difference between gBscl2+/+ and gBscl2-/- mice
while L-NAME did not. Further evidence in support of a role for Nox1 is provided by
additional results from our group and others demonstrating that Nox1 deficiency in mice
protects from increases in adrenergic contractility [21,38]. While these data support the role
of Nox1, they do not inform on the cell type responsible for the increase in Nox1 activity.
Previous reports indicate that ROS production is required for vascular smooth muscle cell
contraction in response to adrenergic receptor stimulation [39]. However, neither Nox1
deficiency [21], nor selective Nox1 inhibition (Figure 3B) blunted α1-adrenergic contractility.
This indicates that α1-adrenergic receptor-mediated ROS production likely derives from
other NADPH oxidase isoforms than Nox1 in VSMCs, and potentially suggests the contri-
bution of endothelial cell Nox1. Based on the observation that deficiency in endothelial
leptin signaling increases aortic Nox1 expression, as well as the expression of its organizer
and activator, NOXO1 and NOXA1 [15], we can speculate that increases in endothelial
Nox1 contributes to CGL-associated hyperadrenergic contractility, but further studies are
warranted to confirm this hypothesis.

Herein, we also reported that chronic leptin supplementation restores vascular adren-
ergic contractility and demonstrated for the first time that leptin-mediated decreases in
vascular adrenergic contractility requires intact endothelial leptin signaling. Interestingly,
leptin appears to reduce adrenergic contractility via different mechanisms in wild-type and
lipodystrophic mice. Consistent with the demonstration that leptin increases vascular NO
production [22,27,40], leptin-mediated reduction in adrenergic contractility is abolished
by L-NAME supporting its NOS dependency in gBscl2+/+ mice. However, L-NAME did
not blunt leptin-mediated reduction in adrenergic contractility in gBscl2-/- mice, favoring
the contribution of different mechanisms. Nox1 inhibition reduced vascular adrenergic
contractility in gBscl2-/- mice (Figure 3B) and leptin decreased vascular Nox1 expres-
sion [15,21]. Therefore, the mechanisms may likely be Nox1-dependent. However, while
Nox1-mediated increases in adrenergic contractility appear as the most likely explanation
for the adrenergic hypercontractility, one cannot rule out vascular adrenergic adaptations
in response to changes in vascular sympathetic drive. Indeed, several reports from our
group demonstrated that increases in sympathetic tone lead to compensatory decreases
in α1-adrenergic contractility [41,42], while a reduction in sympathetic tone increases α1-
adrenergic reactivity [43], notably in response to alteration in leptin levels. As leptin is a
major regulator of vascular sympathetic dive [41,42,44] and produced in limited amounts in
gBscl2-/- mice [1,15], one can expect that Bscl2 deficient mice exhibit low sympathetic drive
and a consequent compensatory increase in vascular adrenergic contractility. Based on
the same dogma, we could expect that leptin treatment would reduce vascular adrenergic
contractility via raising sympathetic tone. However, addressing the effects of CGL on
sympathetic drive was beyond the scope of the present study.

Increased vascular adrenergic contractility has been reported in humans with type
2 diabetes [45] and aging [46], which are two major risk factors for hypertension, and also
in African American individuals [47] who are predisposed to hypertension. Hypertension
is currently the leading risk factor for cardiovascular disease [48,49]. Although data in
lipodystrophic patients are missing, it is reasonable to speculate that, as observed in mice,
lipodystrophic patients exhibits elevated vascular adrenergic tone, which would explain
their high propensity to develop hypertension. Interestingly, while leptin treatment reduced
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vascular adrenergic contractility in mice, it did not reduce blood pressure in lipodystrophic
patients [50]. Several factors could explain this discrepancy. First, restoration of metabolic
function, notably restoration of euglycemia and improvements in liver function [51,52],
which both have negative consequences on blood pressure, could compensate for increases
in leptin-mediated sympatho-activation. Second, the present study has been conducted in
conductance vessels, which play only minimal roles in blood pressure control. Although
we previously demonstrated that leptin similarly regulates vascular function in resistance
and conductance arteries [41,42], whether conductance vessels and resistance arteries from
lipodystrophic mice respond similarly to leptin remain unknown. Furthermore, leptin
supplementation did not improve vascular remodeling (Figure 2), which is crucial for
blood flow maintenance via regulating vascular resistance [53,54]. Therefore, we can
speculate that the absence of beneficial effects of leptin on arterial stiffness may explain
the preservation of the elevated blood pressure in lipodystrophic patients. Finally, blood
pressure regulation results from a balance among different variables including a fine tune in
renal structure and function [48,49,55]. Liu et al. reported that gBslc2-/- mice present with
renal injury [56], which is only restored with large doses of leptin for an extended period of
time (1 µg/g/day for 14 days). Indeed, these authors used a dose more than 3 times higher
than the dose used in the present study for twice the duration. Then, increasing doses
and/or time of leptin treatment could potentially prove to be efficient to decrease blood
pressure. Therefore, these results beg for more human and animals studies, in order to
better understand the effects of leptin treatment in dose and treatment duration on blood
pressure regulation, with a particular focus on the vascular function, and the autonomic
control of blood pressure.

In conclusion, these findings provide the first evidence that reduced leptin levels and
endothelial leptin signaling enhanced vascular adrenergic contractility via increases in
Nox1-derived ROS (Figure 6). Our data also provide insights into the beneficial effects of
leptin supplementation in reducing vascular contractility in an endothelium-dependent
manner and identify leptin as a key regulator of vascular tone in physiological conditions.
Nevertheless, further studies are necessary to investigate the effects of lipodystrophy and
leptin on resistance arteries function, and determine whether higher doses of leptin can
reduce blood pressure in patients with lipodystrophy.
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4. Materials and Methods
4.1. Animals

Mice deficient in Bscl2 (gBscl2-/-) were generated, characterized, and provided by Dr.
Weiqin Chen (Department of Physiology, Augusta University). Male animals, 10–12-weeks
old, were compared to their wildtype littermate control (gBscl2+/+). All animals were fed
standard mouse chow, and tap water was provided ad libitum. Mice were housed in an
American Association of Laboratory Animal Care-approved animal care facility at Augusta
University. Augusta University Institutional Animal Care and Use Committee approved
all protocols (IACUC protocol #2011-0108). For tissue collection, mice were anesthetized
(isoflurane 5%) and euthanized via decapitation, in accordance with our approved animal
protocol.

4.2. Leptin Supplementation

Animals were treated with saline or leptin (0.3 mg/kg/day, ProSpec, Rehovot, Israel)
via subcutaneous osmotic mini-pumps (ALZET, Cupertino, Calif; model 1007D, 0.5 µL/h)
for 7 days as previously described [15,21,44].

4.3. Vascular Function

Thoracic aortas were dissected surgically, cleaned of surrounding fat, cut in four rings
and mounted on a wire myograph (DMT), as described previously [15,21,42]. Briefly, two
tungsten wires were inserted into the lumen of the arteries and fixed to a force transducer
and a micrometer. Arteries were bathed in a physiological salt solution and arterial
viability was determined with a potassium-rich solution (KCl, 40 mmol/L). Concentration
response curves (CRC) to phenylephrine (0.1 nmol/L to 100 µmol/L) and serotonin (5HT,
0.1 nmol/L to 100 µmol/L) were performed in presence or absence of inhibitor N-nitro-l-
arginine methyl ester (L-NAME; 100 µmol/L, unspecific nitric oxide synthase (NOS) Sigma
Aldrich, MO-USA) or GKT771 (10 µmol/L; specific Nox1 inhibitor, Genkyotex, Saint Julien
en Genevois, France). CRCs were normalized by the maximal response evoked by KCl
(40 mmol/L). The individual CRC were fitted by nonlinear regression analysis.

4.4. Morphometric Analysis of the Vascular Wall

Thoracic aortas were harvested, cleaned of connective tissue, and fixed in 4% phosphate-
buffered paraformaldehyde at pH 7.4 and embedded in paraffin blocks. Four micrometer-
thick slices were stained with hematoxylin and eosin (H&E) or Masson’s trichrome stain.
Cross-Sectional Area (CSA) was calculated by subtracting the lumen internal area from the
external area, which was measured in each tissue section. Fibrosis was quantified by the
percentage of fibrotic area in each section. Both parameters were analyzed using ImageJ
Program. Stained sections were examined with a light microscopy (ZEISS Axio Imager
Observer D1).

4.5. Real-Time PCR

Tht total aortic mRNA was extracted (Trizol Plus, Invitrogen, Carlsbad, Calif) and the
concentration was established with a NanoDrop 1000 (NanoDrop Technologies, Wilming-
ton, Del). Complementary DNA was generated by RT-PCR with SuperScript III (Thermo
Fisher Scientific, NH-USA). Reverse transcription was performed at 50 ◦C for 50 min;
the enzyme was heat inactivated at 85 ◦C for 5 min, and real-time quantitative RT-PCR
was performed with the SYBR-Green Supermix (Bio-Rad Laboratories, Hercules, Calif).
Collagen 3α1 (Col3α1, FW: 5′ CCATTTGGAGAATGTTGTGCAAT 3′ and RV: 5′ GGACAT-
GATTCACAGATTCCAGG 3′) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH,
FW: 5′ ACCCAGAAGACTGTGGATGG 3′and RV: 5′ CACATTGGGGGTAAGGAACAC 3′.

4.6. Statistical Analysis

All data are presented as mean ± SEM. P values less than 0.05 were considered
significant. Differences in means among groups and treatments, with repeated variables,
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were compared by 2-way ANOVA with repeated measures, where appropriate. Tukey and
Bonferroni tests were used as the post hoc test (GraphPad).
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